

GIRO40

BIG things come in small packages:

Actuaries of Smaller Insurers Working Party

Agenda

- Working party origins
- · Mission and objectives
- · Themes from paper
- Pros and cons
- In summary
- A common problem
- · Helpful methods (expanded in appendices)
 - Large claims modelling for small firms
 - Claims reserving using 'R'
- · Considerations about the job
- · Tips and how to make the most of it
- · Next steps

Working party origins

- · The opportunities and hazards of being a lone actuary
 - Paper produced in 2008
 - Professionalism implications of working alone
 - Other areas covered included
 - · Advantages and disadvantages
 - Communication
 - · Managing expectations
- Increasing number of professionals working alone as actuaries move further in to general insurance space
 - Companies recognising advantages
 - Legislative requirements

9 October 2013

3

Mission and objectives

- · You are not alone!
 - Offer some support and guidance to those already in small functions or working independently
 - To give those considering working in smaller teams the confidence to do so
 - Provide a basic toolkit of methodologies
- Outcomes
 - GIRO paper 2013
 - · A users guide to small teams
 - Community
 - · Website
 - · Regular seminars
- · The views expressed are those of the presenters and not their employers

Topics covered in WP paper

- Managing expectations
 - Baptism of fire
 - Deviation from job description
 - Jack of all trades
- · Building and managing teams
 - Recruitment
 - Structures
 - What if your boss is not an actuary?
- Decision making and innovation
 - Toolkit
 - Mitigating the downside

9 October 2013

Topics covered in WP paper

- Data
 - Lack of it
 - Data management
 - Warehouses and systems
 - Quality
- Training
 - Legislation
 - CPD
 - Solvency 2

5

Topics covered in WP paper

- Professionalism issues
 - Conflicts of interest
 - Proportionality
 - Regulatory attention
- · Other
 - Managing use of consultancies
 - Independent peer review

9 October 2013

Common themes

- · Roles are challenging but rewarding
- · More variety than working for larger companies
- Potential to innovate, set your own agenda and for some serious CV enhancement
- · Visibility and expectation are both high
- · There is always too much to do and it can feel lonely
- · You're unlikely to have any handover
- The job is likely to deviate from the initial job description you'll be expected to contribute to areas where you're not an expert and stick your neck out
- · Recruitment can be challenging, particularly at the junior level
- · You may have to fight for a training budget and actuarial study
- · Independent peer review / validation is a consistent problem area
- · Data is often less well organised and you'll often have less of it

7

Pros and cons

- Advantages
 - Respect of your peers and colleagues
 - Immediate recognition (and reward)
 - Broad range of challenges
 - Less bureaucracy
 - Hands-on work is satisfying and helps you to understand the business
- Disadvantages
 - Visibility and expectations will be high
 - Often required to give an opinion with little or no peer review
 - Resources are scarce
 - Hands-on work can time be consuming and repetitive
 - Lack of 'joined up' thinking and processes

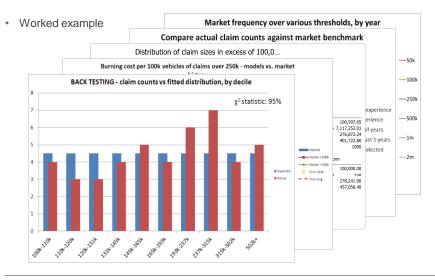
9 October 2013

9

A common problem

- You have been working on your own for over a year and are regularly using consultants to assist with actuarial work. There is a medium term initiative for bringing all actuarial services in house. You have sign off to hire a mid level actuarial student. What type of skills would you go for?
 - Reserving/pricing/capital, complimentary?
 - Experience levels technical, IT, etc?
 - Good/slow exam progress?
 - High flyer or plodder university, FIFoA?

Large claims modelling for small insurers


- · Methodology included in WP toolkit
- Situation
 - We want to determine a large claim frequency and claim size distribution for e.g. 2013
- Uses
 - Large claim loadings in pricing
 - Initial expected ultimate for reserving
 - Simulating large claim occurrence in capital model and RI analyses
 - Answer questions like "what are the chances of a €5m claim in 2013?"
- Problem
 - We have a small portfolio, and we've only ever had two claims over €1m this isn't enough to parameterise a large claims model
 - We think two €1m claims is better than the market average; but is this a fluke or is there something about our portfolio that makes it less large-claims-y?

9 October 2013

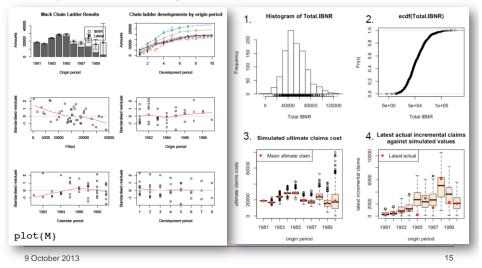
11

Large claims modelling for small insurers

- Analysis process
 - Collect market large claim data
 - Build a model for the market as a whole
 - Compare your history against market; assess whether your experience is better / worse
 - Rescale market model for your risk profile
 - Fit claim size distribution
 - Validate (sense checks, back testing, etc.)

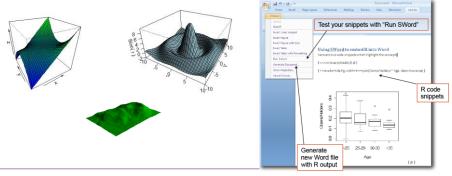
Large claims modelling for small insurers

9 October 2013


13

Claims reserving using 'R'

- · Methodology included in WP toolkit
- R provides a good foundation for very detailed analysis and management information
 - Large number of resources available
 - Active and broad development community help quick and easy to get.
 - NO financial commitment
- Simple two step process
 - Prepare data in suitable format to import into R
 - Run pre-programmed modules to produce claims reserving analysis


Claims reserving using 'R'

· Graphical and detailed analysis

Claims reserving using 'R'

- · Detailed and Automated Management Information
 - R simple to combine with MS Office (Power Point, Word) to create regular reports.
 - Process can be significantly automated using Macro functions and VBA.
 - Option to use powerful R graphing tools (image, plot, persp) or export data for graphical analysis into Excel or other Graphing tool.

Considerations about the job

- · Agree terms of reference carefully
- Think about areas of the business you would like to be involved in; if you prove yourself then opportunities are likely to emerge
- Discuss how your personal appetite for innovation and change fits with the company culture
- · Know about the company's approach to decision making
- · Find out about the company's relationship with the regulator
- · Do your homework about data modelling
- Set expectations about how much effort you will need to spend getting data models in place

9 October 2013

17

Tips and how to make the most of it

- Be open minded about where you can add value
- · Look at the baptism of fire as an opportunity to establish yourself
- · Know that the role will develop over time
- Be brutally organised, in your personal organisation, and in how the function is structured
- Focus on activities that make a difference and add value; avoid the temptation to tackle familiar issues first
- Maximise the resources available to you, particularly the intellectual assets of colleagues (even PAs)
- · Use guidance and regulation as often as you can to reinforce your views

Next steps

- · Lists of data sources
- · Toolkit (some samples in the appendices)
- · Xmas drinks
- http://www.linkedin.com/groups/Actuaries-Smaller-Insurers-5078519/
- · Leave us your contact details!!

9 October 2013

19

Appendix 1 - Large claims modelling

- · Methodology included in WP toolkit
- Situation
 - We want to determine a large claim frequency and claim size distribution for e.g. 2013
- Uses
 - Large claim loadings in pricing
 - Initial expected ultimate for reserving
 - Simulating large claim occurrence in capital model and RI analyses
 - Answer questions like "what are the chances of a €5m claim in 2013?"
- Problem
 - We have a small portfolio, and we've only ever had two claims over €1m this isn't enough to parameterise a large claims model
 - We think two €1m claims is better than the market average; but is this a fluke or is there something about our portfolio that makes it less large-claims-y?

Large claims modelling for small insurers

- Analysis process
 - Collect market large claim data
 - Build a model for the market as a whole
 - Compare your history against market; assess whether your experience is better / worse
 - Rescale market model for your risk profile
 - Fit claim size distribution
 - Validate (sense checks, back testing, etc.)

9 October 2013

21

Market claim data – claim counts

Motor TPL vehicle years

Number of TPL claims in each size band

Year	WVY	Year	nil	<50k	50-100k	100k-250k	250k-500k	500k-1m	1m-2m	2m+	Total
2,000	37,371,577	2,000	370,792	2,616,807	6,332	4,138	1,473	437	19	7	3,000,176
2,001	37,698,467	2,001	352,614	2,552,224	6,539	4,368	1,484	445	19	6	2,917,870
2,002	37,986,189	2,002	359,787	2,508,698	6,704	4,488	1,365	471	21	.7	2,881,730
2,003	38,557,810	2,003	360,300	2,453,965	6,322	4,981	1,424	456	19	2	2,827,640
2,004	38,781,779	2,004	353,580	2,404,578	6,361	4,634	1,345	443	20	4	2,771,145
2,005	38,865,070	2,005	334,105	2,338,917	6,733	4,428	1,339	568	19	5	2,686,285
2,006	39,203,403	2,006	331,316	2,293,146	6,110	4,081	1,323	523	21	.4	2,636,713
2,007	39,230,609	2,007	313,118	2,297,864	6,063	4,334	1,305	513	19	6	2,623,393
2,008	39,453,215	2,008	311,123	2,242,018	5,791	4,185	1,177	485	21	.7	2,564,996
2,009	39,742,958	2,009	322,007	2,307,385	5,478	4,319	1,290	399	122	49	2,641,049
2,010	40,247,758	2,010	333,488	2,426,146	5,310	4,130	1,044	335	129	61	2,770,643
2,011	40,871,218	2,011	331,190	2,376,212	5,410	4,333	1,131	389	114	57	2,718,836

Claim frequency over each threshold

Year	=nil	>nil	50k	100k	250k	500k	1m	2m
2,000	8.03%	7.04%	0.0337%	0.0167%	0.0056%	0.00170%	0.00053%	0.00000%
2,001	7.74%	6.80%	0.0346%	0.0172%	0.0056%	0.00170%	0.00052%	0.00000%
2,002	7.59%	6.64%	0.0349%	0.0172%	0.0054%	0.00181%	0.00057%	0.00000%
2,003	7.33%	6.40%	0.0347%	0.0183%	0.0054%	0.00168%	0.00050%	0.00000%
2,004	7.15%	6.23%	0.0335%	0.0171%	0.0051%	0.00167%	0.00053%	0.00000%
2,005	6.91%	6.05%	0.0341%	0.0168%	0.0054%	0.00196%	0.00050%	0.000009
2,006	6.73%	5.88%	0.0312%	0.0157%	0.0053%	0.00188%	0.00055%	0.000009
2,007	6.69%	5.89%	0.0316%	0.0162%	0.0051%	0.00181%	0.00050%	0.000009
2,008	6.50%	5.71%	0.0300%	0.0154%	0.0048%	0.00178%	0.00055%	0.000009
2,009	6.65%	5.84%	0.0293%	0.0155%	0.0047%	0.00143%	0.00043%	0.000129
2,010	6.88%	6.06%	0.0274%	0.0142%	0.0039%	0.00130%	0.00047%	0.000159
2,011	6.65%	5.84%	0.0280%	0.0147%	0.0041%	0.00137%	0.00042%	0.000149

Market claim data – claim costs

Cumulative TPL claim amount in each size band

Year	nil	<50k	50-100k	100k-250k	250k-500k	500k-1m	1m-2m	2m+	Total
2,000	0	8,140,229,539	8,572,859,911	9,201,700,675	9,701,224,736	9,991,780,688	10,318,	016,535	*****
2,001	0	7,982,080,120	8,426,318,128	9,100,033,570	9,603,002,730	9,889,685,298	10,232,	582,880	*****
2,002	0	7,768,159,825	8,223,156,304	8,893,274,771	9,359,829,173	9,664,789,911	10,051,	958,469	*****
2,003	0	7,541,060,939	7,968,426,570	8,723,259,907	9,209,489,126	9,513,758,286	9,886,4	84,798	9,886,484,798
2,004	0	7,487,291,552	7,915,003,995	8,607,454,600	9,062,798,587	9,347,416,489	9,751,3	66,730	9,751,366,730
2,005	0	7,290,561,545	7,743,687,129	8,404,292,105	8,862,943,471	9,237,241,543	9,575,5	12,926	9,575,512,926
2,006	0	7,031,035,290	7,443,878,095	8,069,699,070	8,529,692,807	8,883,672,821	9,298,2	90,492	9,298,290,492
2,007	0	7,165,833,426	7,575,931,864	8,235,626,540	8,677,382,187	9,021,046,740	9,401,4	42,741	9,401,442,741
2,008	0	7,052,729,194	7,441,213,099	8,079,337,724	8,483,751,799	8,800,831,589	9,220,7	31,375	9,220,731,375
2,009	0	7,247,674,935	7,614,767,394	8,293,546,578	8,727,121,804	8,989,314,282	9,150,526,299	9,299,090,268	9,299,090,268
2,010	0	7,531,343,564	7,888,866,552	8,531,446,377	8,882,421,811	9,108,918,504	9,283,095,499	9,469,734,944	9,469,734,944
2,011	0	7,479,235,821	7,842,873,854	8,518,338,573	8,895,442,191	9,152,507,684	9,302,554,078	9,476,231,379	9,476,231,379

Average cost of TPL claims in each size band

Year	nil	<50k	50-100k	100k-250k	250k-500k	500k-1m	1m-2m	2m+	Total
2,000	0	3,111	68,324	151,967	339,120	664,888	1,656	5,020	3,439
2,001	0	3,127	67,937	154,239	338,928	644,230	1,749	9,477	3,507
2,002	0	3,096	67,869	149,313	341,798	647,475	1,784	,187	3,488
2,003	0	3,073	67,600	151,543	341,453	667,257	1,941	,284	3,496
2,004	0	3,114	67,240	149,428	338,546	642,478	1,980),148	3,519
2,005	0	3,117	67,299	149,188	342,533	658,975	1,734	1,725	3,565
2,006	0	3,066	67,568	153,350	347,690	676,826	1,937	7,466	3,526
2,007	0	3,118	67,640	152,214	338,510	669,911	1,940),796	3,584
2,008	0	3,146	67,084	152,479	343,597	653,773	1,935	5,022	3,595
2,009	0	3,141	67,012	157,161	336,105	657,124	1,321,410	3,031,918	3,521
2,010	0	3,104	67,330	155,588	336,183	676,110	1,350,209	3,059,663	3,418
2,011	0	3,148	67,216	155,888	333,425	660,837	1,316,196	3,046,970	3,485

Forecast for 2013

Claims in size band as proportion of claims in previous size band

Year	nil	<50k	50-100k	100k-250k	250k-500k	500k-1m	1m-2m	2m+
2,000		87.64%	0.48%	49.65%	33.74%	30.09%	31.07%	0.00%
2,001		87.92%	0.51%	49.82%	32.73%	30.16%	30.58%	0.00%
2,002		87.51%	0.53%	49.38%	31.39%	33.51%	31.54%	0.00%
2,003		87.26%	0.54%	52.73%	29.38%	31.27%	29.63%	0.00%
2,004		87.24%	0.54%	51.02%	30.06%	32.48%	31.53%	0.00%
2,005		87.56%	0.56%	49.23%	32.19%	36.30%	25.56%	0.00%
2,006		87.43%	0.53%	50.13%	33.55%	35.78%	29.04%	0.00%
2,007		88.06%	0.54%	51.15%	31.73%	35.20%	27.64%	0.00%
2,008		87.87%	0.53%	51.15%	30.99%	37.36%	30.91%	0.00%
2,009		87.81%	0.50%	53.01%	30.10%	30.65%	30.00%	28.65%
2,010		87.96%	0.45%	51.77%	27.53%	33.46%	36.19%	32.11%
2,011		87.82%	0.48%	52.68%	28.07%	33.12%	30.54%	33.33%

	Frequency	Proportions						
Average	7.07%	87.67%	0.52%	50.98%	30.95%	33.28%	30.35%	
Average ex hi	7.03%	87.68%	0.52%	50.95%	31.02%	33.19%	30.25%	
Average 06-1	6.68%	87.83%	0.50%	51.65%	30.33%	34.26%	30.72%	31.36%

Trend extrapolated from historical data

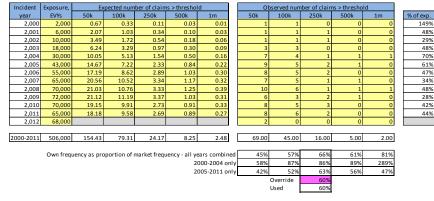
	Frequency	Proportions						
2,011	6.39%	87.86%	0.50%	52.32%	28.96%	34.84%	30.97%	
2,012	6.27%	87.90%	0.50%	52.56%	28.60%	35.12%	31.08%	
2,013	6.15%	87.93%	0.49%	52.80%	28.23%	35.41%	31.19%	
Pick 2013	6.68%	87.93%	0.49%	52.80%	28.23%	35.41%	31.19%	33.33%
Frequency >	6.68%	5.88%	0.0291%	0.0154%	0.0043%	0.00154%	0.00048%	0.00016%

Own data

Own experience

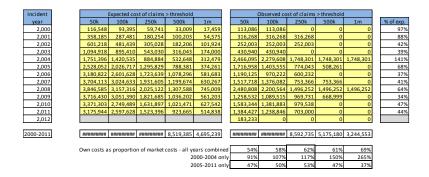
Incident	Exposure,	Ð	pected num	ber of claim	ns > threshol	d
year	EVYs	50k	100k	250k	500k	1m
2,000	2,000	0.67	0.33	0.11	0.03	0.01
2,001	6,000	2.07	1.03	0.34	0.10	0.03
2,002	10,000	3.49	1.72	0.54	0.18	0.06
2,003	18,000	6.24	3.29	0.97	0.30	0.09
2,004	30,000	10.05	5.13	1.54	0.50	0.16
2,005	43,000	14.67	7.22	2.33	0.84	0.22
2,006	55,000	17.19	8.62	2.89	1.03	0.30
2,007	65,000	20.56	10.52	3.34	1.17	0.32
2,008	70,000	21.03	10.76	3.33	1.25	0.39
2,009	72,000	21.12	11.19	3.37	1.03	0.31
2,010	70,000	19.15	9.91	2.73	0.91	0.33
2,011	65,000	18.18	9.58	2.69	0.89	0.27
2,012	68,000					
2000-2011	506,000	154.43	79.31	24.17	8.25	2.48

 If our experience had been in line with market average, we would have had 154 claims over €50k, 24 claims over €250k and 2.5 claims over €1m


Own data

Own experience

Incident	Exposure,	Ex	pected num	ber of claim	ns > thresho	ld		0	oserved num	ber of clain	ns > thresho	ld
year	EVYs	50k	100k	250k	500k	1m		50k	100k	250k	500k	1m
2,000	2,000	0.67	0.33	0.11	0.03	0.01	[1	1	0	0	0
2,001	6,000	2.07	1.03	0.34	0.10	0.03	[1	1	1	0	0
2,002	10,000	3.49	1.72	0.54	0.18	0.06	[1	1	1	0	0
2,003	18,000	6.24	3.29	0.97	0.30	0.09	[3	3	0	0	0
2,004	30,000	10.05	5.13	1.54	0.50	0.16	[7	4	1	1	1
2,005	43,000	14.67	7.22	2.33	0.84	0.22	[9	5	2	1	0
2,006	55,000	17.19	8.62	2.89	1.03	0.30	[8	5	2	0	0
2,007	65,000	20.56	10.52	3.34	1.17	0.32	[7	5	1	1	0
2,008	70,000	21.03	10.76	3.33	1.25	0.39	[10	6	1	1	1
2,009	72,000	21.12	11.19	3.37	1.03	0.31	[6	3	2	1	0
2,010	70,000	19.15	9.91	2.73	0.91	0.33	[8	5	3	0	0
2,011	65,000	18.18	9.58	2.69	0.89	0.27	[8	6	2	0	0
2,012	68,000							2	0	0	0	0
							,					
2000-2011	506.000	154.43	79.31	24.17	8.25	2.48		69.00	45.00	16.00	5.00	2.00

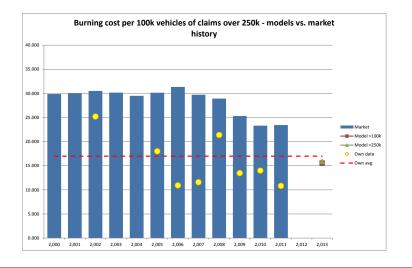

 In reality we had 69 claims over €50k, 16 claims over €250k, and 2 claims over €1m

Own data

- · Calculate ratio of actual to expected over different periods and size thresholds
- In this case, evidence of consistently better frequencies => choose 60% ratio
- If we'd only looked at claims >€2m, it would have been inconclusive

Own data

 We can repeat the exercise for actual claim costs vs. expected. In this case, actuals are around 50-60% of market benchmark => consistent with frequencies


Selected frequencies

	Frequency	per 100,000 ri	sks - 2013
Threshold	Market	Adjustment	Us
50k	29.09	0.6	17.45
100k	15.36	0.6	9.21
250k	4.34	0.6	2.60
500k	1.54	0.6	0.92
1m	0.48	0.6	0.29
2m	0.16	0.6	0.10

- In this example we use the same adjustment for all claim size thresholds, but we are free to select different factors
- · Now we can use these frequencies to fit a claim size distribution

Fitting a claim size distribution

- · Considerations:
 - You get a different fit if you plug in the frequencies for all ranges down to 50k than if you only use the frequencies down to 100k. What range should you use?
 - Is it better to minimise the error in the frequency of claims in each range or the aggregate cost of claims in each range? Frequency is the default approach, but using costs would give more importance to top end of distribution – may be more relevant for capital/reinsurance uses?

Validation – visual sense check

Validation – other methods

Back testing: how our actual historic claims fall in the assumed claim size distribution

Actual	Expected	Value to	Value from	file to	%ile from	Range no
	5	109,003	0	7%	096	1
5	5	115,451	109,003	13%	7%	2
	5	122,425	115,451	20%	13%	3
	5	130,351	122,425	27%	20%	4
	5	139,600	130.351	33%	27%	5
	5	150,618	139,600	40%	33%	6
	5	164,018	150,618	47%	40%	7
	5	180,696	164,018	53%	47%	8
	5	202,058	180,696	60%	53%	9
1	5	2,30,454	202,058	67%	60%	10
1	5	270,206	230,454	73%	67%	11
1 12	5	330,366	270,206	80%	73%	12
1	5	434,339	330,366	87%	80%	13
	5	673,823	434,339	93%	87%	14
	5	999,999,999	673,823	100%	93%	15

Chi s quare test statistic 88%

Validation – other methods

- · Largest claim:
 - Simulate using the assumed distribution, for a portfolio of your size, the expected distribution of the largest claim size in each year
 - Compare this against the actual largest claim in each year
 - (relies on having several years of history to make the comparison meaningful)
- Comparison of market frequencies over various thresholds against reports produced by reinsurance brokers or other organisations (bearing in mind the potential for conflict of interest)

Appendix 2 - Claims reserving using 'R'

- · Methodology included in WP toolkit
- R provides a good foundation for very detailed analysis and management information
 - Large number of resources available
 - Active and broad development community help quick and easy to get.
 - NO financial commitment
- Simple two step process
 - Prepare data in suitable format to import into R
 - Run pre-programmed modules to produce claims reserving analysis

Data preparation

- · Step 1 -Getting your claims data into "R"
 - Standard Windows Clipboard cut and paste (Ctrl C)
 - Built-in functionality to read and write to MS Excel files (read.xls/write.xls)
 - Embed into VBA code using StatconnectorSrv type library
 - ODBC connections to database platfomrs
 - Commercially available add-ins for Excel and Access

statconn	Example: Using Recel Add-in to use R functions from Excel The Road add in to available the index contact with an extent of the second state of the
Central America (1994 - Hauting Line) Separat Contact Series Sweeful data analysis from side your favorite application	LEU All Diff TLM LLM DLM MAG LLM 104 ALM SAM LLM
None interface of payment payment have been defined and the logical and the lo	201 4.00 31.000 2.000 1.3.33 5.00 2.00
instein senesten he IRD Olive (Honri and Silved) and David Bandhan org (HOD) en enganese subdans to sease and applicate hadring.	tiking resteral and rapply March JegOrgin Call 322-Marchael Meck JegOrgin "Junction (clummary) March Hausters, Northlad) 5
Maliphane Transformation as an advances and the displacement and the dis	Land Dev Stimate Bild 31 Dev 14.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.
maar fahre as a tee ongs on durch the accommongs terms files candidy to find out workstress or using the facts files of charge. The standards locates, see <u>status locat candidates cont</u>	210.05 91.95 32.34 5.3.67 92.7 10.16 20.100 91.95 30.34 5.3.07 10.27 40.9 10.312 81.96 10.34 5.3.01 5.3.06 10.9 11.3 10.312 81.9 30.48 5.3.08 5.0.9 10.9 10.9 10.312 81.9 30.47 30.3.08 4.0.9 40.9 40.9 10.312 81.9 30.47 30.3.08 4.0.9 40.9
www.dustree.dow	5.395 19% 06.321 10.394 0.448 59% 2.005 11% 16.709 06.07 2.005 150%

9 October 2013

R programmed options

- Step 2 Pre-programmed tools (packages) in "R"
 - Current version offers
 - ChainLadder linear regression
 - · MackChainLadder Development of the standard ChainLadder method
 - · BootChainLadder Bootstrapping method using an assumed process distribution
 - MultiChainLadder forecast reserves based on several triangles simultaneously
 - Examples of each method covered in detail as part of the ChainLadder demonstration that forms part of this "package"

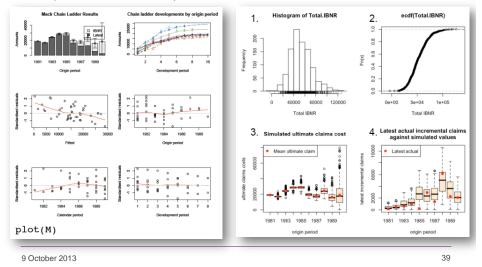
Demonstration

• Step 1 – Define data triangle

> libra	ary(Cl	nainLad	der)							
> RAA										
c	dev									
origin	1	2	3	4	5	б	7	8	9	10
1981	5012	8269	10907	11805	13539	16181	18009	18608	18662	18834
1982	106	4285	5396	10666	13782	15599	15496	16169	16704	NA
1983	3410	8992	13873	16141	18735	22214	22863	23466	NA	NA
1984	5655	11555	15766	21266	23425	26083	27067	NA	NA	NA
1985	1092	9565	15836	22169	25955	26180	NA	NA	NA	NA
1986	1513	6445	11702	12935	15852	NA	NA	NA	NA	NA
1987	557	4020	10946	12314	NA	NA	NA	NA	NA	NA
1988	1351	6947	13112	NA						
1989	3133	5395	NA							
1990	2063	NA	NA	NA	NA	NA	NA	NA	NA	NA

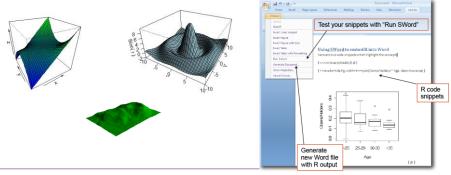
9 October 2013

37


Demonstration

• Step 2 – Apply ChainLadder function to dataset.

library(ChainLadder)										
<pre>M <- MackChainLadder(Triangle = RAA, est.sigma = "Mack")</pre>										
М										
	Latest	Dev.To.Date	Ultimate	IBNR	Mack.S.E	CV(IBNR)				
1981	18,834	1.000	18,834	0	0	NaN				
1982	16,704	0.991	16,858	154	206	1.339				
1983	23,466	0.974	24,083	617	623	1.010				
1984	27,067	0.943	28,703	1,636	747	0.457				
1985	26,180	0.905	28,927	2,747	1,469	0.535				
1986	15,852	0.813	19,501	3,649	2,002	0.549				
1987	12,314	0.694	17,749	5,435	2,209	0.406				
1988	13,112	0.546	24,019	10,907	5,358	0.491				
1989	5,395	0.336	16,045	10,650	6,333	0.595				
1990	2,063	0.112	18,402	16,339	24,566	1.503				
		Totals								
Lates	st:	160,987.00								
Ultimate: 213,122.23										
IBNR: 52,135.23										
Mack	S.E.:	26,909.01								
CV(I	BNR):	0.52								


Advanced application

· Graphical and detailed analysis

Output MI

- · Detailed and Automated Management Information
 - R simple to combine with MS Office (Power Point, Word) to create regular reports.
 - Process can be significantly automated using Macro functions and VBA.
 - Option to use powerful R graphing tools (image,plot,persp) or export data for graphical analysis into Excel or other Graphing tool.

Summary

- · Long Term: Bespoke In-house Development and Tailoring
 - Each company will be unique and data not standard R puts no limit on the user /developer for tailoring and expanding existing functions or building new methods.
 - Tools in the ChainLadder package allow data to be manipulated and prepared to cater for individual requirements.
 - R not just a reserving tool wide range of other applications in data analysis
- Acknowledgment
 - All materials and illustrations by:
 - Markus Gesmann: markus.gesmann@googlemail.com
 - Further details: http://code.google.com/p/chainladder/

9 October 2013

41