

Policyholder Behaviour in Extreme Conditions

11 November 2013

Jean Eu Tafadzwa Gwanoya

11 November 2013

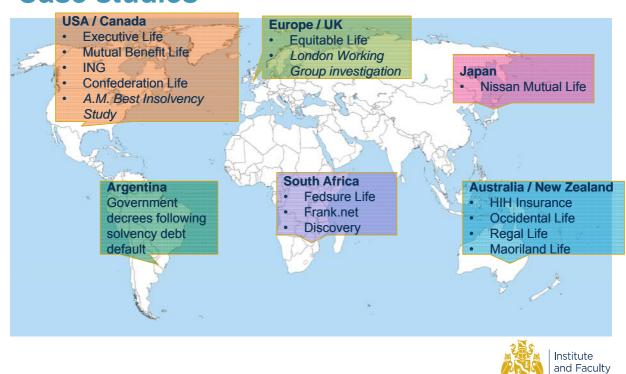
Agenda

- Introduction
- Evidence from the past
- Potential future scenarios
- Possible modelling approaches
- Summary
- Q+A and comments

 A still be a

Aims/Scope

- Does policyholder behaviour significantly impact an insurance company?
- What are the drivers of such behaviour?
- Can this behaviour be analysed / modelled?


What do we mean by:

- 1. "Extreme Conditions"?
- 2. "Behaviour"?

Case studies

11 November 2013

of Actuaries

Overall findings

Key message:

- Policyholder behaviour did not cause failure / near-failure...
- · ...but it is often a key catalyst
- · Mismanagement usually root cause

Also:

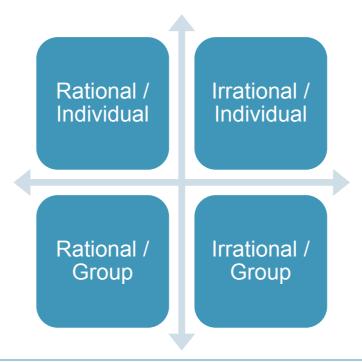
 Evidence of significant impact from policyholder behaviour unrelated to company failure

11 November 2013

Case Study Examples

Policyholder reactions leading to failure:

- Mutual Benefit Life (USA) lapses accelerated bankruptcy
- Maoriland Life (New Zealand) anti-selection played part in downfall


Policyholder reactions (non-failure related):

- ING (USA) change in lapse behaviour ≈ €1.1bn
- Discovery (South Africa) changed policyholder culture

The Behavioural quadrant

What could happen?

- Catastrophe
- Market dislocation
- Medical advances
- State intervention into markets
- Anthropological changes

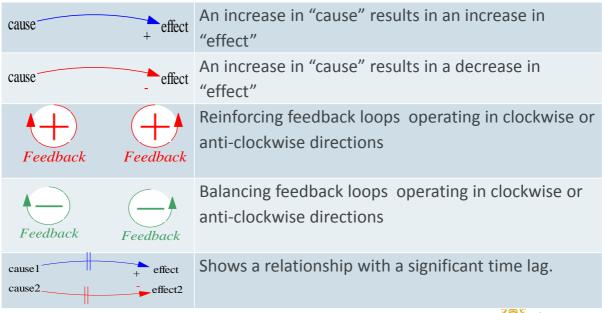
11 November 2013

Example 1: Medical Advances

- Unexpected deviations
 - e.g. Advances in medical science "cure for cancer"?
- Information assymmetry
- Anti-selection effects
- New strategies needed!

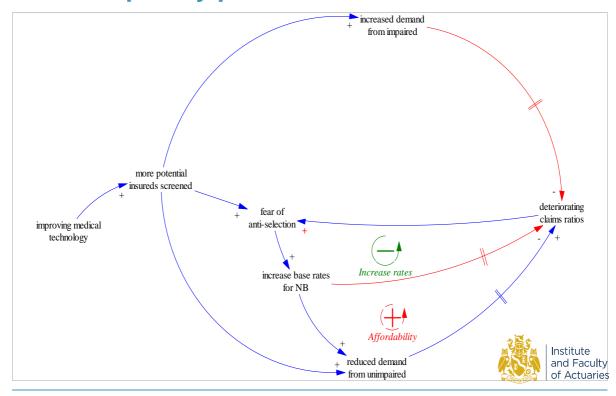
Example 2: State intervention

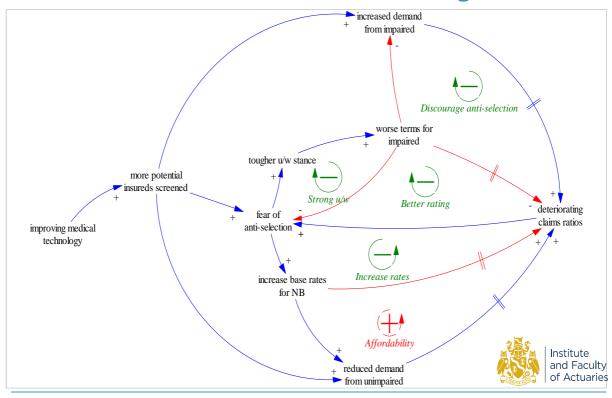
- Changes to regulation
 - e.g. changing taxation policy
- Companies and policyholders react
- One group suffers
- Ramifications!


What is Systems Dynamics?

- Top-down approach
- Focus on events
- Drivers of behaviour, interactions and feedback
- Create a causal map

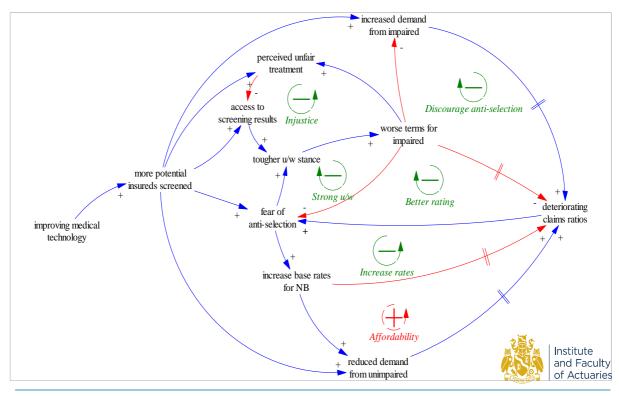
Example: Medical Advances Scenario


Causal Maps – symbols used


Institute and Faculty of Actuaries

11 November 2013 17

Initial map: vary premium rates



Use new information for underwriting

11 November 2013 19

Reaction to perceived "injustice"

SD vs Statistical approach

OD V3 Otatistical approach			
	Statistical Modelling	System Dynamics	
Scope	Not clear when historical evidence breaks down	Boundaries and causal mechanisms explicit	
Understanding	Many technical parameters, doubtful reliability in extreme conditions	Relatively few parameters, intuitively meaningful, but values may not be evidence-based	
Usefulness	Model approach intuitive, output depends on model continuing to apply in extreme conditions	Causal maps aid understanding of scenario, allow tracing of what drives the extreme results	
Credibility	Testing well understood. Genuine extreme behaviour can be confused with statistical "noise" / outliers.	"Reverse-engineer" parameters to fit reality. Limited formulae used, often in "plain language".	

What is Agent-based modelling?

- Bottom-up approach
- Start with the "agents"
- Model individual interactions
- Look at overall effect

Practical Example: Tax Advantaged Product

11 November 2013 23

ABM vs Statistical approach

Abiii vs otatisticai approacti			
	Statistical Modelling	ABM	
Scope	Not clear when historical evidence breaks down	Clear at Agent level, hidden constraints on aggregate	
Understanding	Many technical parameters, doubtful reliability in extreme conditions	Many parameters, easy to understand but not evidence-based	
Usefulness	Model approach intuitive, output depends on model continuing to apply in extreme conditions	Helps to understand overall behaviour of groups of interacting individuals	
Credibility	Testing well understood. Genuine extreme behaviour can be confused with statistical "noise" / outliers.	Lots of formulae to specify interactions. Could be spreadsheet-based so relatively familiar.	

Modelling Summary

Statistical Model Key driver: Data

- Very familiar to actuaries
- Focus on stochastic behaviour as time series, correlations and lags between variables

Systems Dynamics Key driver: Event

- Top-down approach
- Focus on drivers of behaviours, their interactions and feedback effects

Agent-Based Model Key driver: Agent

- Bottom-up approach
- Focus on behaviour of each "agent", with aggregate behaviour allowed to emerge

Progress to date

- Looked at past events for pointers
- Possible future impacts
- Two modelling approaches

What next?

Comments / suggestions / questions?

Institute and Faculty

11 November 2013 27

Questions

Comments

Expressions of individual views by members of the Institute and Faculty of Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenter.