DETECTING ANOMALIES IN NATIONAL MORTALITY DATA

#### **Andrew Cairns**

## Heriot-Watt University, Scotland

#### and

## The Maxwell Institute, Edinburgh

Joint work with: David Blake, Kevin Dowd and Amy Kessler

International Mortality and Longevity Symposium 2014

#### Potential Errors in *post-2011* Population Estimates



Source data: ONS EW males deaths and *revised* population estimates.

#### Plan

- 1. Background and motivation
- 2. Data issues: deaths, population, exposures
- 3. Graphical diagnostics and signature plots
- 4. Model-based analysis of historical population data
- 5. Conclusions and next steps

#### 1: Background and Motivation

- England and Wales data + other countries
- D(t, x): Death counts considered to be accurate
- $P(t + \frac{1}{2}, x)$  mid-year population is an *estimate*
- Crude  $m(t, x) = D(t, x) / P(t + \frac{1}{2}, x)$

$$\operatorname{not} D(t,x)/E(t,x)$$

- Post 2011 census revisions  $\Rightarrow$  some big revisions
- Similar magnitude revisions after 2001 census

## Why Do Errors in Population Data Matter? Potential impact on

- Population mortality forecasts
- Forecasts of sub-population mortality
- Calibration of multi-population models
- Calculation of annuity liabilities and Value-at-Risk
- Assessed levels of uncertainty in the above
- Buyout pricing
- Assessment of basis risk in longevity hedges
- Assessment of hedges and hedging instruments

## Aims

- How to identify anomalies in data
- How to pre-whiten your mortality data

before modelling and forecasting

2: Population Estimates, Exposures, Death Rates Death rate  $m(t, x) = \frac{D(t, x)}{E(t, x)}$ 

• E(t, x) = 'exposure' in year t (central exposed to risk) = average value of P(s, x) from t to t + 1

P(s, x) = population at exact time s aged x last birthday

- England & Wales  $\Rightarrow$  only  $P(t + \frac{1}{2}, x)$  reported
- Common assumption:  $E(t, x) = P(t + \frac{1}{2}, x)$

- e.g. ONS reported death rates:  $m(t, x) = D(t, x)/P(t + \frac{1}{2}, x)$ 

## 2.1: Where Can Errors in E(t, x) Occur?

- Known errors: Inaccurate  $P(t + \frac{1}{2}, x)$ 
  - no ID card system
  - infrequent censuses, under-enumeration
  - migration etc.
  - mis-reported age at census
- Lesser known errors:
  - inaccurate shift from census date to mid-year
  - assumption that  $P(t + \frac{1}{2}, x) \approx E(t, x)$

## 2.1.1: Propagation of General Errors Through Time

#### Errors follow cohorts $\Rightarrow$ "Phantoms never die"



Time

## Phantoms Never Die



## 2.2: Census to Mid-year Shift



ONS 2001 assumption: birthdays spread evenly throughout the year

Conjecture:

- different methodology used in earlier censuses and in 2011

Can We Improve on This Assumption?

The Cohort Births/Deaths (CBD) Exposures Methodology

Underlying hypothesis:

- At any point in time t, pattern of birthdays at t will reflect
  - actual pattern of births x years earlier
  - deaths (impact at high ages)
  - migration and birth patterns of immigrants
- $\bullet$  Irregular pattern of births can lead to errors in census  $\rightarrow$  mid-year shift

| Birth month          |        | ge on P   | e on Proportion |      | 2001              |        | NS     | Age at   |         | ONS         |  |
|----------------------|--------|-----------|-----------------|------|-------------------|--------|--------|----------|---------|-------------|--|
| 3                    |        | 4/2001    |                 | cen  | census            |        | nate   | mid-year |         | nid-year    |  |
| May-June 1918        |        | 82        | 2/12            | 701  | 12<br>72114<br>60 |        | 019    | 83       |         |             |  |
| July 1918-April 1919 |        | 82        | 10/12           | 121  |                   |        | 095    | 82       | J       | 79352       |  |
| May-June 1919        |        | 81        | 2/12            | 115  | 545               | 19     | 257    | 82       | 5       | 19002       |  |
| July 1919-April 1    | 920    | 81        | 10/12           | 110  | 545               | 96288  |        | 81       |         |             |  |
| Birth                | No. of | Age on    | Propor          | tion | 200               | )01 CE |        | )        | Age at  | CBD         |  |
| month                | births | 30/4/200- | 1               |      | cen               | sus    | estima | ate      | mid-yea | ır mid-year |  |
| 5-6/1918             | 113475 | 82        | 0.177           | 85   | 7011              |        | 1282   | 25       | 83      |             |  |
| 7/1918-4/1919        | 524566 | 82        | 0.822           | 15   | 121               | 14     | 5928   | 9        | 82      | 72741       |  |
| 5-6/1919             | 99174  | 81        | 0.116           | 42   | 115               | 545    | 1345   | 52       | 82      | 5 7 27 4 1  |  |
| 7/1919-4/1920        | 752725 | 81        | 0.883           | 58   | 113               | 5+5    | 1020   | 93       | 81      |             |  |
|                      |        |           |                 |      |                   |        |        |          |         |             |  |



Mid-year birth cohort



#### Proposal to Improve Estimates of Exposures

• Death rate 
$$m(t, x) = D(t, x) / E(t, x)$$

- Current assumption:  $E(t, x) = P(t + \frac{1}{2}, x)$
- CBD Exposures Methodology:

Assume 
$$E(t, x) = P(t + \frac{1}{2}, x) \times \frac{E(t - x, 0)}{P(t + \frac{1}{2} - x, 0)}$$

- $E(t x, 0)/P(t + \frac{1}{2} x, 0) =$ Convexity Adjustment Ratio
- $\bullet$  CAR based on monthly pattern of births over t-x-1 to t-x+1

#### CBD Exposures Methodology: Convexity Adjustment Ratio



## 2.4: High Age Methodology

- ONS reports
  - $P(t+\frac{1}{2}, \frac{90}{-})$  only
  - D(t, x) for  $x = 90, 91, 92, \ldots$
- $P(t + \frac{1}{2}, x)$  for  $x = 90, 91, \dots$  derived using the Kannisto-Thatcher Method (extinct cohorts)
- Conjecture: Potential for inconsistencies at the boundary between ages 89 and 90+

3: How to identify anomalies

**Graphical Diagnostics and Signature Plots** 

- Graphical diagnostics
  - hypothesis  $\Rightarrow$

plot should exhibit specific characteristics

- Signature plots
  - what if it does not?

3.1: Graphical Diagnostic 1

Hypothesis: Crude death rates by age for successive

cohorts should look similar.

 $\Rightarrow$  Plot crude death rates against age.



## Signature Plot: Emergence of Phantoms

Cohort Death Rates: 1917 to 1921 birth cohorts



## 3.2: Graphical Diagnostic 2

Hypothesis: Underlying log death rates are approximately linear

 $\Rightarrow$  Plot concavity of log death rates: the difference between log of one death rate and the average of its immediate neighbours:

 $C(t, x_0) = \log m(t, x_0 + t) - \frac{1}{2} \Big( \log m(t, x_0 + t - 1) + \log m(t, x_0 + t + 1) \Big)$ 

If log death rates are linear then this should be close to 0.

#### Concavity function: 1924 Cohort (age 37-87)



Dots are randomly above and below 0.

#### Concavity function: 1920 Cohort



Signature plot: births pattern  $\Rightarrow$  true  $E(t, x) < P(t + \frac{1}{2}, x)$ 

#### Concavity function: 1947 Cohort



Dosts mostly below  $0 \Rightarrow$  cause for concern



Sampling variation  $\Rightarrow$  more extremes < 50 and > 90

## Concavity Function: Empirical CDF's by Age; 88-92



Heat Map: by Age and Calendar Year

Identifiable non-random patterns

Signatures:

- $\bullet$  Diagonals  $\Rightarrow$  issues with a cohort
- Horizontals  $\Rightarrow$  anomalies in reported age at death ???
- Age at death errors are more plausible than systematic age-dependent errors in exposures.
- Except: Prominent horizontal anomaly around 89/90

## 3.3: Graphical Diagnostic 3

Hypothesis: Changes in cohort population sizes should match pattern of reported deaths

- Underlying data:
  - mid-year population,  $P(t+\frac{1}{2},x)$
  - deaths in one calendar year, D(t,x)
- Define  $\hat{d}(t + \frac{1}{2}, x) = P(t + \frac{1}{2}, x) P(t + \frac{3}{2}, x + 1)$
- Plot  $\hat{d}(t+\frac{1}{2},x)$  by cohort
- Compare with surrounding D(t,x)
- $\hat{d}$  and D should be similar if little or no net migration (e.g. high ages)

#### Prior adjustments

- Decrements: adjust for  $E(t, x) \neq P(t + \frac{1}{2}, x)$  $\Rightarrow \hat{d}(t + \frac{1}{2}, x)$  multiplied by CAR(t - x)
- Cohorts  $\pm 1$  year: adjust for different birth rates  $D(t, x + 1) \times E(t - x, 0) / E(t - x - 1, 0)$  $D(t + 1, x) \times E(t - x, 0) / E(t - x + 1, 0)$





#### Possible Explanation: Census $\rightarrow$ Mid-year Pop Error 1919 cohort (stylized)



#### Factual Consquence: Backfilling (ONS Methodology) 1919 cohort (stylized)



#### 1918, 1919 and 1920 Cohorts, Deaths Curves



- 1920 cohort: similar shift in opposite direction
- Age 90 anomaly for all 3 cohorts  $\Rightarrow$  cause for concern



## 3.4: Summary

- Errors remain in the ONS population data
- Combination of three graphical diagnostics highlight known anomalies (e.g.1919) and some unexpected discoveries (e.g. 1920, 1947 cohorts; age 89/90)
- Anomalies characterised by cohort and by age
- CBD Exposures Methodology can be used to improve estimates of exposures
- CBD Exposures Methodology explains the 1919 anomaly that has emerged since 1991

4: Model-Based Analysis of Historical Population Data

4.1: Proposed Solution: Bayesian Adjustment of Exposures

Bayesian prior hypotheses:

- A: Death counts are accurate
- B: Exposures are subject to errors
  - errors following cohorts are correlated through time
- C: Within each calendar year:
  - curve of underlying death rates is "smooth"

Adjust exposures to achieve a balance between B and C

## 4.2: Results: Assume $E(t, x) = P(t + \frac{1}{2}, x)$ Mid-year Population

40



#### Exposures, E(t, x), Adjusted Using CBD Convexity Adjustment Ratio



## 4.3: Results 1

- Results confirm conclusions based on graphical diagnostics (e.g. problems with 1919, 1947 cohorts; age 89/90 boundary)
- Bayesian approach allows us to *quantify rigorously* the size of the error

## Results 2

- CBD Exposures Methodology:
  - convexity adjustment for  $E(t, x) \neq P(t + \frac{1}{2}, x)$  explains 1920 anomaly
  - CBD dampens other anomalies (e.g. 1947 cohort)
- Other anomalies remain but we have some explanations
  - 1919 cohort explained by 2001 census + backfilling
  - age 89/90  $\Rightarrow$  issues with Kannisto-Thatcher methodology
  - e.g. ages 70, 80  $\Rightarrow$  potential bias in reporting of age at death
- 1947 (1940-1960) cohort(s) should be seen as an issue financially

### 6: Conclusions and Next Steps

- Significant errors remain in EW males data
- Similar issues with females data
- Errors will exist in data for many other countries
- CBD Exposures Methodology can be used to mitigate errors in exposures
  - census-to-mid-year adjustment
  - mid-year population to exposures: CAR
  - Use exact date of birth in the census questionnaire!
- Kannisto-Thatcher high age methodology needs revisiting
- Financial impact: post WW-2 cohorts need special consideration

# Thank you!

## Questions?

## Paper online:

http://www.macs.hw.ac.uk/~andrewc/papers/ajgc71.pdf

## Bonus slides

#### Impact of Population Revisions on Mortality Rates



Figure 1:





## **Phantoms Never Die**



#### Factual Consquence: Backfilling (ONS Methodology)



## Same Data in 2-Dimensions: Heat Map – Normalised



Sampling variation  $\Rightarrow$  more extremes < 50 and > 90

## Why Use a Bayesian Approach

- Coherent framework within which we can
  - build in prior beliefs (hypotheses A, B, C)
- Output ⇒ straightforward to assess impact of parameter uncertainty