AN INTRODUCTION TO BAYESIAN ANALYSIS AND BAYESIAN REGRESSION IN R

Michael Crawford & Michael Cooney

Barnett Waddingham

BAYESIAN STATISTICS 5 MINUTES

WHICH IS IMPOSSIBLE

SO LET'S RATHER TRY TO...

LEARN ABOUT BAYES RULE 5 MINUTES

SO WHAT IS BAYES RULE?

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

HOW DO WE USE THIS?

YOU USE BAYES RULE ALL THE TIME

YOU JUST DON'T KNOW IT

BAYES RULE

SHOWS HOW YOUR BELIEFS CHANGE

WHEN YOU GET NEW INFORMATION

LET'S START WITH SOMETHING FAMILIAR

LET'S TOSS THE COIN A FEW TIMES

AFTER EACH TOSS

TELL ME IF THE COIN IS FAIR

AT OUTSET IT'S REASONABLE TO

ASSUME THE COIN IS FAIR

THIS IS YOUR INITIAL BELIEF

First toss: H

Fair? Yes

Second toss: H

Fair? Yes

Third toss: H

Fair? Yes

Fourth toss: H

Fair? Yes doubts set in

Fifth toss: H

Fair? Possibly

Sixth - Tenth toss: H

Fair? Probably not

Eleventh - Twentieth toss: H

Fair: Defintely not

Chances of this are:

1 in 1,048,576

APPLIED BAYES RULE WITHOUT REALISING IT

AS YOU GOT MORE INFORMATION

YOU ALTERED YOUR BELIEF

THAT THE COIN IS FAIR

NOW LET'S LOOK AT BAYES RULE AGAIN

BAYES RULE ALLOWS YOU QUANTIFY THIS QUALITATIVE PROCESS

$$P(A \mid B) = \frac{P(B \mid A) P(A)}{P(B)}$$

WE CAN SIMPLIFY THIS

$P(A \mid B) \propto P(B \mid A) P(A)$

P(A)

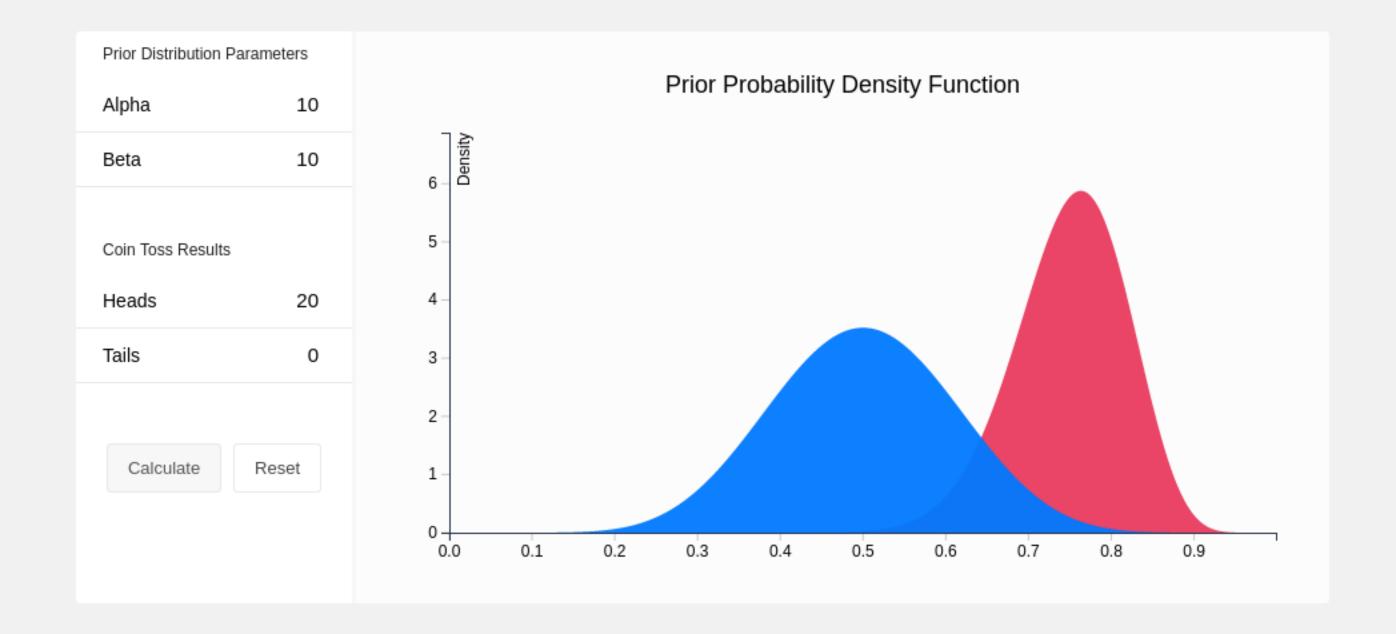
IS THE PRIOR DISTRIBUTION AND REPRESENTS OUR INITIAL BELIEF

$P(B \mid A)$

IS THE LIKELIHOOD MODEL AND UPDATES AS THE DATA ARRIVES

$P(A \mid B)$

IS THE POSTERIOR DISTRIBUTION OUR UPDATED BELIEFS FOR A



USING THESE SIMPLE BUILDING BLOCKS

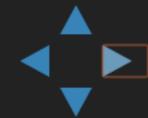
WE CAN BUILD POWERFUL MODELS

WHY BAYESIAN?

INTERPRETABILITY

Natural interpretation of output

Credibility region vs Confidence interval



SPARSE DATA PROBLEMS

Claims reserving

Pricing

Account segmentation

CLAIMS RESERVING

Changes in reserving philosophy

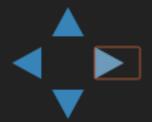
Assessing multiple insurers

THE BAYESIAN APPROACH

POSTERIOR DISTRIBUTION

$$p(\theta | D) = \frac{\int p(D | \theta) p(\theta)}{\int p(D)}$$

 $p(\theta)$ = prior distribution of θ $p(\theta | D)$ = posterior distribution of θ given D



$$p(\theta \mid D) \propto \int p(D \mid \theta) p(\theta)$$

How do we calculate this integral?

STAN

MCMC via HMC

Probabilistic Programming Language

C++ backend

Excellent online community

Why bother?

Captures uncertainty

Easy to iterate and improve

Allows generative modelling

Hierarchical modelling for sparse data

PITFALLS

Learning 'cliff'

Requires aspects of physics, computation, statistics

Can seem overwhelming

Start with simple linear model

LINEAR MODELS

GETTING STARTED

Ordinary Least Squares (OLS)

Input variables X, parameters β

$$y = \beta X + \epsilon,$$

$$\epsilon \sim \mathcal{N}(0, \sigma)$$

Constant variance σ .

Rethink linear models in Bayesian language

Need probability model

BASIC ASSUMPTIONS

Data distributed as Normal

Mean for each point is linear function of X, βX

$$y \sim \mathcal{N}(\beta X, \sigma)$$

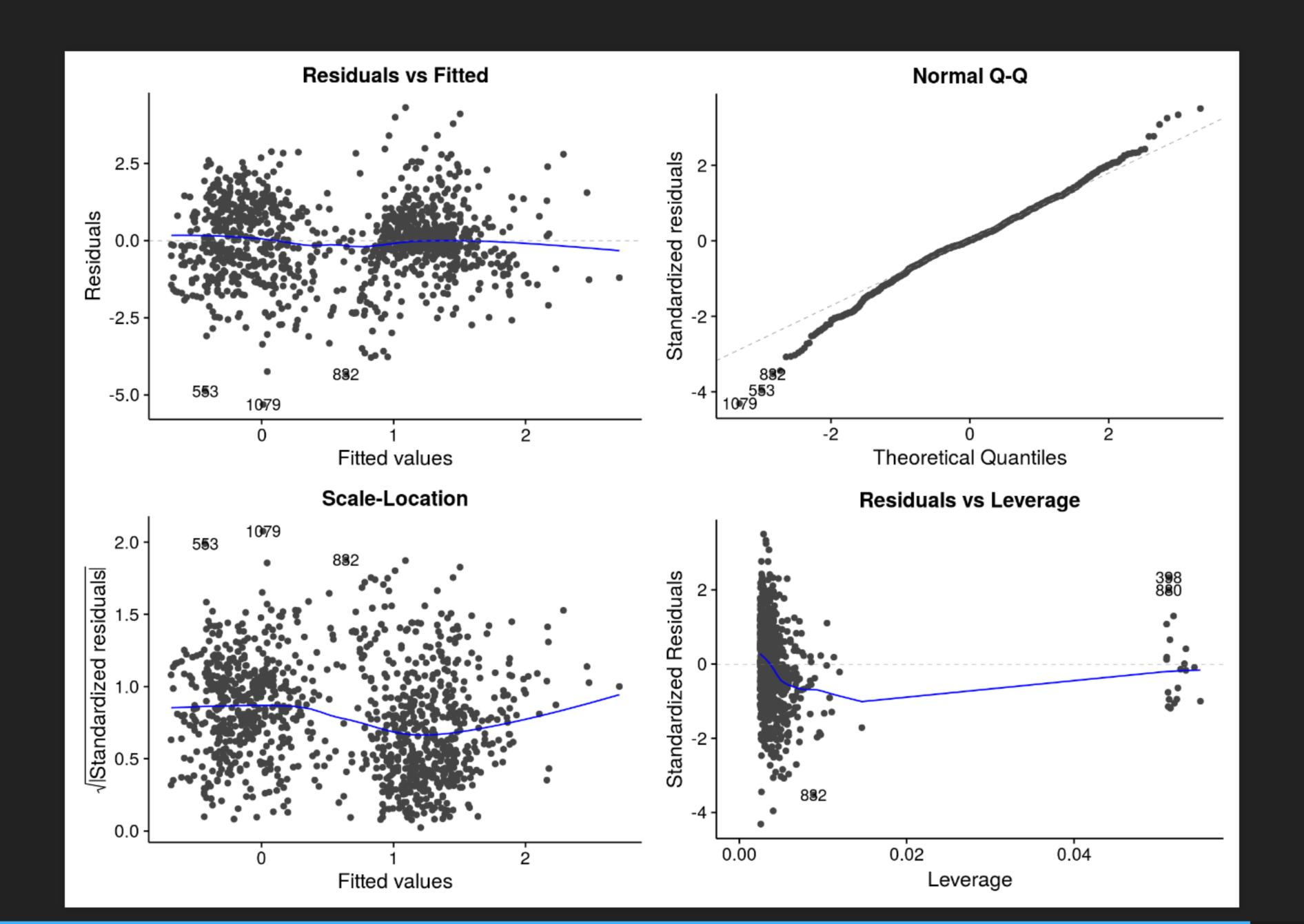
SIMPLE CLAIMS MODEL

```
log loss lawyer gender seatbelt age
   3.553632
                  male
                          yes 50
             yes
           no female
  2.388029
                          yes 28
  -1.108663 no
                male
                          yes 5
           yes male no 32
  2.401253
  -1.980502
                  male
                       yes 30
           no
 -1.174414
           yes female
                         yes 35
  1.263562
                  male
                          yes 19
             yes
```

log_loss ~ lawyer + seatbelt + gender + age

'Formula notation'

MLE MODEL (IN R)



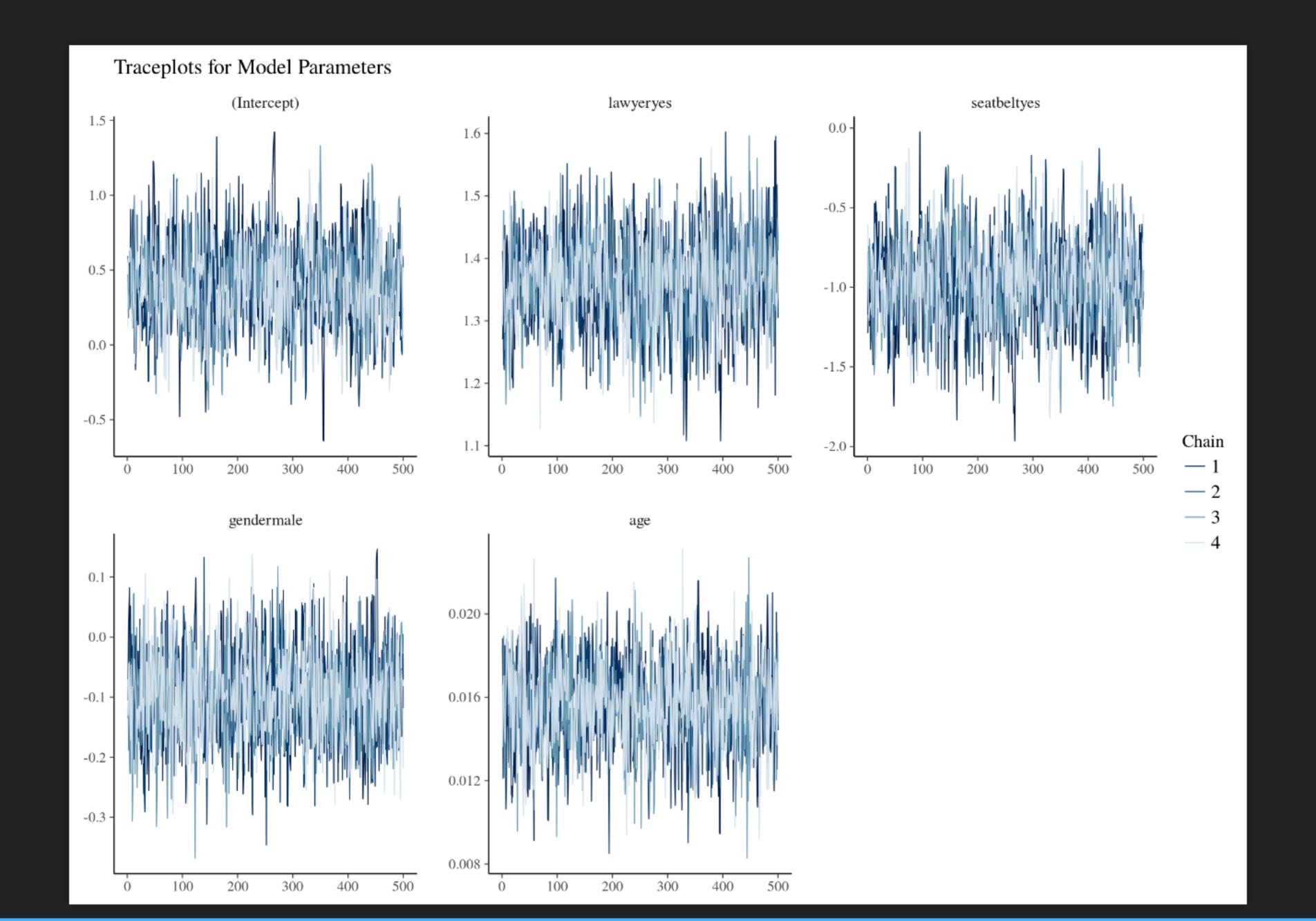
RSTANARM PACKAGE

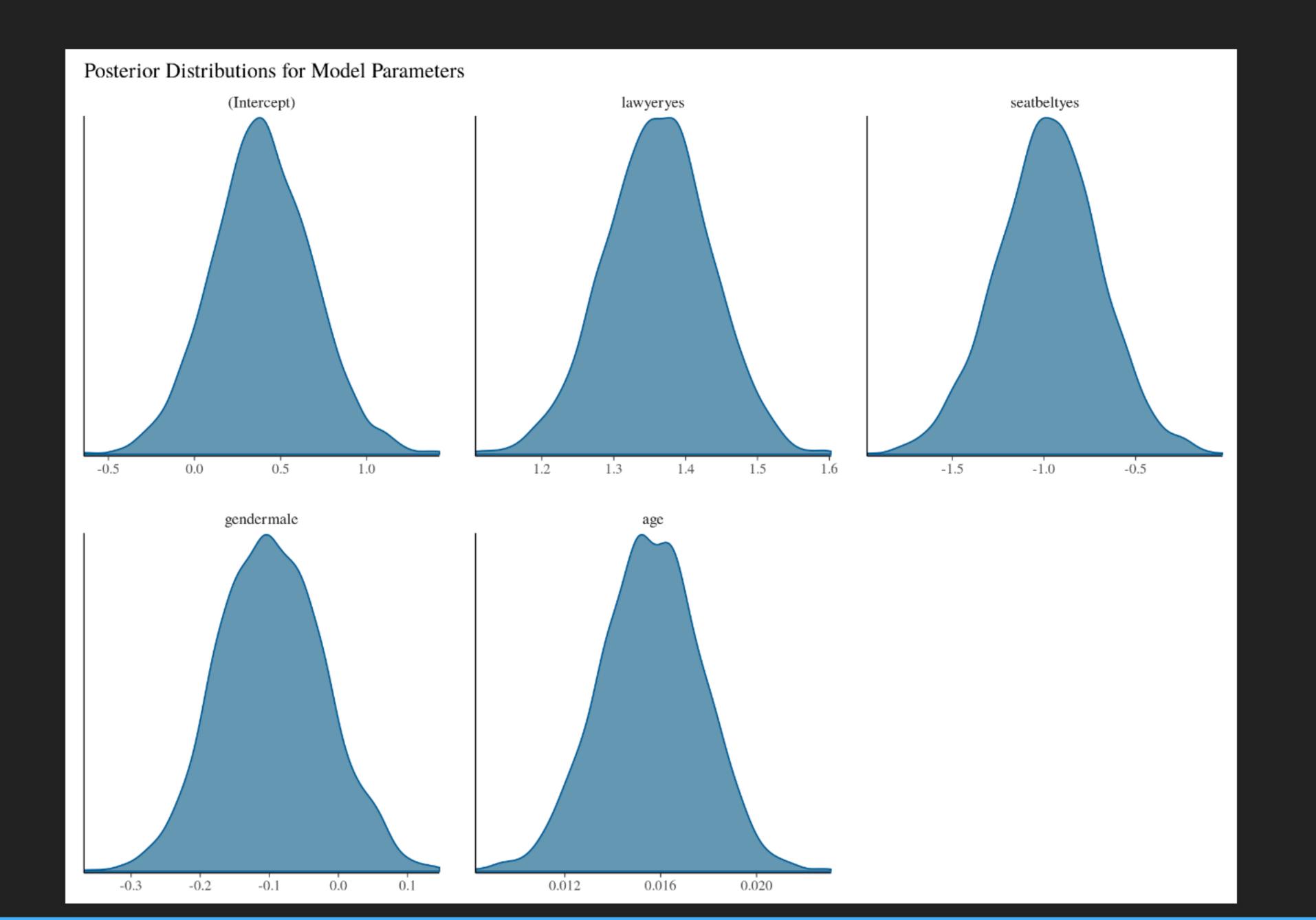
Pre-built models

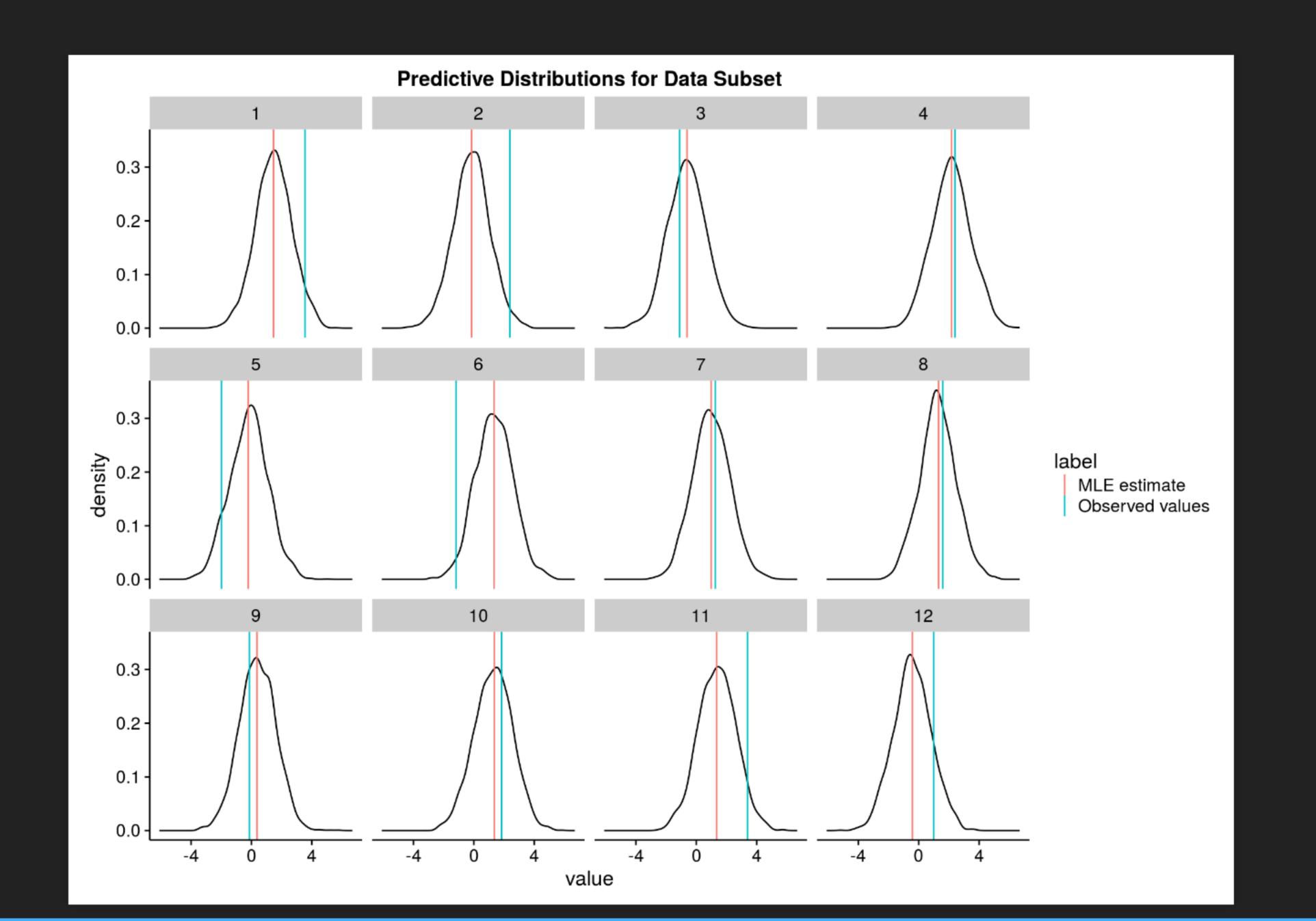
Linear models, GLMs, ANOVA, etc.

Built for ease of use

RSTANARMVERSION







SUMMARY

Bayesian output captures uncertainty

More and more common

Learning curve

FURTHER READING

Stan Documentation/Vignettes/Case Studies, Stan Core
Team et al.

http://www.mc-stan.org

Data Analysis Using Regression and Multilevel/Hierarchical Models, *Gelman and Hill* http://www.stat.columbia.edu/~gelman/arm/

Statistical Rethinking, McElreath http://xcelab.net/rm/statistical-rethinking/

Doing Bayesian Data Analysis, Kruschke https://sites.google.com/site/doingbayesiandataanalysis/

QUESTIONS?

Nah, we're running outta time. Seriously.

michael.crawford@barnett-waddingham.co.uk

michael.cooney@barnett-waddingham.co.uk

THANKS FOR LISTENING

The R code is available on request

