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 100+ candidate variables 

 ~25 factors – more when looking at 

e.g. external data for postcoding 

 Up to ~12 interactions 

 Multi-dimension effects via “scores”  

 Reduced scope for competitor 

benchmarking 

 Dilemma of over-fitting vs. danger of 

anti-selection 
Old cars 

New cars 

Motivation for methods 
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Motivation for methods 
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Sample

Motivation for methods 
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Sample Linear (Sample)
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Sample Linear (Sample)

Motivation for methods 
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Sample Hold-Out Linear (Sample)

Motivation for methods 
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 Standard Deviance 

– SD ( yi, μi) 

 “Case Deleted” Deviance 

– CDD (yi, μ(i)) 
 

 

 

 “Pattern” 

– Pattern1,2  = CDD1 - CDD2 

 “Noise” 

– Noise1,2  = SD1 - SD2 - Pattern1,2 

 “Value” 

– Value1,2  = Pattern1,2 – 5 * Noise1,2 

Concepts behind the Case Deleted Deviance 
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Concepts behind the Case Deleted Deviance 
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 The approximate method to calculate μi is 

– 99.9% accurate 

– “n” times faster 

Concepts behind the Case Deleted Deviance 
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Redefining the deviance objective for generalised linear models 
 

Concepts behind  
Noise Reduction 

Method 
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 Model 1 

– SD ( yi, μi) = CDD ( yi, μ(i)) 

Concepts behind the Noise Reduction Method 
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 Model 2 

– SD ( yi, μi) 

Concepts behind the Noise Reduction Method 
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 Model 2 

– CDD ( yi, μ(i)) 

Concepts behind the Noise Reduction Method 
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Parameter 

Number
Name Value Standard Error

Standard 

Error (%)

Alias 

Indicator  (%)
Weight Weight (%) Exp(Value)

1 Mean - 2.743 0.031 1.1 236,207 100.0 0.064

 
2 Business Use Indicator (Y) - 0.060 0.020 34.1 100,320 42.5 0.942

- Business Use Indicator (N) 135,888 57.5

 
- Garage Indicator (N) 200,845 85.0

3 Garage Indicator (Y) 0.114 0.027 23.6 35,362 15.0 1.120

 
13 New Rating Area (OPoly(1)) 0.117 0.010 8.9 236,207 100.0 1.124

 
14 VA Curve 1 (OPoly(1)) - 0.265 0.016 6.0 219,928 93.1 0.768

15 VA Curve 1 (OPoly(2)) - 0.076 0.017 22.5 219,928 93.1 0.926

 
16 PA Curve 1 spline 1 (OPoly(1)) 0.212 0.039 18.5 8,194 3.5 1.236

 
17 PA Curve 1 spline 3 (OPoly(1)) 0.041 0.009 23.1 229,373 97.1 1.042

 
18 PA Curve 1 spline 4 (OPoly(1)) - 0.064 0.009 13.9 229,373 97.1 0.938

 
19 YADA Curve 1 (OPoly(1)) - 0.176 0.014 8.2 236,207 100.0 0.838

20 YADA Curve 1 (OPoly(2)) 0.062 0.012 19.0 236,207 100.0 1.064

 
21 VG Curve 1 spline 1 (OPoly(1)) - 0.242 0.119 49.4 203,278 86.1 0.785

 
22 VG Curve 1 spline 2 (OPoly(1)) - 0.116 0.070 60.0 235,863 99.9 0.890

 
23 VG Curve 1 spline 3 (OPoly(1)) - 0.050 0.055 109.6 235,863 99.9 0.951

 
24 VG Curve 1 spline 4 (OPoly(1)) - 0.177 0.092 52.3 235,863 99.9 0.838

 Find the “best” scalars in the “Case Deleted 

Deviance” sense 

 Higher Variance parameters get scaled back 

most 

 Take account of parameter correlations 

Concepts behind the Noise Reduction Method 
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 Find the “best” scalars in the “Case Deleted 

Deviance” sense 

 Higher Variance parameters get scaled back 

most 

 Take account of parameter correlations 
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Profit Margin Value 0.57% 

Real Examples – Log Poisson 
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Profit Margin Value 0.69% 

Real Examples – Log Gamma 
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Profit Margin Value 3.4% 

Real Examples – Logit Binomial 
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Redefining the deviance objective for generalised linear models 
 

Other applications 
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Other Applications 
 

• “Case Deleted” Deviance 

– Completely generic concept, that can be applied to any model type 

– For models with quadratic parameter convergence, a similar 

approximation should exist 

• “Value” Measure 

– An absolute mechanism to compare disparate model options. 

• Noise Reduction Method 

– GLMs are convenient in that they generate the Variance Covariance 

matrix as part of the solution. 

– But could be applied to any model where this can be estimated. 

– Result is a set of scaled parameters which are “most predictive”. 

36 
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Other Applications 
 

• Can be applied to  

– Neural Networks,  

– Genetic Algorithms,  

– Decision Trees, etc. 
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Questions or comments? 

Expressions of individual views by 

members of The Actuarial Profession 

and its staff are encouraged. 

The views expressed in this presentation 

are those of the presenter. 
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Tony Lovick, MA FIA 

Pricing Actuary 

• Tony graduated in Mathematics from Oxford University in 1987, and qualified as a Fellow of the Institute of 

Actuaries in 1994.  He spent twenty one years with Aviva Group, before joining EMB as a Senior 

Consultant. 

• Tony undertook a number of roles within Aviva, most recently as Price Optimisation Actuary, “Pay as you 

drive” Actuary and Head of Statistics and Development, in the Personal Lines Pricing Division of Norwich 

Union.*   

• Tony is interested in innovative actuarial research and its delivery through pragmatic systems development.  

As Price Optimisation Actuary he undertook the client side pricing and architecture design, concluding in a 

successful Motor Renewal pilot. 

• As the actuary leading the research for Pay as you drive, he helped inspire the analysis, build of the data 

warehouse systems**, and launch of the product to market.  As part of this project Aviva prepared two 

patents with Tony listed as the inventor, one of which is now granted***. 

• As Head of Statistics he led the implementation of full postcode risk cost models for motor and home 

insurance, pioneering the introduction of external data to Aviva rating systems.   

* http://www.linkedin.com/in/anthonylovick 

** http://www.silicon.com/financialservices/0,3800010322,39169285,00.htm 

*** http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=GB2436880&F=0 

 

 

39 
© 2011 Towers Watson - used with permission by The Actuarial Profession 

http://www.linkedin.com/in/anthonylovick
http://www.silicon.com/financialservices/0,3800010322,39169285,00.htm
http://v3.espacenet.com/textdoc?DB=EPODOC&IDX=GB2436880&F=0


29/11/2011 

21 

Peter Lee FIA 

Director  

 

• Peter Lee is a Director at Towers Watson and global lead in pricing innovation with over twenty years 

experience in non-life insurance. Prior to joining EMB Peter worked at Allianz UK as the Personal Lines 

Actuary.  

 

• Whilst at EMB, Peter worked for a large number of insurers throughout the world in different regulatory 

regimes, advising over a broad spectrum of areas and products ranging from claims reserving to pricing and 

the design of management information. Throughout his career Peter has been at the forefront of innovation, 

being one of the pioneers of the application of statistical modelling to personal lines pricing and then 

extending these techniques to commercial lines.  

 

• More recently Peter developed EMB’s price optimisation solution which has now been implemented in many 

of the largest general insurers in the world. Much of Peter’s work involves embedding technical analysis and 

demand-based pricing into a wider pricing process, allowing these enhanced capabilities to be more 

effectively leveraged. Peter is now working with clients to link pricing and marketing to provide an enhanced 

framework for managing customer value. 

 

•  
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Contact Details 

• Tony Lovick 

– Senior Consultant 

– Saddlers Court, 64-74 East Street, Epsom, KT17 1HB  

– +44 1372 751060 

– Tony.Lovick@TowersWatson.com 

 

• Pete Lee 

– Director 

– Saddlers Court, 64-74 East Street, Epsom, KT17 1HB  

– +44 1372 751060 

– Pete.Lee@TowersWatson.com 
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