

Agenda

- Motivation for method
- Concepts behind
 Case Deleted Deviance
- Simple Example
- Concepts behind Noise Reduction Method
- Real Examples

© 2011 Towers Wats

Other applications

Сс	oncepts behind	the No	ise Ro	educ	tion M	eth	od	
Find the "best" scalars in the "Case Deleted		ndard Error	Standard Error (%)	Alias Indicator (%)	Weight	Weight (%)	Exp(Value	
Dev	hance sense		0.031	1.1		236,207	100.0	0.0
Higher Variance parameters get scaled back			0.020	34.1		100,320 135,888	42.5 57.5	0.9
mos	most		0.027	23.6		200,845 35,362	85.0 15.0	1.
Take account of parameter correlations			0.010	8.9		236,207	100.0	1.
14	VA CUIVE 1 (UPOIV(1))	- 0.265	0.016	6.0		219,928	93.1	0.7
15	VA Curve 1 (OPoly(2))	-0.076	0.017	22.5		219,928	93.1	0.9
16	PA Curve 1 spline 1 (OPoly(1))	0.212	0.039	18.5		8,194	3.5	1.2
17	PA Curve 1 spline 3 (OPoly(1))	0.041	0.009	23.1		229,373	97.1	1.(
18	PA Curve 1 spline 4 (OPoly(1))	-0.064	0.009	13.9		229,373	97.1	0.9
19	YADA Curve 1 (OPoly(1))	- 0.176	0.014	8.2		236,207	100.0	0.8
20	YADA Curve 1 (OPoly(2))	0.062	0.012	19.0		236,207	100.0	1.(
21	VG Curve 1spline 1(OPoly(1))	-0.242	0.119	49.4		203,278	86.1	0.7
22	VG Curve 1spline 2 (OPoly(1))	- 0.116	0.070	60.0		235,863	99.9	0.8
23	VG Curve 1spline 3 (OPoly(1))	-0.050	0.055	109.6		235,863	99.9	0.
24	VG Curve 1 spline 4 (OPoly(1))	- 0.177	0.092	52.3		235.863	99.9	0.8

