

Agenda

- Use of Genetics in Insurance and Growing Opportunities for Anti-selection
- Genetics 101
- Genetic Risk to Disease and Polygenic Risk Scores
- RGA / King's College London Research Collaboration
- Genetics and Risks of Anti-selection
- Key Messages

Increasing levels of interest in Genetics and Genomics* for medical applications

High degree of promise

- Prevention of disease manifestation
- Motivate Lifestyle modification
- Precision medicine
- Pharmacogenetics
- Cancer treatment
- Prenatal and Newborns screening
- Accurate diagnosis of rare disease
- More accurate disease prognosis
- Disease recurrence detection
- Everything!

Falling costs and increased availability

- The first human genome took $\$ 2.7$ billion and almost 15 years to complete
- Now it costs about $\$ 1,000$ and the sequencing can be done in a few days
- In a few years it may only cost $\$ 100$
- Multiple providers of DTC testing

RCA Genome Sequencing Program (GSP).
*Genetics is the study of inherited traits and genes. Genomics is the study of how a set of genes behave

Growing opportunities for genetic anti-selection

Consumer genetic tests sold last year

600,000

DNA variants measured by 23andMe

800+

Diseases tested for genetic susceptibility

No. 14

Genetic counsellors are the $14^{\text {th }}$ fastest growing occupation according to US Bureau of Labour

Statistics
(2016 to 2026)

Genomic medicine in the next 5 to 10 years...

Why genomic medicine? Why now?
NHS
$\left\lvert\, \begin{aligned} & \text { Institute } \\ & \text { and Faculty }\end{aligned}\right.$
of Actuaries

Genomic medicine in the next 5 to 10 years...

Genomic medicine in the next 5 to 10 years...

- National Genomic Medicine Service driving personalised treatments and interventions with consistent \& equitable access across the country - underpinned by a National Genomic Test Directory

Today:

- Variable patient access to cuttingedge genetic technologies
Proof of concept project demonstrating benefits
- 'One size fits all' treatment based on symptoms
- Limited use of genomic markers
- Diagnostic \& clinical data not linked
- Improved diagnosis of rare conditions and better understanding of cancer
- Integrated informatics platform to support comprehensive linking of genomic and clinical data to give a full picture to patients
- Routine care and treatment closely linked through to clinical research, academia and industry with many more patients eligible for clinical trials

By 2025:

- New taxonomy of medicine based on underlying case \& personal response
Integrated clinical services taking a 'whole pathway' approach
- Routine use of Whole Genome Sequencing and newer genomic technologies embedded across multiple clinical pathways
Genomics included as a fundamental part of clinical training across all professions and levels
Tailored, optimised \& more effective therapies for better outcomes

RCA

Front Page News - August 2018

Ehe Ǎtu \#lark Eimes
Clues to Your Health Are Hidden at 6.6 Million Spots in Your DNA

C(The "polygenic risk test' uses ISk genome to look for small vari

k Chaffin $\odot^{4.5}$, $\mathrm{Kr} \$ 50$ blood test could spot killer eep Natarajan ${ }^{()^{2}}$ diseases from heart attacks to breast id Sekar Kathires cancer BEFORE symptoms show: Millions who are at risk due to their genes could be saved

- Harvard Medical School developed the tost called 'polvgonie rike scoring'

- Heould be adminitutered at birth to spot at -risk people from the earliest age

 $\begin{array}{ll}\text { artery disease, breast cancer } \\ \text { any symptoms are evident. }\end{array} \begin{aligned} & \text { A Harvard Scientist Thinks He Has a Gene } \\ & \text { Test for Heart Attack Risk. He Wants to Give }\end{aligned}$ Scientists hope to eventually

FINANCIAL TIMES
Genetic screening set to identify common serious conditions

Aim is to give peoplea tiik sore from birth tor illinesses such as heart disease and breast

Forbes

 ItAway Free.

DNA, chromosomes and single nucleotide polymorphisms (SNPs)

Genome wide association studies ('GWASes’)

RCA

Prevalence vs. penetrance of genetic variants

GWAS \rightarrow Polygenic risk scores

Sample of PRS in literature

Disorder	No. of Genetic Variants	Relatuerick compantic iob 20\%: 10 5:040m $50 \mathrm{sen}-\operatorname{sis}$	Reference
Coronary artery disease	50	2.0	Khera AV. et al. (2016), N Engl J Med.
Coronary artery disease	49,310	1.8 to 4.5	Abraham G. et al. (2016), Eur Heart J.
Type 2 diabetes	1000	3.5	Läll K. et al. (2017), Genet Med.
Ischemic stroke	10	1.2 to 2.0	Hachiya T. et al. (2017), Stroke
Breast cancer	77	3.0	Mavaddat N. et al. (2015), J Natl Cancer Inst.
Breast cancer (East Asian ancestry)	44	2.9	Wen W. et al. (2016), Breast Cancer Res.
Prostate cancer	25	3.7 (25\%)	Amin Al Olama A. et al. (2015), Cancer Epidemiol Biomarkers Prev.
Lung cancer	38	4.6 (25\%)	Cheng Y. et al. (2016), Oncotarget

PRS for coronary heart disease increases predictive power, even after adjustment for clinical risk factors

- A study by Abraham and colleagues* tested the clinical utility of a PRS for coronary heart disease (CHD), in terms of lifetime CHD risk and relative to traditional clinical risk
- PRS tested in independent cohorts (FINRISK and Framingham Heart Study [FHS]; combined $n=$ 16,802 with 1,344 incident CHD events)
- The PRS was tested alongside the best clinical risk factors as well as family history. After controlling for these risk factors, the PRS still proved to be a very powerful differentiator of CHD risk.

How do PRS interact with lifestyle?

- A genetic predisposition to coronary artery disease is not deterministic but attenuated by a favorable lifestyle; standardized 10-year coronary event rates in 3 studies:

Paper: Khera et al., Genetic Risk, Adherence to a Healthy Lifestyle, and Coronary Disease. N Engl J Med 2016, 375:2349-2358

How PRS could be adopted into clinical medicine cancer screening

- Individuals with the highest 1% or 5% of PRS values could be offered:
- Regular screening
- Encouraged to participate in lifestyle modifications
- Prescribed therapeutic interventions
- For example, in the UK, mammogram screening is initiated at age 47, based on a 10-year risk of breast cancer in the average woman, but:
- Women in the top 5% of PRS-risk reach the average level at age 37
- Women in the lowest 20% of PRS-risk will never reach the average level

Potential for anti-selection in breast cancer

In Canada and the UK, about 1
in 8 women will be diagnosed with breast cancer in their

Only $5-10 \%$ of breast cancer cancers is attributed to mutations in high- or moderate-penetrant genes (including BRCA1, BRCA2, TP53, PTEN, STK11, CDH1, CHEK2, PALB2, ATM, NBN and BARD1)

Prevalence of BRCA1/2 mutations in women with breast cancer: 3\%

Roughly only 10% of women with a family history of breast cancer test positive for a hereditary cancer mutation... what explains the 'missing genetic component'?

Myriad's myRisk and riskScore...

- Myriad Genetics is an American molecular diagnostic company.
- Myriad contributed to discovery of the breast cancer genes, $B R C A 1 / 2$, and patented the tests on them.
- myRisk is a hereditary cancer test to evaluate 28 clinically significant genes (including BRCA1, BRCA2, TP53, PTEN, STK11, CDH1, PALB2, CHEK2, ATM, NBN, BARD1)
- riskScore is a follow-up test for women who have tested negative for hereditary cancer genes,
- riskScore includes an 86-SNP PRS, clinical and family
history information

Approved project: 23203

RGA Research Collaboration with King's College London

Prof. Cathryn Lewis (Senior Lecturer)
Co-Principal Investigator

Dr Paul O'Reilly (Senior Lecturer)
co-Principal Investigator

Miss Jessye Maxwell ${ }_{\text {(PhD Student) }}$

Dr Beatrice Wu
$\underset{\text { (Postdoctoral Researcher) }}{\text { Dr Beatrice }}$ Postdoctoral Researcher)
Project Research roject Resear
Associate

RGA Research Collaboration with KCL

- RGA-funded one year research project at KCL
- Desire to inform the debate around significance of (lack of) access to genetic information by insurers in non-compulsory insurance markets
- Collaborative agreement meets the principles set out in the UK Biobank Access Procedures, including commitment to publish all findings and results from the project so that they are available for other researchers to use for health-related research that is in the public interest
- Only approved King's College London research staff have
 access to UK Biobank data

Why UK Biobank?

Genotyping on all 500k participants

https://www.ebi.ac.uk/about/news/feature-stor//biobanks-genetic-datademand. Accessed 12 May 2018

‘Underwriting’ UKB participants and predicting disease incidence

PRS to predict incidence of breast cancer (RGA-KCL study results)

	Total Participants: 199,517 Number of breast cancers: 3,882 (1.95\%)		Total Participants: 143,958 Number of breast cancers: 2,684 (1.86\%)		
	คํำ		ํํํ ํํ		Decreased risk
	Percentile	Full cohort: Hazard ratio ($95 \% \mathrm{CI}$)	Percentile	Standard cohort: Hazard ratio (95\% CI)	
Decreased risk	0-1	0.36 (0.21-0.63)	0-1	0.41 (0.22-0.76)	
	1-5	0.56 (0.44-0.7)	1-5	0.56 (0.42-0.74)	
	5-10	0.56 (0.46-0.69)	5-10	0.6 (0.47-0.77)	
	10-20	0.7 (0.6-0.8)	10-20	0.71 (0.59-0.84)	
	20-40	0.84 (0.76-0.94)	20-40	0.84 (0.74-0.95)	
	40-60	1 (reference group)	40-60	1 (reference group)	
	60-80	1.21 (1.09-1.33)	60-80	1.22 (1.09-1.38)	
	80-90	1.4 (1.25-1.57)	80-90	1.41 (1.23-1.61)	
	90-95	1.86 (1.63-2.12)	90-95	1.87 (1.6-2.18)	
	95-99	1.97 (1.72-2.26)	95-99	1.96 (1.66-2.31)	
Increased risk	99-100	2.51 (2.02-3.13)	99-100	2.61 (2.02-3.38)	Increased risk

25

PRS to predict incidence of cardiovascular disease (RGA-KCL study results)

Total Participants: 376,675 Number of CAD events: 4,598 (1.22\%)			Total Participants: 261,204 Number of CAD events: 2,334 (0.89\%)		
Decreased risk	คํํํ		กํํํ		
	Percentile	Full cohort: Hazard ratio ($95 \% \mathrm{CI}$)	Percentile	Standard cohort: Hazard ratio ($95 \% \mathrm{CI}$)	
	0-1	0.67 (0.47-0.97)	0-1	0.66 (0.4-1.11)	Decreased risk
	1-5	0.52 (0.42-0.65)	1-5	0.41 (0.29-0.57)	
	5-10	0.76 (0.65-0.9)	5-10	0.77 (0.61-0.97)	
	10-20	0.75 (0.66-0.85)	10-20	0.78 (0.65-0.93)	
	20-40	0.79 (0.72-0.88)	20-40	0.81 (0.7-0.93)	
	40-60	1 (reference group)	40-60	1 (reference group)	
	60-80	1.1 (1.01-1.2)	60-80	1.15 (1.01-1.3)	
	80-90	1.43 (1.29-1.58)	80-90	1.54 (1.33-1.77)	
	90-95	1.4 (1.24-1.6)	90-95	1.43 (1.19-1.72)	
	95-99	1.68 (1.47-1.91)	95-99	1.92 (1.61-2.29)	
Increased risk	99-100	2.19 (1.78-2.69)	99-100	2.78 (2.11-3.67)	Increased risk

Research into anti-selection risk from genetics

- There have been several research papers
- Huntington's disease anti-selection (Oster et al, 2009)
- Work of GIRC / Angus MacDonald
- CIA Genetic Testing (Mortality and Morbidity)
- SOA reproduction of CIA work for US Markets
- Australian paper, May 2017
-suggesting a wide range of possible impacts
- Many modelling assumptions being made
- Insurance buying behavior pre/post tests
- Probability of disease and impact thereof

Research into anti-selection risk from genetics: Assumptions

Genetic Risk Assumptions
Insurance Assumptions

- Testing Rate
- Seeking insurance etc.
- Prevalence of disease variants

Strengthen assumptions using UK Biobank results

Predicting impact of PRSs is still early

- Genetic loci associated with disease will continue to be found and could confer additional predictive power
- Correlations with other health and lifestyle factors could be more significant than high penetrance genes
- Correlations between PRS for different conditions
- Risk of developing a disease may be correlated with severity of disease
- Application of PRS to non-Caucasian populations
- Preventative or mitigating actions, such as:
- Screening programs based on PRS may limit mortality impact
- Impact of preventative lifestyle actions unknown
- Pharmacogenomics, precision medicine etc.

Potential for anti-selection - example in breast cancer. Scenario 1:

Percentile	\% in general population	Hazard ratio for breast cancer	Probability of purchasing insurance *	\% in new risk pool
0-1	1\%	0.41	0.41x	0.4\%
1-5	4\%	0.56	0.56x	2.1\%
5-10	5\%	0.6	0.6x	2.8\%
10-20	10\%	0.71	0.71x	6.5\%
20-40	20\%	0.84	0.84x	15.4\%
40-60	20\%	1	1x	18.4\%
60-80	20\%	1.22	1.22x	22.4\%
80-90	10\%	1.41	1.41x	13.0\%
90-95	5\%	1.87	1.87x	8.6\%
95-99	4\%	1.96	1.96x	7.2\%
99-100	1\%	2.61	2.61x	2.4\%

- $+13 \%$ increase in incidence
$+16 \%$ increase if
include BRCA1/2
mutations
(assuming 0.2\% prevalence and $5 x$ odds ratio)

31

Potential for anti-selection - example in breast cancer. Scenario 2:

Percentile	\% in general population	Hazard ratio for breast cancer	Probability of purchasing insurance *	\% in new risk pool
0-1	1\%	0.41	0.71x	0.7\%
1-5	4\%	0.56	0.78x	3.0\%
5-10	5\%	0.6	0.80x	3.8\%
10-20	10\%	0.71	0.86x	8.2\%
20-40	20\%	0.84	0.92x	17.7\%
40-60	20\%	1	1x	19.2\%
60-80	20\%	1.22	1.11x	21.4\%
80-90	10\%	1.41	1.21x	11.6\%
90-95	5\%	1.87	1.44x	6.9\%
95-99	4\%	1.96	1.48 x	5.7\%
99-100	1\%	2.61	1.81x	1.7\%

- +7\% increase in incidence
- $+8 \%$ increase if include BRCA1/2 mutations
(assuming 0.2\% prevalence and $5 x$ odds ratio)

Potential for anti-selection - example in breast cancer. Scenario 3:

Percentile	\% in general population	Hazard ratio for breast cancer	Probability of purchasing insurance *	\% in new risk pool
$\mathbf{0 - 1}$	1%	0.41	1x	0.9%
$1-5$	4%	0.56	$1 x$	3.7%
$5-10$	5%	0.6	$1 x$	4.6%
$10-20$	10%	0.71	$1 x$	9.2%
$20-40$	20%	0.84	$1 x$	18.3%
$\mathbf{4 0 - 6 0}$	20%	1	$1 x$	18.3%
$60-80$	20%	1.22	$1.11 x$	20.3%
$80-90$	10%	1.41	$1.21 x$	11.0%
$90-95$	5%	1.87	$1.44 x$	6.6%
$95-99$	4%	1.96	$1.48 x$	5.4%
$99-100$	1%	2.61	$1.81 x$	1.7%

- +4.8\% increase in incidence
- +5.4\% increase if include BRCA1/2 mutations
(assuming 0.2\% prevalence and 5x odds ratio)

Key Messages

RGA

Conclusions

- Our work concentrates on common genetic variants, not the rare high penetrance gene mutations studied for insurance to date (e.g. BRCA1, Huntington's)
- These common variants, assessed using PRS, provide population risk information that is largely additive/independent to normal underwriting risk factors
- For incidence of and death from CAD and cancers, we see material differentiation from PRS
- We can expect further asymmetry of medical health information in the future
- Use of PRS remains an emerging risk issue for the Insurance Industry and we must continue to monitor and develop research on both the science and consumer behavior on the potential impact.
- Equally we should also consider the opportunities and the positive impact on the Insurance Industry

Thank you for your attention

Any Questions?

