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Static Models and Graduation

{yx} – number of male (female) deaths in England and Wales observed
aged x at last birthday, in a given time period.

{EC
x } – corresponding central exposed to risk for age x at last birthday

The observed (or crude) central mortality rate is

m̃x =
yx
EC
x

.

This is an estimator of the underlying central mortality rate

mx =
E [Yx ]

EC
x

.

under any model for {Yx}.
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Crude mortality rates 2010-2012
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A basic smoothing model

For a large inhomogenous population, such as England and Wales, we
prefer a negative binomial model

Yx ∼ NB
(
EC
x mx , α

)
where E [Yx ] = EC

x mx and Var [Yx ] = EC
x mx + (EC

x mx)2/α.

Then, in a generalised additive (smoothing spline) model

logmx = s(x ;β)

where s(x ;β) is a linear (in β) function representing regression on a spline
basis.

The graduated estimates m̂x are obtained as

m̂x = exp s(x ; β̂)
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Smooth mortality rates 2010-2012
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Models for older ages and extrapolation (1)

To obtain a more robust fit at older ages, and to extrapolate the mortality
function mx beyond the range of the observed data, we use a parametric
model.

Only parsimonious models considered, as data are sparse.

The simplest obvious choice is the log-linear Gompertz model

logmx = β0 + β1x , x ≥ x0

where x0 is a suitable threshold

Therefore our proposed model across the entire range of x is

logmx =

{
s(x ;β) x < x0

β0 + β1x x ≥ x0
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Models for older ages and extrapolation (2)

A competing extrapolation model is a logistic model (Beard, 1963)

mx =
β2 exp (β0 + β1x)

1 + exp (β0 + β1x)
, x ≥ x0

where mortality rates flatten off, converging to the limit β2 as x →∞.
Arises naturally as Gompertz with frailty.

A special case of this model, with β2 = 1, (Thatcher et al, 1998) is used
in graduating the human mortality data base (Wilmoth et al 2007).

Our proposed model across the entire range of x is

mx =


exp s(x ;β) x < x0

exp (β0 + β1x)

1 + exp (β0 + β1x)
x ≥ x0
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Model Uncertainty

Hence, we have two possible models, log-linear and logistic both of which
require the choice of a threshold age x0 to determine the age range over
which the parametric component will be fitted, and applied.

• No fundamental reason to prefer one model over the other, or to
apply a particular value of x0.

• Rather, we should base our decision on the observed data.

• Given the sparsity of the data at the highest ages, there is
considerable uncertainty about this choice. Graduation should
acknowledge this uncertainty.

A natural approach for incorporation of model uncertainty into estimates
is a Bayesian approach.
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Bayes model averaging

Let k = 1, . . . ,K index possible models pk(y |θk) for observed data y

Then, a Bayesian approach updates a prior probability distribution p(k)
over models to a posterior distribution

p(k |y) ∝ p(y |k)p(k)

where p(y |k) is the marginal likelihood

p(y |k) =

∫
pk(y |θk)pk(θk)dθk .

Graduated estimates of mx are then obtained as

m̂x = E [mx |y ] =
∑
k

p(k|y)Ek(mx |y)

a weighted average of the estimates under the various models
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‘Partial-Bayes’ model-averaging

A computationally efficient approach with minimal requirement for prior
specification.

1. Replace m̂x =
∑

k p(k |y)Ek(mx |y) with m̂x =
∑

k p(k |y)m̂
(k)
x

2. Split the data y into yt (training) and yv (validation), and replace
marginal likelihood p(y |k) with the partial marginal likelihood

p(yv |k , yt) =

∫
pk(yv |θk)pk(θk |yt)dθk .

3. Replace pk(θk |yt) above by a point mass at θ̂′k , the (penalised)
maximum likelihood estimate based on yt only. Then

p(yv |k , yt) = pk(yv |θ̂′k)

These (2 and 3) lead to partial-Bayes model probabilities

p(k|y) ∝ pk(yv |θ̂′k)p(k)
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Practical partial-Bayes graduation

The partial-Bayes posterior model probabilities lead to partial-Bayes
graduations (under a uniform prior distribution over models)

m̂x =

∑
k

pk(yv |θ̂′k)m̂
(k)
x∑

k

pk(yv |θ̂′k)

where models are weighted on the basis of how well they predict the
validation data, based on parameters estimated using the training data.

Here model index k controls log-linear/logistic extrapolation and
threshold x0.

Years {2010, 2012} are used for training and {2011} for validation.
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Posterior threshold probabilities (log-linear)
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Graduation (log-linear)
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Posterior threshold probabilities (logistic)
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Graduation (logistic)
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ELT17 model-averaged graduation
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P(log-linear) = 0.087 (female) P(log-linear) = 0.292 (male)
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Uncertainty
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Summary

Benefits of this approach:

• Takes advantage of the ease with which a wide range of smooth and
parametric models can routinely be fitted

• Acknowledges that in regions of sparse data there remains
considerable uncertainty about the model which should be used for
estimation and extrapolation.

• Computationally straightforward, but scientifically coherent approach
for incorporating model uncertainty into graduation

Can be incorporated into a forecasting framework . . .
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Mortality projection models

Models for central mortality rates mxt over age x and time t include:

• Generalised bilinear (e.g. Lee Carter with cohort)

logmxt = αx + βxκt + γt−x

• Generalised linear (e.g. APC with age-period interaction)

logmxt = αx + tβx + κt + γt−x

• semi-parametric
logmxt = s(x , t)

• generalised additive (GAM)

logmxt = sα(x) + t sβ(x) + κt + sγ(t − x)
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Smoothed UK mortality improvements
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The initial proposed model specification

Age-period-cohort (APC) model for mortality improvements

log
mxt

mx t−1
= αx + κt + γt−x (1)

or equivalently APC model for mortality rates, with age-period interaction

logmxt = mx0 + αx t + κt + γt−x (2)

To obtain smoother estimates modify (2) to a generalised additive model
(GAM):

logmxt = sµ(x) + sα(x)t + κt + sγ(t − x). (3)

where sµ, sα and sγ are arbitrary smooth functions.

20



Comparison of residuals
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under the negative binomial distribution (right panel).
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Parameter estimates
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Fitted mortality improvements for model (1)
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Fitted mortality improvements for model (3)
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Model specification for old ages

For the highest ages x , use parametric models:

logmxt = µ0 + µ1x + (α0 + α1x)t + κt + sγ(t − x) x > x0 (4)

or

log
mxt

β −mxt
= µ0 + µ1x + (α0 + α1x)t + κt + sγ(t − x) x > x0 (5)

where κt , sγ(t − x) are estimates obtained from fitting (3) to the main
body of the data (0 < x ≤ x0).

25



Parameter estimates

0 20 40 60 80 100

−8

−6

−4

−2

Age

µ x

0 20 40 60 80 100

−0.03

−0.02

−0.01

0.00

Age

α x

0 20 40 60 80 100

−8

−6

−4

−2

Age

µ x

0 20 40 60 80 100

−0.03

−0.02

−0.01

0.00

Age
α x

Estimates of the parameters of models (3), (4) and (5), 1961-2013, for males

(upper panels; x0=95 for log-linear model (solid line) and x0=92 for logistic

model (dashed line)) and females (lower panels; x0=97 for log-linear model (solid

line) and x0=90 for logistic model (dashed line)).
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Model specification for infants

For infants (age 0) we use:

logµ0t = µ0 + α0t + sγ(t − x) (6)

where sγ(t − x) are estimates obtained from fitting model (3) to the main
body of the data (0 < x ≤ x0).
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Estimates of infant mortality rates
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2035 Projections Males and Females
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2055 Projections (Males)
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Further developments

• Completely integrated estimation

• Bayesian approach with expert opinion and full uncertainty
quantification

• Time-varying old-age threshold and/or mortality asymptote

• Models by causes of death
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Posterior distributions
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Posterior distribution (infant rates)
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