ICC, Birmingham

The APCI model — a stochastic implementation.

Stephen Richards 23rd November 2017

Copyright © Longevitas Ltd. All rights reserved. This presentation may be freely distributed, provided it is unaltered and has this copyright notice intact.

www.longevitas.co.uk 1/74

Overview

- 1. Contributors
- 2. Background
- 3. APCI model
- 4. Fitting and constraints
- 5. Parameter estimates
- 6. Smoothing
- 7. Value-at-Risk (VaR)
- 8. Conclusions
- 9. Constraints (again)

1 Contributors

1 Contributors

www.longevitas.co.uk 4/74

2 Background

2 Background

- CMI released new projection spreadsheet.
- Calibration is done by new APCI model.
- See Continuous Mortality Investigation [2017].

2 Background

- CMI intended APCI model for calibrating deterministic targeting spreadsheet.
- Richards et al. [2017] show how to implement it as a fully stochastic model.
- Presented at sessional meeting of IFoA on 16th October 2017.
- Paper and materials at www.longevitas.co.uk/apci

$$\log m_{x,y} = \alpha_x + \beta_x (y - \bar{y}) + \kappa_y + \gamma_{y-x} \tag{1}$$

www.longevitas.co.uk

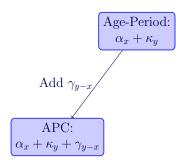
3 Related models for $\log m_{x,y}$

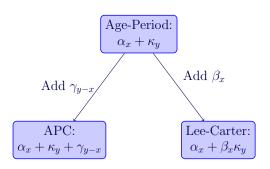
Age-Period :
$$\alpha_x + \kappa_y$$
 (2)
APC : $\alpha_x + \kappa_y + \gamma_{y-x}$ (3)

Lee-Carter:
$$\alpha_x + \beta_x \kappa_y$$
 (4)

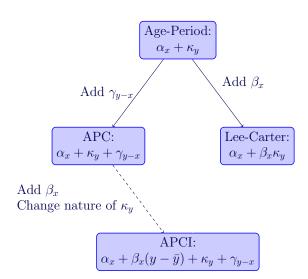
APCI:
$$\alpha_x + \beta_x(y - \bar{y}) + \kappa_y + \gamma_{y-x}$$
 (5)

Age-Period: $\alpha_x + \kappa_y$

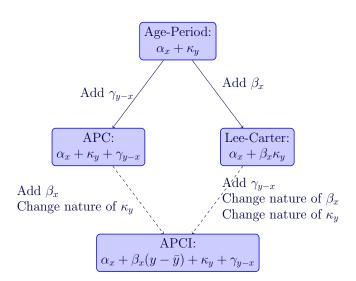




www.longevitas.co.uk 13/74



www.longevitas.co.uk 14/74



www.longevitas.co.uk 15/74

APCI model can be viewed superficially as either:

- An APC model with added Lee-Carter-like β_x term, or
- A Lee-Carter-like model with added γ_{y-x} cohort term.

- ...but there are important differences:
 - In the Lee-Carter model the change in mortality is age-dependent: $\beta_x \kappa_y$.
 - In the APCI model only the *expected* change is age-dependent: $\beta_x(y-\bar{y})$.
 - κ_y in the APCI model is very different to κ_y in the other models.

⇒ Although related to the APC or Lee-Carter models, the APCI model is not a generalization of either.

4 Fitting and constraints

4 Identifiability

- All of these models have an infinite number of possible parameterisations.
- Pick the Age-Period model as a simple example...

4 Identifiability — problem

If we set:

$$\alpha_x' = \alpha_x + v, \forall x$$

$$\kappa_y' = \kappa_y - v, \forall y$$

then the model will have the same fitted values for any real-valued v.

4 Identifiability — solution

- Use an *identifiability constraint* to impose desired behaviour without changing fit.
- Choice of identifiability constraints helps interpretation and can make parameters like κ_y forecastable.

4 Constraints

Age-Period model:

- Imposing $\sum_{y} \kappa_{y} = 0$ does not change the fit...
- ...but it means that α_x is (broadly) the average of $\log \mu_{x,y}$ over the period.

4 Constraints used

$$AP: \sum_{y} \kappa_{y} = 0 \tag{6}$$

$$LC: \sum_{x} \kappa_y = 0, \sum_{x} \beta_x = 1$$

APC:
$$\sum_{y} \kappa_{y} = 0$$
, $\sum_{x,y} \gamma_{c} = 0$, $\sum_{x,y} (c - c_{\min} + 1) \gamma_{c} = 0$
(8)

where c = y - x.

4 Constraints used

Institute

APCI model uses five identifiability constraints:
$$\sum_{y} \kappa_{y} = 0$$

$$=0 (9)$$

$$\sum_{y} (y - y_1) \kappa_y = 0$$

$$\sum_{y} \gamma_y = 0$$

$$\sum_{x,y} \gamma_c = 0$$

$$\sum_{x,y} (c - c_{\min} + 1)\gamma_c = 0$$

(13)

$$\sum_{x,y} (c - c_{\min} + 1)^2 \gamma_c = 0$$

4 Not all cohorts are equal

- Continuous Mortality Investigation [2017] uses (for example) $\sum_{c} \gamma_{c} = 0$.
 - ⇒ Cohort with one observation gets same weight as cohort with thirty observations?

4 Not all cohorts are equal

- Cairns et al. [2009] weight according to number of observations, i.e. $\sum_{x,y} \gamma_c = \sum_c w_c \gamma_c = 0$.
- Cairns et al. [2009] approach preferable.
- See also Richards et al. [2017, Appendix C].

4 Fitting

The Age-Period, APC and APCI models:

- are linear,
- use identifiability constraints, and
- have parameters that can be smoothed.

4 Fitting

- Assume $D_{x,y} \sim \text{Poisson}(E_{x,y}\mu_{x,y})$.
- AP, APC and APCI models are penalized, smoothed GLMs.
- Lee-Carter model can fitted as pairwise conditional penalized, smoothed GLMs.

4 Fitting

Currie [2013] sets out generalized GLM-fitting algorithm to:

- maximise likelihood,
- apply linear identifiability constraints, and
- smooth parameters.

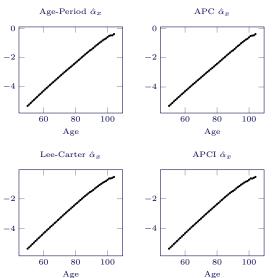
Note that the Currie algorithm achieves these simultaneously, not in separate stages as in Continuous Mortality Investigation [2017].

4 Constraints

- Identifiability constraints do not always have to be linear; see Girosi and King [2008], Cairns et al. [2009] and Richards and Currie [2009].
- However, *proving* that a constraint is an identifiability constraint is harder if it is non-linear.
- The Currie [2013] algorithm works with linear constraints only.

5 Parameter estimates

Parameter estimates $\hat{\alpha}_x$ for four unsmoothed models.

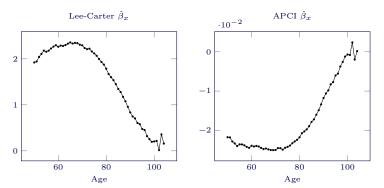


 $\Rightarrow \alpha_x$ plays the same role across all four models, i.e. average log mortality by age.

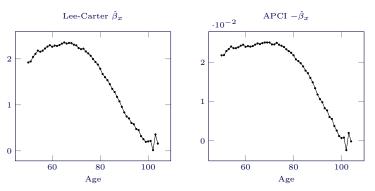
...as long as
$$\sum_{y} \kappa_{y} = 0$$
.

 $\Rightarrow \alpha_x$ could be smoothed to reduce effective dimension of model.

Parameter estimates $\hat{\beta}_x$ for Lee-Carter and APCI models (both unsmoothed).



Parameter estimates $\hat{\beta}_x$ for Lee-Carter and $-\hat{\beta}_x$ for APCI models (both unsmoothed).



www.longevitas.co.uk 36/74

- β_x plays an analogous role in the Lee-Carter and APCI models, namely an age-related modulation of the time index.
- β_x in APCI model operates on a quite different scale due to $(y \bar{y})$ term.
- β_x in APCI model would be better multiplied by $(\bar{y} y)$ term...
 - ...and have a constraint on β_x analogous to the Lee-Carter one.

- Like α_x , β_x could be smoothed to reduce effective dimension of model.
- Smoothing β_x also improves forecasting properties; see Delwarde et al. [2007].

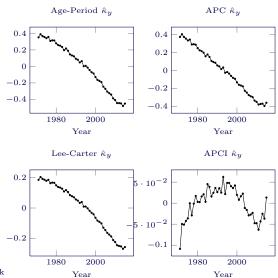
Note that the APCI model has *two* time-varying components:

- 1. An age-dependent central linear trend, $(y \bar{y})$, and
- 2. An unmodulated, non-linear term, κ_y .

5 Conclusions for α_x and β_x

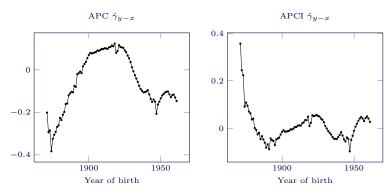
- α_x and β_x play similar roles across all models.
- What about κ_y and γ_{y-x} ?

Parameter estimates $\hat{\kappa}_y$ for four unsmoothed models.



- κ_y plays a similar role in the Age-Period, APC and Lee-Carter models.
- κ_y plays a very different role in the APCI model.
- APCI $\hat{\kappa}_y$ values have less of a clear trend pattern for forecasting.
- APCI $\hat{\kappa}_y$ values are strongly influenced by structural decisions made elsewhere in the model.

Parameter estimates $\hat{\gamma}_{y-x}$ for APC and APCI models (both unsmoothed).



- The γ_{y-x} values appear to play analogous roles in the APC and APCI models...
 - ...yet the values taken and the shapes displayed are very different.
- If values and shapes are so different, what do γ_{y-x} values represent?
- γ_{y-x} don't have an interpretation independent of the other parameters in the same model...
 - $\dots \gamma_{y-x}$ don't describe cohort effects in any meaningful way.

6 Smoothing

6 To smooth or not to smooth?

- Continuous Mortality Investigation [2017] smooths all parameters.
- However, only α_x and β_x exhibit regular behaviour.
- Does it make sense to smooth κ_y and γ_{y-x} ?

6 To smooth or not to smooth?

- CMI's smoothing parameter for κ_{ν} is S_{κ} .
- Smoothing penalty for κ_y is

$$10^{S_{\kappa}} \sum_{y=3}^{n_y} (\kappa_y - 2\kappa_{y-1} + \kappa_{y-2})^2.$$

- Value for S_{κ} is set subjectively.
- What is the impact of smoothing κ_y ?

6 Impact of smoothing APCI κ_y

life expectancies are [...] very sensitive to the choice made for S_{κ} , with the impact varying across the age range. At ages above 45, changing S_{κ} by 1 has a greater impact than changing the long-term rate by 0.5%."

Continuous Mortality Investigation [2016, page 42]

See also https://www.longevitas.co.uk/site/informationmatrix/signalornoise.html

www.longevitas.co.uk 48/7

6 Impact of smoothing APCI κ_y

- S_{κ} has a large impact because κ_y collects features left over from other parts of the model structure.
- Indeed, κ_y collects every remaining period effect and applies it without any age modulation.
- If κ_y is a "left-over", should one smooth it at all?

7 Value-at-Risk (VaR)

7 Trend risk v. one-year view?

"Whereas a catastrophe can occur in an instant, longevity risk takes decades to unfold"

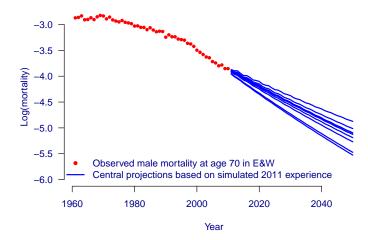
The Economist [2012]

7 Trend risk v. one-year view

Solution from Richards et al. [2014]:

- Simulate next year's experience.
- Refit the model.
- Value liabilities.
- Repeat...

7 Sensitivity of forecast



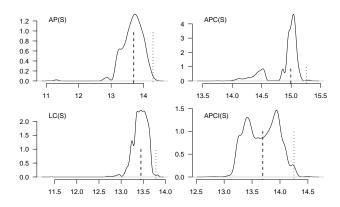
7 Forecasting

Approach from Kleinow and Richards [2016] for parameter uncertainty:

- γ_{y-x} : use ARIMA model without mean.
- κ_y under AP, APC and LC models: use ARIMA model with mean.
- κ_y under APCI model: use ARIMA model without mean.

7 Liability densities

Value-at-risk capital requirements for annuities payable to male 70-year-olds. Source: Richards et al. [2017, Table 4].

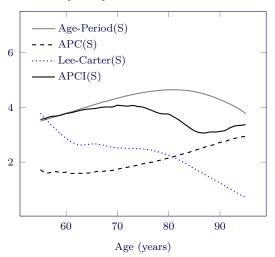


7 Value-at-risk

- Variety of density shapes.
 - \Rightarrow not all unimodal.
- Considerable variability between models.
 - \Rightarrow need to use multiple models.

7 Value-at-risk

VaR99.5% capital-requirement percentages by age for four models. Source: Richards et al. [2017].



www.longevitas.co.uk 57/74

7 Value-at-risk

Q. Why do capital requirements reduce with age for Lee-Carter, but not with APCI?

A. κ_y is unmodulated by age in APCI model.

8 Conclusions

8 Conclusions

- APCI model is implementable as a fully stochastic model.
- APCI model shares features and drawbacks with Age-Period, APC and Lee-Carter models.
- Smoothing APCI $\hat{\alpha}_x$ and $\hat{\beta}_x$ seems sensible.
- Smoothing APCI $\hat{\kappa}_y$ and $\hat{\gamma}_{y-x}$ is not sensible.
- Currie [2013] algorithm makes fitting penalized, smoothed GLMs straightforward.

www.longevitas.co.uk 60/74

References I

- A. J. G. Cairns, D. Blake, K. Dowd, G. D. Coughlan, D. Epstein, A. Ong, and I. Balevich. A quantitative comparison of stochastic mortality models using data from England and Wales and the United States.

 North American Actuarial Journal, 13(1):1–35, 2009.
- Continuous Mortality Investigation. CMI Mortality Projections Model consultation technical paper. Working Paper 91, 2016.
- Continuous Mortality Investigation. CMI Mortality Projections Model: Methods. Working Paper 98, 2017.

References II

- I. D. Currie. Smoothing constrained generalized linear models with an application to the Lee-Carter model. *Statistical Modelling*, 13(1):69–93, 2013.
- A. Delwarde, M. Denuit, and P. H. C. Eilers. Smoothing the Lee-Carter and Poisson log-bilinear models for mortality forecasting: a penalized likelihood approach. *Statistical Modelling*, 7:29–48, 2007.
- F. Girosi and G. King. *Demographic Forecasting*. Princeton University Press, 2008. ISBN 978-0-691-13095-8.

References III

- T. Kleinow and S. J. Richards. Parameter risk in time-series mortality forecasts. *Scandinavian Actuarial Journal*, 2016(10):1–25, 2016.
- S. J. Richards and I. D. Currie. Longevity risk and annuity pricing with the Lee-Carter model. *British Actuarial Journal*, 15(II) No. 65:317–365 (with discussion), 2009.
- S. J. Richards, I. D. Currie, and G. P. Ritchie. A value-at-risk framework for longevity trend risk. *British Actuarial Journal*, 19 (1):116–167, 2014.

References IV

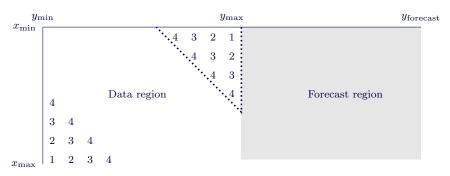
- S. J. Richards, I. D. Currie, T. Kleinow, and G. P. Ritchie. A stochastic implementation of the APCI model for mortality projections, 2017.
- The Economist. The ferment of finance. Special report on financial innovation, February 25th 2012:8, 2012.

More on longevity risk at www.longevitas.co.uk

10 Constraints (again)

10 Corner cohorts

Number of observations for each cohort in the data region.



10 Constraints (again)

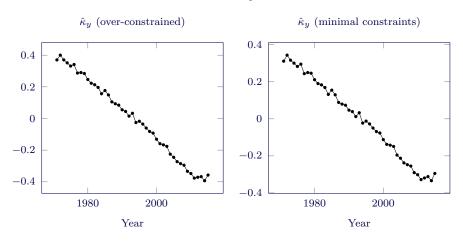
- Both Continuous Mortality Investigation [2017] and Richards et al. [2017] avoid estimating "corner cohorts".
- This means not all constraints are required for identifiability.
- Continuous Mortality Investigation [2017] and Richards et al. [2017] both fit over-constrained APCI models.
- What impact does this have?

10 Constraints (again)

- Over-constrained models reduce the goodness-of-fit...
 - ...but can be used to impose desirable behaviour on parameters.

10 APC model — κ_y

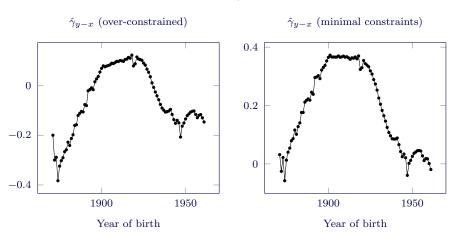
Parameter estimates $\hat{\kappa}_y$ APC(S) model



www.longevitas.co.uk 69/74

10 APC model — γ_{y-x}

Parameter estimates $\hat{\gamma}_{y-x}$ APC(S) model



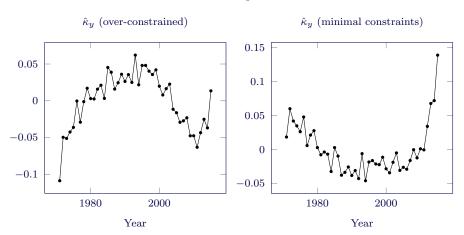
www.longevitas.co.uk

10 APC model

- $\hat{\kappa}_{u}$ robust to over-constrained model.
- Values for $\hat{\gamma}_{y-x}$ differ, but shape similar.

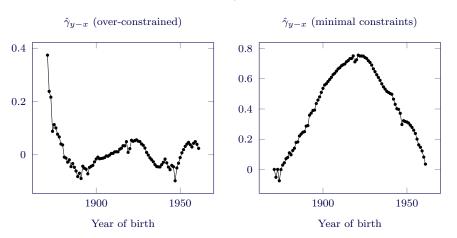
10 APCI model — κ_y

Parameter estimates $\hat{\kappa}_y$ APCI(S) model



10 APCI model — γ_{y-x}

Parameter estimates $\hat{\gamma}_{y-x}$ APCI(S) model



www.longevitas.co.uk

73/74

10 APCI model

- Neither $\hat{\kappa}_y$ nor $\hat{\gamma}_{y-x}$ robust to over-constrained model.
- κ_y in APCI model is a term which picks up left-over aspects of fit.
- $\hat{\gamma}_{y-x}$ changes radically depending on constraint choices.
 - \Rightarrow What are the implications for the CMI spreadsheet of using $\hat{\gamma}_{y-x}$ from APCI model?