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2 Background
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2 Background

CMI released new projection spreadsheet.

Calibration is done by new APCI model.

See Continuous Mortality Investigation [2017].
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2 Background

CMI intended APCI model for calibrating
deterministic targeting spreadsheet.

Richards et al. [2017] show how to implement it as
a fully stochastic model.

Presented at sessional meeting of IFoA on 16th
October 2017.

Paper and materials at www.longevitas.co.uk/apci
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3 APCI model
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3 APCI model

logmx,y = αx + βx(y − ȳ) + κy + γy−x (1)
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3 Related models for logmx,y

Age-Period : αx + κy (2)

APC : αx + κy + γy−x (3)

Lee-Carter : αx + βxκy (4)

APCI : αx + βx(y − ȳ) + κy + γy−x (5)
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3 Model relationships

Age-Period:
αx + κy

APC:
αx + κy + γy−x

Lee-Carter:
αx + βxκy

APCI:
αx + βx(y − ȳ) + κy + γy−x

Add βx
Change nature of κy

Add γy−x
Change nature of βx
Change nature of κy
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αx + βx(y − ȳ) + κy + γy−x

Add γy−x
Add βx

Add βx
Change nature of κy

Add γy−x
Change nature of βx
Change nature of κy

www.longevitas.co.uk 14/74

http://www.longevitas.co.uk


3 Model relationships

Age-Period:
αx + κy

APC:
αx + κy + γy−x

Lee-Carter:
αx + βxκy

APCI:
αx + βx(y − ȳ) + κy + γy−x
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3 APCI model

APCI model can be viewed superficially as either:

An APC model with added Lee-Carter-like βx
term, or

A Lee-Carter-like model with added γy−x cohort
term.
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3 APCI model

. . .but there are important differences:

In the Lee-Carter model the change in mortality is
age-dependent: βxκy.

In the APCI model only the expected change is
age-dependent: βx(y − ȳ).

κy in the APCI model is very different to κy in the
other models.
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3 APCI model

⇒ Although related to the APC or Lee-Carter models,
the APCI model is not a generalization of either.
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4 Fitting and constraints
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4 Identifiability

All of these models have an infinite number of
possible parameterisations.

Pick the Age-Period model as a simple example. . .
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4 Identifiability — problem

If we set:

α′x = αx + v,∀x
κ′y = κy − v,∀y

then the model will have the same fitted values for any
real-valued v.
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4 Identifiability — solution

Use an identifiability constraint to impose desired
behaviour without changing fit.

Choice of identifiability constraints helps
interpretation and can make parameters like κy
forecastable.
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4 Constraints

Age-Period model:

Imposing
∑

y κy = 0 does not change the fit. . .

. . .but it means that αx is (broadly) the average of
log µx,y over the period.
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4 Constraints used

AP :
∑
y

κy = 0 (6)

LC :
∑
y

κy = 0,
∑
x

βx = 1 (7)

APC :
∑
y

κy = 0,
∑
x,y

γc = 0,
∑
x,y

(c− cmin + 1)γc = 0

(8)

where c = y − x.
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4 Constraints used

APCI model uses five identifiability constraints:∑
y

κy = 0 (9)∑
y

(y − y1)κy = 0 (10)∑
x,y

γc = 0 (11)∑
x,y

(c− cmin + 1)γc = 0 (12)∑
x,y

(c− cmin + 1)2γc = 0 (13)
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4 Not all cohorts are equal

Continuous Mortality Investigation [2017] uses (for
example)

∑
c γc = 0.

⇒ Cohort with one observation gets same weight
as cohort with thirty observations?
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4 Not all cohorts are equal

Cairns et al. [2009] weight according to number of
observations, i.e.

∑
x,y γc =

∑
cwcγc = 0.

Cairns et al. [2009] approach preferable.

See also Richards et al. [2017, Appendix C].
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4 Fitting

The Age-Period, APC and APCI models:

are linear,

use identifiability constraints, and

have parameters that can be smoothed.
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4 Fitting

Assume Dx,y ∼ Poisson(Ex,yµx,y).

AP, APC and APCI models are penalized,
smoothed GLMs.

Lee-Carter model can fitted as pairwise conditional
penalized, smoothed GLMs.
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4 Fitting

Currie [2013] sets out generalized GLM-fitting
algorithm to:

maximise likelihood,

apply linear identifiability constraints, and

smooth parameters.

Note that the Currie algorithm achieves these
simultaneously, not in separate stages as in Continuous
Mortality Investigation [2017].
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4 Constraints

Identifiability constraints do not always have to be
linear; see Girosi and King [2008], Cairns et al.
[2009] and Richards and Currie [2009].

However, proving that a constraint is an
identifiability constraint is harder if it is non-linear.

The Currie [2013] algorithm works with linear
constraints only.
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5 Parameter estimates
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5 αx

Parameter estimates α̂x for four unsmoothed models.
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5 αx

⇒ αx plays the same role across all four models,
i.e. average log mortality by age.

. . .as long as
∑
y

κy = 0.

⇒ αx could be smoothed to reduce effective
dimension of model.
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5 βx

Parameter estimates β̂x for Lee-Carter and APCI models (both
unsmoothed).
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5 βx

Parameter estimates β̂x for Lee-Carter and −β̂x for APCI models
(both unsmoothed).
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5 βx

βx plays an analogous role in the Lee-Carter and
APCI models, namely an age-related modulation
of the time index.

βx in APCI model operates on a quite different
scale due to (y − ȳ) term.

βx in APCI model would be better multiplied by
(ȳ − y) term...

. . .and have a constraint on βx analogous to the
Lee-Carter one.

www.longevitas.co.uk 37/74

http://www.longevitas.co.uk


5 βx

Like αx, βx could be smoothed to reduce effective
dimension of model.

Smoothing βx also improves forecasting properties;
see Delwarde et al. [2007].
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5 βx

Note that the APCI model has two time-varying
components:

1. An age-dependent central linear trend, (y− ȳ), and

2. An unmodulated, non-linear term, κy.
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5 Conclusions for αx and βx

αx and βx play similar roles across all models.

What about κy and γy−x?
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5 κy

Parameter estimates κ̂y for four unsmoothed models.
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5 κy

κy plays a similar role in the Age-Period, APC and
Lee-Carter models.

κy plays a very different role in the APCI model.

APCI κ̂y values have less of a clear trend pattern
for forecasting.

APCI κ̂y values are strongly influenced by
structural decisions made elsewhere in the model.
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5 γy−x

Parameter estimates γ̂y−x for APC and APCI models (both
unsmoothed).
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5 γy−x

The γy−x values appear to play analogous roles in
the APC and APCI models. . .

. . .yet the values taken and the shapes displayed
are very different.

If values and shapes are so different, what do γy−x
values represent?

γy−x don’t have an interpretation independent of
the other parameters in the same model. . .

. . . γy−x don’t describe cohort effects in any
meaningful way.
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6 Smoothing
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6 To smooth or not to smooth?

Continuous Mortality Investigation [2017] smooths
all parameters.

However, only αx and βx exhibit regular behaviour.

Does it make sense to smooth κy and γy−x?
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6 To smooth or not to smooth?

CMI’s smoothing parameter for κy is Sκ.

Smoothing penalty for κy is

10Sκ
ny∑
y=3

(κy − 2κy−1 + κy−2)
2.

Value for Sκ is set subjectively.

What is the impact of smoothing κy?
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6 Impact of smoothing APCI κy

life expectancies are [...] very sensitive to the
choice made for Sκ, with the impact varying
across the age range. At ages above 45,
changing Sκ by 1 has a greater impact than
changing the long-term rate by 0.5%.”

Continuous Mortality Investigation [2016, page 42]

See also https://www.longevitas.co.uk/site/informationmatrix/signalornoise.html
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6 Impact of smoothing APCI κy

Sκ has a large impact because κy collects features
left over from other parts of the model structure.

Indeed, κy collects every remaining period effect
and applies it without any age modulation.

If κy is a “left-over”, should one smooth it at all?
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7 Value-at-Risk (VaR)
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7 Trend risk v. one-year view?

“Whereas a catastrophe can occur in an
instant, longevity risk takes decades to unfold”

The Economist [2012]
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7 Trend risk v. one-year view

Solution from Richards et al. [2014]:

Simulate next year’s experience.

Refit the model.

Value liabilities.

Repeat. . .
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7 Sensitivity of forecast
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Source: Lee-Carter example from Richards et al. [2014].
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7 Forecasting

Approach from Kleinow and Richards [2016] for
parameter uncertainty:

γy−x: use ARIMA model without mean.

κy under AP, APC and LC models: use ARIMA
model with mean.

κy under APCI model: use ARIMA model without
mean.
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7 Liability densities

Value-at-risk capital requirements for annuities payable to male
70-year-olds. Source: Richards et al. [2017, Table 4].
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See also https://www.longevitas.co.uk/site/informationmatrix/twinpeaks.html
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7 Value-at-risk

Variety of density shapes.

⇒ not all unimodal.

Considerable variability between models.

⇒ need to use multiple models.
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7 Value-at-risk

VaR99.5% capital-requirement percentages by age for four models.
Source: Richards et al. [2017].
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7 Value-at-risk

Q. Why do capital requirements reduce with age
for Lee-Carter, but not with APCI?

A. κy is unmodulated by age in APCI model.
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8 Conclusions
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8 Conclusions

APCI model is implementable as a fully stochastic
model.

APCI model shares features and drawbacks with
Age-Period, APC and Lee-Carter models.

Smoothing APCI α̂x and β̂x seems sensible.

Smoothing APCI κ̂y and γ̂y−x is not sensible.

Currie [2013] algorithm makes fitting penalized,
smoothed GLMs straightforward.
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10 Constraints (again)
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10 Corner cohorts

Number of observations for each cohort in the data region.
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10 Constraints (again)

Both Continuous Mortality Investigation [2017]
and Richards et al. [2017] avoid estimating “corner
cohorts”.

This means not all constraints are required for
identifiability.

Continuous Mortality Investigation [2017] and
Richards et al. [2017] both fit over-constrained
APCI models.

What impact does this have?
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10 Constraints (again)

Over-constrained models reduce the
goodness-of-fit. . .

. . .but can be used to impose desirable behaviour
on parameters.
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10 APC model — κy

Parameter estimates κ̂y APC(S) model

1980 2000

−0.4

−0.2

0

0.2

0.4

Year

κ̂y (over-constrained)

1980 2000
−0.4

−0.2

0

0.2

0.4

Year

κ̂y (minimal constraints)

www.longevitas.co.uk 69/74

http://www.longevitas.co.uk


10 APC model — γy−x

Parameter estimates γ̂y−x APC(S) model
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10 APC model

κ̂y robust to over-constrained model.

Values for γ̂y−x differ, but shape similar.
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10 APCI model — κy

Parameter estimates κ̂y APCI(S) model
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10 APCI model — γy−x

Parameter estimates γ̂y−x APCI(S) model
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10 APCI model

Neither κ̂y nor γ̂y−x robust to over-constrained
model.

κy in APCI model is a term which picks up
left-over aspects of fit.

γ̂y−x changes radically depending on constraint
choices.

⇒ What are the implications for the CMI
spreadsheet of using γ̂y−x from APCI model?
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