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INTRODUCTION 

BIAS in estimates of the initial decremental rate q and the central decremental 
rate m is considered for several survival functions. It is first shown that the central 
rate estimate is unbiased when the survival function is an exponential curve; 
is similarly unbiased when the survival function assumes the Balducci shape. The 
evidence presented here also indicates that the proportional bias (the bias divided 
by the true value) is approximately twice as great for as for when the survival 
function is a straight line. 

Life tables in common use in the United Kingdom are, however, concave at 
ages arising most frequently in actuarial calculations, while none of the above 
curves is concave. In order to investigate the bias properties of general survival 
functions a quadratic is chosen, with a parameter indicating the extent of 
curvature. For this particular class of survival functions, one can show that bias 
is approximately minimized when exposure to risk is symmetric about the middle 
of the rate year. 

It is shown that the ratio of proportional bias in q and m rate estimates depends 
primarily upon the curvature of the survival function, i.e. upon the level of 
convexity or concavity, and only slightly upon the distribution of exposure over 
the rate year. For most survival functions encountered in actuarial work the force 
of decrement will increase over the rate year, in which case the m estimate will 
suffer less bias than the q estimate. Even when the force falls slightly over the rate 
year, the m rate estimate may still be subject to smaller bias. 

The level of bias is finally compared with the width of the confidence interval 
surrounding the rate estimate. The results indicate that in practice bias in 
estimated mortality rates will generally be negligible, except perhaps for very 
advanced ages and when the exposure is very uneven over the rate year. The 
extent of bias for decrements other than mortality is difficult to quantify because 
of the absence of standard tables from which to obtain an idea of the degree of 
concavity or convexity of the survival function at the age considered. 

The plan of the paper is as follows. Section 1 provides a simple theoretical 
treatment of bias in initial and central rate estimates, using the conventional 
means of estimation, viz. adding exposure after exit until the end of the rate year 
for initial rate estimates. It is immediately seen that is unbiased for the 
exponential survival function, and that is unbiased when the survival function 
assumes the Balducci form. Extremely concave or convex survival functions are 
considered. The bias properties of and are discussed for the linear survival 
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function, the simple results from which provide the springboard for the 
methodology of our treatment of concave and convex survival functions. A 
conclusion terminates the paper. 

1. BIAS IN INITIAL AND CENTRAL RATE ESTIMATES 

The rate year under investigation is taken as the life year between the xth and 
(x+1)th birthdays. 

Let Px+t be the number attaining exact age x+t during the investigation, 
where t (0,l). The expected number of deaths at age x+t, or more precisely 
between ages x+t and x+t+dt say, is then µx+t·Px+t·dt. If one were to estimate 
rates from only this short time interval, one would obtain 

(1.1) 

(1.2) 

The estimates and have expected values 

(1.3) 

(1.4) 

We have assumed that the exposure at age x+t, viz. Px+t·dt, is non-random, 
and that the expectation operator can act separately upon the numerator and 
denominator of . These assumptions will be adequate provided that the number 
of decrements is not too large relative to the number of lives in the experience; see 
Roberts 1986, section 5, for some further justification. 

Proportional biases in (t) and (t) at each point are defined as 

and 

We then define a relative proportional bias at each point t: 

The proportional biases in and are 

and 

while the overall relative proportional bias is pbq/pbm. 
It is easily seen from equations (1.1) and (1.3) that 
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from which 

so that the proportional bias in is a weighted sum of the proportional biases in 
the estimators at each age. Similarly 

and the proportional bias in is a weighted sum of the proportional biases at each 
age, with weights very close to those used in deriving pbm from pbm(t). 

2. EXPONENTIAL AND BALDUCCI CURVES 

In general, the expected values E and E will depend on how Px+t varies 
with t, which in turn depends on the distribution of movements into and out of 
the experience. Should the expressions (1.1) or (1.2) turn out not to depend upon 
t, however, the quantities Px+t have no influence on the expected value, the 
integrals in (1.3) and (1.4) simply cancelling. 

The exponential has a constant force of decrement: 

1x+t=exp(–µt), 

where µ = – ln(1–q) = mx is the constant force 
and q = qx; 
and the Balducci curve is defined as (Batten, 1978): 

where h = q/(1–q). 
Then µx+t=q/[1–(1–t)q], 
or equivalently µx+t/[1+µx+t(1–t)] = q. 

When the force of mortality is constant, (1.1) is clearly independent of t, and 
we see that (1.2) is independent of t when the Balducci assumption holds true. 
Thus is unbiased when the force of mortality is constant, and when the 
Balducci assumption holds is unbiased, regardless of whatever patterns of 
entrants, new entrants, withdrawals, retirements etc. obtain. 

3. THE LINEAR DECREMENTAL CURVE 

When the decremental curve is linear, 

From (1.1) and (1.2) and using the exact relationship m = q/(1–·5q), it is easy to 
show that 

pbq(t) = 2q(t–·5)/(1+q–2qt) (3.1) 

and 

pbm(t) = q(t–·5)/(1–qt) (3.2) 
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The important point about pbq(t) and pbm(t) is their near linearity in t. This, 
together with the fact that they practically vanish at t = ·5, means the bias arising 
from exposure at age x+·5–t0, say, will be balanced by bias from equal exposure 
at age x+·5+t0; bias is then approximately zero when exposure is symmetric 
about t=·5. For practical purposes, exposure should be uniform throughout the 
rate year for bias to be minimized. 

At any point t the ratio of the proportional biases in (3.1) and (3.2) is very close 
to 2, at least for decremental rates likely to be encountered in practice. The 
proportional biases in the overall rate estimates are simply the weighted sums 
(with weights Px+t·dt—see section 1) of the corresponding expressions (3.1) and 
(3.2) over all intervals (t, t+dt), and they can also be expected to be in the ratio of 
2: 1.* 

4. EXTREME CURVATURE IN THE SURVIVAL FUNCTION 

For extremely concave or convex survival functions, the proportional biases in 
q and m estimates should be approximately equal. To see this, consider first a 
survival function so concave that nearly all the exits occur just before age x+1. 
Then q-m. 

From formulae (1.3) and (1.4), , so that proportional biases in and 
should be nearly equal. 

A similar argument obtains for an extremely convex survival function, for 
which almost all exits occur just after age x. Now q m/(1+m); but 

, and again the proportional biases should be close to each other. 
Relative proportional bias therefore tends to unity as the curvature becomes 
infinite. 

5. THE QUADRATIC FAMILY OF CURVES 

The quadratic family of curves used to model survival functions is defined by 

(5.1) 

where a>1 and b>0 for concave curves, and a<–1 and b<0 for convex curves. 
The parameter a is the principal determinant of curvature: the smaller its 
absolute value, the greater the curvature, i.e. the more concave or convex the 
curve. The parameters b and c are fixed by the requirements that 1x+t assume the 
values 1 and 1–q at t=0 and 1. 

It is easily shown that, for the curve (5.1) as for the linear survival function, the 
proportional biases in (t) and (t) are close to being linear on (0,1), and their 
ratio is approximately constant. The linearity of pbq(t) and pbm(t) is immediate. 
Consider µx+t=–1'x+t/1x+t. The numerator is linear by our choice of survival 
function, and the denominator close to constant for values of q usually 

* This need not be so. Consider quantities yi and zi, with each yi approximately twice the value of 
the corresponding zi. Should either yi or zi happen to be close to zero, the ratio may well 
differ substantially from two. The comment nevertheless seems reasonable for practical purposes. 
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encountered. Thus is nearly linear, and will also be approximately 
linear from (1.2). We shall see that both and are very close to being 
unbiased at age t=·5, so that the ratio of pbq(t) to pbm(t) will also be roughly 
constant over (0,l), unless either of these latter quantities is close to zero. 

The following values of proportional biases and their ratios at t=0, ·5 and 1 
are easily found from (1.1) and (1.2): 

pbq(0)=–(1/a+q–q/a)/(1+q–q/a) 

pbq(·5)=–[q/(4a)]/[1+q/(4a)] 

pbq(1)=(1/a+q)/(1–q) 

pbm(0)=–[1/a+q/2–(2q/(3a))+q/(6a2)] 

pbm(·5)=–[q/(12a)]/[1–q/2+q/(4a)] 

pbm(1)=[1/a+q/2–q/(3a)+q/(6a2)]/(1–q) 

Recalling that a is no less than 1 in absolute value, first suppose that is small; 
then and we can ignore q/a. For larger values of q/a is again 
negligible, in comparison with both q and 1/a. From the above expressions then, 
accordingly ignoring all terms in q/a and q/a2, we obtain: 

pbq(0)=–(1/a+q)/(1+q) 
pbq(·5) = 0 

pbq(1)=(1/a+q)/(1–q) 

pbm(0)=–(1/a+q/2) 

pbm(·5)=0 

pbm(1)=(1/a+q/2)/(1–q) 

relpb(0)=[(1/a+q)/(1/a+q/2)]/(1+q) 

relpb(1)=(1/a+q/2)=(1/(qa)+1)/(1/qa)+.5) (5.2) 

Figure 1 graphs the relative proportional bias (expression (5.2)) against 1/(qa). 
We see that is unbiased when a=–1/q, and unbiased when a=–2/q, these 
corresponding to approximations to the Balducci and exponential curves 
respectively. For positive values of a, the ratio of the proportional biases ranges 
between 1 and 2, depending on the relative values of l/a and q: when a is small, 
the survival function is very concave and the relative proportional bias close to 
unity, whereas when a is large, the relative proportional bias tends to 2 as the 
curve becomes the straight line. This is consistent with the discussions on the 
linear and extremely concave survival functions above. 

As the survival function moves from linearity to the exponential, the bias in 
becomes small and the relative proportional bias large; as the survival function 
becomes more convex than the exponential the relative proportional bias jumps 
from + to – , the bias in changing sign. The relative proportional bias is 
zero for the Balducci curve, while for curves more convex than the Balducci, q 
estimates suffer less bias than m estimates. 
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Figure 1. Relative proportional bias against 1/(qa). 

Four representative standard U.K. life tables (PA(90) males, a(90) males ult., 
ELT13 males and A67–70 ult.) are concave between the early thirties and the 
mid-seventies (Roberts, 1986). Comparison of curvatures of these standard 
tables and the concave quadratic function* indicates that over this age domain 
appropriate values of a range from about 20 to 60. At age 63 for the A67–70 
table, for instance, q = 2% and an appropriate value of a is about 24, so that the 
relative bias according to (5.2) is roughly 1.2. For age 52 on the ELT13 table, as a 
second example, q = ·01 and a = 23, so that relative proportional bias is about 1·1. 

Indications are that the relative proportional bias is close to 1 for ages in the 
thirties, increasing to about 1·2 by the late fifties, and finally reaching about 1·5 in 
the seventies. In any case we infer that the relative proportional bias of q and m 

* Curvature is defined as with the prime denoting differentiation. The first and 
second derivatives were calculated from three consecutive function values, obtained for the standard 
tables from two successive q values and for the quadratic by taking values at t = 0, ·5 and 1. The value 
of a was chosen so that the quadratic had the same curvature as the standard table for the given q 
value. 
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estimates for ages between about 30 and 75 can be expected to lie between 1 and 
2. At more advanced ages the survival function lies between a straight line and the 
exponential, so that the relative proportional bias exceeds 2; for the highest ages, 
in fact, the survival curve is only slightly less convex than the exponential 
(Roberts, 1986), so that the central rate estimate at these ages will suffer 
substantially less bias than the initial rate estimate. 

The Balducci curve is not often used for modelling survival functions in 
actuarial work, because the force of decrement falls over the rate year; curves of 
greater convexity would seem to be even less likely candidates for survival 
functions, having forces falling still more sharply, and we infer that in general m 
estimates should be calculated from crude data rather than q estimates. 

For given q and a, it is easy to obtain an estimate of the proportional biases in q 
and m estimates by using equations (1.3) and (1.4). Some algebraic details are 
provided in an Appendix. Consider first our 63-year-old whose mortality follows 
the A67–70 table. When exposure to risk is uniform over the rate year, the 
proportional bias in is about ·02%, so that bias is clearly negligible in 
comparison with the width of the confidence interval surrounding the estimate. 
To take another extreme, assume that all exposure is concentrated uniformly in 
the first half of the rate year; an estimate of q will on average be too low by 3%. 
Still assuming this latter rather pathologically uneven distribution of exposure, 
for a total exposure to risk of 10,000 lives the bias is about 1/9 the width of the 
confidence interval, taking this width as with E being total exposure; 
for an exposure to risk of 100,000 the bias is some 1/3 of the width of the 
confidence interval. 

As a final example consider an 87-year-old male with mortality following the 
ELT13 table. For him the values of a and q are – 15 and ·2 respectively, and the 
magnitude of the mortality rate is such that the assumptions on which our 
analysis is based become questionable. This point notwithstanding, use of the 
same procedure, with the same highly skewed distribution of exposure to risk as 
above, predicts a proportional bias in of –6%; the bias is some 2/3 times the 
width of the confidence interval for an exposure of 1,000 lives. For a uniform 
distribution of exposure to risk over the rate year the proportional bias is +·5%. 
The proportional bias in is close to 4 times that in for this individual 
regardless of the pattern of exposure. 

A more detailed discussion of the comparative magnitudes of bias and mean 
square error, and of the dependence of bias upon the pattern of exposure over the 
rate year, is provided in a succeeding paper (Roberts, 1987). 

CONCLUSION 

In estimating m one is in fact assuming that the survival function is an 
exponential, while for estimates of q the assumed survival function has the 
Balducci shape. It is hardly surprising that rate estimates are biased when the 
survival function has not the requisite form, although the generally tiny 
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discrepancy between the expected value of our estimator and the true parameter 
value is perhaps unexpected. 

As well as showing that is unbiased for m when the survival function is 
exponential and unbiased for q for the Balducci survival function, we have 
shown that the proportional bias in is double that in when the survival 
function is linear, and that the proportional biases in both estimates are 
approximately the same for extremely concave or convex survival functions. On 
the assumption that the force of decrement does not fall over the rate year, will 
be subject to greater bias than , and one can estimate the extent of the extra bias 
by calculating curvature of standard tables at similar ages. 

Our simple analysis indicates that bias in q and m rate estimates is minimized 
when exposure is symmetrically distributed around the middle of the rate year. 
For practical purposes one would merely say that the distribution of exposure 
should be as uniform as possible over the rate year. Nevertheless, the extent of 
bias is negligible compared with the standard error of our rate measurements, 
unless the decremental rate is large, as for mortality rates at advanced ages; or the 
exposure to risk is very uneven over the rate year; or the exposure to risk is 
sufficiently large for standard errors of estimates to be small. 

It can be argued that our results are specific to the quadratic survival function 
chosen. Curvatures of standard mortality tables are, however, so low that any 
smooth function should provide results similar to the above. 

More substantial objections are: 

(1) Survival functions of greater convexity or concavity may be poorly 
modelled by this specific curve, chosen purely for analytical convenience. 

(2) We have assumed that the constant relative proportional bias at each point 
of the rate year translates into an overall relative proportional bias of that 
value (this point was mentioned in passing in the footnote on page 594. 

As to the first objection, all one can hope to achieve is to model a survival 
function by a curve of roughly suitable average curvature over the rate year: the 
precise functional form should be immaterial, and in any case there would be no 
way of knowing which family of curves were ‘correct’, save for investigating 
decremental rates over smaller age intervals. Some reassurance on the second 
matter is proved in a more detailed paper by the author (Roberts, 1986), in which 
simulated investigations to obtain decremental rates, using many patterns of 
exposure over the rate year and a class of survival functions very different from 
that used in this paper, gave conclusions consistent with the results reported here. 
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APPENDIX 

We summarize the results of the calculation of E( ) when exposure to risk over 
the rate year assumes a particularly simple form. 

Assume that exposure to risk is uniform over (t0,t1), and zero elsewhere. From 
formula (1.4) we see that 

where 

and 

The parameters are given by 

Now 

where z=t+(a–1)/2. The value of this last integral, call it K, depends on 
whether the survival function is convex or concave. 

For concave curves (a>l), 

where 

and 

for convex curves (a<–1), 

where yi is now 




