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The Bootstrap method was introduced by Bradley Efron, Stanford University in 1979. 
Efron (1982) begins with some general statements, such as: 

“Good simple ideas,...., are our most precious intellectual commodity so there is no 
need to apologize for the easy mathematical level.” 

'‘An important theme of what follows, is the substitution of computational power for 
theoretical analysis. The payoff off course, is the freedom from the constraints of 
traditional parametric theory, with its overreliance on a small set of standard models 
for which theoretical solutions are available. In the long run, . . ..(bootstrap) . . . , should 
make clearer the virtues of parametric theory...." 

and 

"From a traditional point of view, . . . . the methods ... are prodigious computational 
spendthrifs. We blithely ask the reader to consider techniques which require the 
usual statistical calculations to be multiplied a thousand times over. None of this 
would have been feasible twenty--five years ago, before the era of cheap and fast 
computation.” 

The situation 

We consider a random sample (Xl,...,XN) of random size N. The distribution G of 
N is assumed to be known and the random variables are assumed to be independent 
and equally distributed with unknown distribution F: 

It is further assumed that Xr is independent of the frequency N. 

X=(X1,...,XN) denotes the random sample and x=(x1,.....,xn) the observed realisation. 

Let R(X) be a function of X. Then R(X) is a stochastic variable with a distribution 
that is dependent on G and of the unknown F. The problem is to estimate the 
distribution of R on the basis of the observation x. 
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A solution - the Bootstrap Method 

If the distribution of F was known then the distribution of R could, in theory, be 
calculated exactly or in practice be approximated with unlimited accuracy by the 
Monte Carlo method. The simple idea in Bootstrap is to substitute the distribution of 
F with the empirical distribution based on the observation x: 

A. Construct the sample probability distribution E (i.e. the empirical distribution 
of X), putting mass l/n at each point x,...,xn. 

B. Consider the random sample 

c. Approximate the distribution of R(X) by the (Bootstrap) distribution of R(Y) 

The essential facts are that 

the distribution of R(Y) is only dependent on E and G and if E is a good 
approximation to F then one can expect that the distribution of R(Y) will be a 
good approximation to the distribution of R(X) and 

the distribution of (E,G) is known and therefore, the distribution of R(Y) can 
be calculated. 

Application I: Calculation of the uncertainty of reserving estimates 

Let N denote the number of observed claims in a specific period and assume that N is 
Poisson distributed with a known mean. Let denotethe information 
linked to the claims including information about accident period, development period 
and payments. Only information regarding the past is available and for some claims 
Xr, all payments and periods of payments are not necessarily included. 

Let RES denote the stochastic total of the future payments, i.e. the stochastic reserve. 

Let denote a reserve estimator, e.g. the Chain Ladder estimator based on the 
claim information. is a function of the claims X and therefore a stochastic 
variable. 

The problem we wish to solve is to estimate the distribution of the Chain Ladder 
estimator RI(X) rather than just the Chain Ladder point estimate RI(X). 
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Example 1 

Consider the accident periods 198.5-1994 and assume that the number of claims with 
accident date in period i=l985,..., 1994 and notification delay j=0,...,9 measured by 
years from accident period to notification period is Poisson with the parameters 
outlined below in figure 1. 

Assume further that each claim has only one payment which is Gamma distributed 
with mean dependent on the accident period i and constant coefficient 
of variation equal to 2. The waiting time k =0,...,9 from year of notification to year of 
payment is assumed to be independent of the waiting time to notification and with 
distribution outlined in figure 1 below. The distribution of the waiting time r from 
accident year to year of payment, i.e. the convolution of p and q, is also calculated. 

Period 
1985 
1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 
All 

500 1.000 
500 1.050 
500 1.103 
500 1.158 
500 1.216 
500 1.276 
500 1.340 
500 1.407 
500 1.477 
500 1.551 

5000 12.578 

Delay 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Mean 
figure 1 

j~p k~q j+k~r 
0.30 0.35 0.1050 
0.25 0.20 0.1475 
0.20 0.20 0.1800 
0.15 0.15 0.1875 
0.07 0.10 0.1620 
0.03 0 0.1095 

0 0 0.0625 
0 0 0.0315 
0 0 0.0115 

0 0 0.0030 
E(j)=l.53 E(k)=1.45 E(j+k)=2.98 

On the basis of these distribution assumptions we get E(RES) = 2142 and the 
expected total claim amount is 500* 12.578 = 6289. As a consequence, the expected 
amount paid already is therefore 4147. 

Two data sets, PAST and FUTURE generated by simulation in The SAS System 

on the basis of the distribution assumptions above. The PAST file consists of 4699 
claims where i+j< 1995 and of 3486 payments where i+j+k< 1995. The Future file 
consists of the remaining data, i.e. claims with date of notification or date of payment 
in 1995 or later. The sum of future payments, i.e. the observed value of RES, is 2004, 
compared to the expected value 2142. 
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As an example, the claim information regarding three claims from the PAST file is 
shown below: 

3 1 515 14 
4 1 602 62 665 

11 4 494 122 616 
4 1 389 231 621 

Observation Claim Accident Transaction Delay j or Payment 
identification period i j+k 

108 108 1985 Notification 0 
108 1985 Payment 3 2251.89 

3086 3086 1991 Notification 1 
3086 1991 Payment 2 1466.06 

4649 4649 1994 Notification 0 
figure2 

The PAST data is now triangulated and the Chain Ladder estimate for the 
reserve is calculated. The results are outlined in figure 3 below. 

1986 
1987 
1988 
1989 
1990 
1991 
1992 
1993 
1994 

ALL 

Development Period Observed Total Total 
I 2 3 4 5 6 7 8 9 10 Payments Reserve Estimated 

Payment 
50 81 113 97 87 55 36 4 2 1 525 0 525 
59 64 103 85 95 5 43 11 5 1 516 I 516 
52 85 132 82 78 54 38 I2 4 1 534 4 539 

528 77 66 94 79 127 44 27 
81 111 123 115 87 84 45 12 
79 116 84 96 118 64 42 
79 67 112 132 109 65 42 11 
74 121 138 125 128 76 50 13 5 1 333 397 730 
78 I23 143 129 132 78 51 13 5 I 200 551 752 

112 148 185 67 171 101 67 17 6 2 112 864 976 
740 983 1226 1107 1132 672 442 113 42 IO 4220 2247 6467 

figure3 

The estimated run off and the model run off are shown in figure 4. For example it is 
seen that on average 11.4% of the claim amount is estimated to be paid in the 
accident year, and that the model proportion r is 10.5%. 

Run-off pattern 
Est. 11.4% 15.2% 190% 17.1% 17.5% 10.4% 6.8% 1.7% 06% 0.2%1 65.3% 347%1 100% 

Model 10.5% 14.8% 180% 18.8% 16.2% 110% 6.3% 3.2% 12% 0.3%1 65.9% 34.1% 100% 
figure4 
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Figure 5 shows the observed and the estimated proportion of the estimated ultimate 
claim costs paid at different times. It is seen that at the end of 31 December 1994 the 
amount 4220 (65.3%) was paid and that the amount expected to be paid in the future, 
i.e. the outstanding claims reserve is 2247 (34.7%) 

Development of Accumulated Payments / Reserves 

figure 5 

In order to calculate the estimation uncertainty of the Chain Ladder estimate 2247, the 
Bootstrap method has been applied using Larsen & Partners’ Actuarial Claims 
Reserving System. The estimated distribution of R(Y) (figure 6) is based on 200 
Monte Carlo simulations from the empirical distribution. The procedure is: 

1. Draw a random number m from G = Poisson(4699). 
2. Draw a random sample, Y1,....,YM fromEE 
3. Calculate the Chain Ladder reserve based on Y1,....,YM
4. Repeat l-3 200 times. 

226 



Out.standing Claims Reserve Distribution 

1. 
2. 
3. 
4. 

figure 7 

figure 6 

Normally we do not know the distribution of F and a test of the quality of the method 
is difficult to define. However, in the situation above, where the distribution of F is 
known, we can easily calculate the distribution of R(X) by simulation: 

Draw a random number m from G = Poisson(4699). 
Draw a random sample, X1,....,XM from FF 
Calculate the Chain Ladder reserve based on X1,....,XM
Repeat 1-3 200 times. The results are shown in figure 7. 

Outstanding Claims Reservc Distribution 
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The reserve estimate based on the observation x is exceeding the expected 
value E(RES) by approximately 105 and this error is inherited in the entire 
distribution of . However, the Bootstrap error distribution has no systematic 
error and it approximates to the actual error distribution reasonably well, see figure 8 
below. 

Mean 2253 2130 0 0 
STD 214 179 214 179 
Median 2247 2118 -6 -12 
75% fraction 2373 2229 120 99 
95% fraction. 2622 2456 369 326 
98% fraction 2713 2508 460 378 

figure 8 

Please note, that the distribution of and of the e r r o r  i s  
calculated without using the knowledge of the underlying distribution F. 

Application 2: Estimation of the total uncertainty 

We consider a reserving method R. The total uncertainty consists of the estimation 
uncertainty (related to the past) plus the uncertainty related to the future payments 
RES-E(RES). We assume that the selected model is ‘correct’ so that the reserve 
estimate is unbiased, i.e. E(R(X)) = E(RES). 

In order to estimate reserving margins we would estimate the distribution of the 
stochastic variable R + ( RES-E(RES) ). 

Example 2 

Again we consider the distribution outlined in example 1 and the reserving method 
defined above. Since the claims are independent it follows that R(X) and (RES- 

E(RES)) are independent and we therefore only have to calculate the 
convolution of the distributions of and (RES-E(RES)), for example by 
simulation. 

The distribution of is approximated by the Bootstrap distribution . The 
distribution of RES-E(RES) could have been estimated by simulation on the 
basis of the estimated parameters and the model assumptions. However, the 
distribution has been simulated on the basis of the original parameters. The 
results are outlined in figure 9 below: 
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RES - E(RES) Total 
Bootstrap estimated 

Mean 2253 0 2253 
STD 214 77 230 
Median 2247 -4 2248 
75% fraction 2373 39 2380 
95% fraction 2622 120 2632 
99% fraction 2713 166 2758 

figure 9 

It is seen, that the main contribution to the uncertainty of ‘Total’ rises from the 
estimation uncertainty. For example, the 95% fraction is only increased from 
2622 to 2632 when the future randomness is included. It is often seen, as in this 
example, that focus should be on the randomness in the past rather than in the 
future when reserving margins are estimated, 

Application 3: Selection of reserving method 

We consider two different reserving methods and . Assume that both . methods 
are unbiased estimators i.e. 

We would then prefer to use rather than if 

The problem is that the distributions of and are unknown. However, 
using Bootstrap approximation, we can easily estimate the variances of and 

and base the selection on these. 

Example 3 

We consider the distribution outlined in example 1 and two different reserving 
methods: 

Deterministic Chain Ladder method based on the payments (as above) 

A stochastic model with unknown but constant claim inflation. 

Both methods are reasonably central/unbiased, E(R1(X))=2130, E(R2(X))=2145 and 
E(RES)=2143. 
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It is seen from figure 10 that the stochastic model gives a more precise reserve 
estimate but further more, the standard deviation of is less than that of the Chain 
Ladder method 

Mean 
STD 
Median 
75% fraction 
95% fraction 
98% fraction 

Bootstrap’ 
2253 
214 
2247 
2373 
2622 
2713 

Real dist Bootstarp Real dist 
2130 2134 2145 
179 177 
2118 

153 
2137 2144 

222 225 2244 
2456 2414 2418 
2508 2505 2487 
figure 10 

Conclusion 
It is concluded that if the individual claim data are available the Bootstrap is an 
effective method to calculate approximations to the uncertainty distributions of 
claims reserves. Only distribution assumptions regarding the claim frequency 
are required. The application is not dependent on the reserving method and 
even for complicated reserving methods the uncertainty can be estimated. It 
can be used to select between different reserving methods to obtain the most 
robust method and to calculate reserving margins. 

References 
Efron, B. (1979), Bootstrap methods: Another look at the jacknife. Ann. Stat, 7.p. 1- 
26. 

Efron B. (1982) The Jacknife, The Bootstrap and Other Resampling Plans. Society for 
Industrial and Applied Mathematics., Regional Conference series in Applied 
Mathematics. 

232 

R1(Y) R1(X)- R2(Y)- R2(X)-


