

Content

- Scenario types
- Vitagion types
- · Parameterisation approach
- Timing and uptake
- Examples
 - 'Cure for cancer'
 - Slowing ageing

27 January 2015 2

1

4 scenario types

- Risk factor variations
 - e.g. reduction in smoking, increase in obesity
- Cause of death variations
 - e.g. massive reduction in cancer mortality
- Base mortality variations
 - e.g. socioeconomic differences
- Ageing reduction
 - e.g. treatments that slow the rate of ageing

Parameterisation

- Possibility limits
- Plausibility limits
- Best estimate
- Time, duration and rate

Vitagion types

- Healthcare medicines, surgery, medical technology.
- Lifestyle smoking, alcohol, drugs, risk taking behaviours.....
- Environmental pollution, political, organisation & economic (e.g. NHS v non-universal healthcare).
- Catastrophe pandemic, warfare, terrorism.....

Timing

- Uptake:
 - Typically sigmoid.
 - Almost never to 100% asymptotic. (set a % when considered complete – e.g. 95%).

•Identify rate limits – building, training, regulatory....

Timeline

- Drug regulation. Typical timing from identification of 'new molecule'.
- Typically 10-15 years of research
 - Phase I Find dose in humans.
 - Phase II Small studies to see if works.
 - Phase III Big studies to measure effect size and determine safety.
- Minimum ~ 7 years with accelerated progress (e.g. orphan drugs).

Uptake fraction

Almost never 100%.

- Adverse reaction.
- Allergic.
- · Clinical uncertainty (justified or otherwise).
- Personal preference (aversion to Rx).
- Cultural factors.
- Disorganised lives.
- Disorganised healthcare service...

Parameterisation examples

- e.g. impact of new angioplasty intervention in MI. (illustrative figures only)
- ~50% deaths occur before reaching hospital.
 - ... Possibility limit of 50%.
- Only 80% of subjects fit for intervention or accept it.
 - ... Plausibility limit of 0.5*0.8 = 40%.
- Typical mortality reduction with intervention = 25%.
 - ... Best estimate of 0.4*0.25 = 10%.
- Minimum time for planning and building facilities and training new staff (to 90% maximum capacity) ~ 5 years.

'Cure for cancer'

- ICD 10 535 separate codes for malignant neoplasms.
- E.g. Lung cancer (C34) Three different, common categories of lung cancer. (squamous, small cell, adenocarcinoma)
- · Originate in different cell types.

Squamous cell

Adenocarcinoma

Small cell

- Cancer is not one disease but many.
- Different causes, different mechanisms, different treatments.

Characteristics of cancers

- Uncontrolled cell replication.
 - · Keep dividing (no Hayflick limit).
 - · Loss of regulatory controls (switches).
- Self-destruct mechanisms fail.
- Loss of invasion control. (No 'personal space').
- Recruitment of ancillary support stimulation of extra blood supply etc.

No single cure for all cancers.

 Will require a range of interventions covering a range of mechanisms.

However:

- Some exposures increase risk of a range of cancers. (e.g. smoking).
- Some interventions reduce risk of a range of cancers with shared characteristics (e.g. aspirin).
- Not a single scenario but multiple scenarios.

The 'unknown unknowns' Example: ageing reduction

- Parameterisation
- Model structure
- Representation of results
- Interpretation of results

Ageing reduction parameterisation

Illustrative only.....

- Possibility limit...
 - Maximum ageing reduction achieved in mammals ~60%. (LSP Biology of Ageing Report)
- Plausibility limit....
 - Projection of maximum reduction by size of mammal ~ 25%.
- Best estimate...
 - Potential of existing interventions (exercise, diet etc.) ~25%. Potential uptake ~ 20% -> 5%.
- Timescale...
 - Large scale building of sports facilities, training of staff, public information programmes.... ~ 15 years.

Model structure

Think 'dog-years'

- Fit spline to mortality rate to give continuous prediction (e.g. 57.6 years)
- Calculate biological age function for yearly increment...
- a(n) = r * f(n)
- b(n) = c(0) + (1-a(1)) + (1-a(2)) + ... (1-a(n))
- Look up mortality for slowed chronological age using the calculated 'biological age'.

•n = years passed f(n) = function for uptake of mortality factor r = reduction factor •b(n)= biological age at n years c(n) = chronological age at n years.

