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Why do we need a geographical classification?y g g p

• Risk varies a lot geographically!
– Differences by claim typeDifferences by claim type

• It’s also changing:
– Claim composition Pictures – Claim composition
– Customer attitudes

Environment

removed

– Environment
– Storms
– Floods
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Why this mattersy

• Aggregators
• Linking pricing and underwritingLinking pricing and underwriting
• Changing risk premium composition 
• Potential for uplift• Potential for uplift
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What drives differences in experience?p

Density of trafficFlood risk Storm exposure

Driving speedFire station distance Map Driving speedFire station distance removed

State of roadsRepair costLikelihood to 
exaggerate claimsexaggerate claims
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Risk assessment

LOWLOW 1

Map 
removed

What we want from
HIGHHIGH 50

What we want from 
the classification? 6



Postcodes – specifying locationp y g

KT Postcode Area 124

KT17 Postcode District 3,064

KT17 1 Postcode Sector 11,598

KT17 1HB  Postcode Unit 1.78m
Map 
removed

We want:

• A balance of a manageable

F

A balance of a manageable 
number of areas and exposure in 
each area…

• …against variation of risk withinFrequency
Severity

Total
Control

…against variation of risk within 
area

7



What do we want? 

Retain localised variation Predictive

Graphs 
removed

Predictive regionallyPredictive regionally

8



Postcoding - frameworkg
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Mix of Business – Standard policy factorsp y

Map and 
pictures 
removed
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Postcoding - frameworkg
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GLM geo-demographics External
Geographical

g g p
Geographical 

Factors

Proportion Unemployed

13

ExposureClaim Frequency

p p y



Postcoding - frameworkg
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Spatial smoothing Residual 
Spatial

p g
Spatial 

Variation

– Credibility family method
– Can adopt distance based or

Graph 
removedCan adopt distance based or 

adjacency based approach
Distance Adjacency

Graph 
removed

Graph 
removed

Unsmoothed Smoothed
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Adjacency-based spatial smoothing

Smoothing level
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Adjacency-based spatial smoothing

Smoothing level
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Adjacency-based spatial smoothing

Smoothing level
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Postcode allocation

External factors Spatial LOWLOW 1

Household 
Density

Proportion 
Long Term 

Unemployed

Proportion 
Children

Proportion 
Owner 

Occupier

Mean Income 
Band

Profile Group Smoothed
Residual

External factors Spatial 
variation

LOWLOW

HIGHHIGH 50
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Postcode classification – where are we now?
ui

re
d Spatial 

thi f
KT 69%

E
ffo

rt 
re

qu

Basic postcode 
allocation using 

smoothing of 
residual effects

YO 71%

HU 75%

Loss ratio 
assessment 
b di t i t

g
external data… …

S ’ d O ?

by district

Degree of sophistication

– So we’re done. Or are we?
20



Do we have the data to do any better?y

Enhanced external data– Enhanced external data
– Census data is outdated

• (last collected in 2001)
– More providers now have factors and

scores at postcode unit level
– Factual data at individual name and address data is 

Graphs 
removed

available
• Individual Credit Scores
• County Court Judgements
• Council Tax Band

– Enables more in-depth modelling and 
assessment of geographic effectsassessment of geographic effects

– Assists creation of unit level allocations
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Why is the market moving to postcode unit y g p
level?

Significant variation of experience within– Significant variation of experience within 
sectors

– Driven by behavioural effects (motor 
and home) and events (mostly home)) ( y )

Graphs 
removed

Graphs 
removed

– Greater differentiation of risks
Competitive advantage or avoiding– Competitive advantage – or avoiding 
competitive disadvantage

– Increased credibility of external data 22



Unit level postcode allocations - pitfalls and p p
solutions

Pitfalls Solutions
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Are the unit level results better for motor?

– Methodology for testing results involves hold out sample
– Calculate the percentage difference between the sector “score” and the unit 

“ ”“score”
– Then for each percentage band, calculate the observed relativity on a hold out 

sample

– Expect higher observed values 
when the unit allocation has 
increased the scores

– Results for motor show a 

Graph 
removed

moderate improvement
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Are the unit level results better for household?

– Applied the same methodology for 
household
R lt f B ildi d C t t b thGraph – Results for Buildings and Contents both 
show significant improvement

Graph 
removed

Graph 
removed

– But can we improve our allocations 
further?further?
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Are the claim types so different?yp

– Mapping claims experience shows significant differences geographically by pp g p g g g p y y
claim type

Maps 
removed

Maps 
removed

So is there any benefit from separate allocations by claim type or peril?

26



And are claim type areas better?yp

– Evidence suggests a 
separate area for injury on 
motor adds benefitmotor adds benefit

– For household, similar 
benefits have been proved

Graph 
removed

benefits have been proved
– But how can we implement 

them?

Apply claim type Allow different 
relativities by claim Full peril 

them?

areas to claim type 
risk models

relativities by claim 
type for area only

p
rating

Increasing IT requirements for implementation
27



Postcode classification – so where does that 
leave us?

Full peril
Use of 

individual level 
data

Separate 
b

Full peril 
rating

ui
re

d

Unit level

areas by 
claims type

E
ffo

rt 
re

qu

Spatial 
smoothing of

KT 69%

Unit level 
allocations

Basic postcode 
allocation using 

smoothing of 
residual effectsYO 71%

HU 75%

Loss ratio 
assessment 
by district

g
external data

… …

by district

Degree of sophistication
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What is a vehicle allocation?

1LOW 1

Pictures 
removed
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Why this mattersy

• Aggregators
• Linking pricing and underwritingLinking pricing and underwriting
• Changing risk premium composition 
• Potential for uplift• Potential for uplift
• Interesting!



Car classification – spectrum of approachesp pp
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The starting point – the ABI 50 vehicle g p
classification

• New vehicles classified according to:
– Damage and parts costs
– Repair times
– New car values
– Performance
– Security

50 groups in use plus suffixes• 50 groups in use plus suffixes

• Imported cars and specialised purpose vehicles e g kit cars are not• Imported cars and specialised purpose vehicles e.g. kit cars are not 
classified

• For details see: 
http://www.thatcham.org/abigrouprating/index.jsp?page=429
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How good is ABI 50 for risk models and pricing?g p g

• Useful benchmark Proportion of TPBI and TPPD Burning Cost - market measure
100%Useful benchmark

• Public awareness
• Very good predictor of total loss? 60%

70%

80%

90%

100%

• Good predictor of claim frequency?
• Better predictor of AD claims 

experience than TP? 10%

20%

30%

40%

50%

experience than TP?
But...
• does not acknowledge all vehicle

0%
1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

TPBI TPPD Other
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rs
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does not acknowledge all vehicle 
attributes

• does not make full use of the 50 
groups
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%
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a
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4%

%
 o

f C
agroups

• is a one-size fits all vehicle group 
the best option?

0%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

ABI 50
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ABI 50
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Insurer classifications
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Insurer classifications
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Postcoding - frameworkg

Standard 
Policy 

F t
Random 

NoiseFactors Noise

External R id lExternal
Geographical 
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GLM geo-demographics External
Geographical

g g p
Geographical 

Factors

Proportion Unemployed

41
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Spatial smoothing Residual 
Spatial

p g
Spatial 

Variation

– Credibility family method
– Can adopt distance based or

Maps 
removedCan adopt distance based or 

adjacency based approach
Distance Adjacency

Maps 
d

Maps 
dremoved removed

Unsmoothed Smoothed
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Car classification – translating the frameworkg
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Car classification – translating the frameworkg

External Vehicle Factors

Performance
Di iDimensions
Safety
Security
Costs

Standard 
Policy 

Factors
Random 

Noise

Bodystyle Classification

Residual 
Spatial 

Variation

Vehicle Weight

Exposure TPPD Frequency
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Back to basics

Dimensions Body style

PerformanceSafety PerformanceSafety

CostSecurity

UseBrand 
AppealAppeal
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Body style classificationy y

It’s hard!
– No universally adopted system in place
– Many variants to classify
– New bodystyles have emerged
– Some vehicles attempt to defy classification

Hatchback Cabriolet

Spider SaloonSpider Saloon
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Evolution of vehicle make/model

+0 18m +0 32m

1976 1989 2011

+0.18m +0.32m
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Using external data wiselyg y

• One-way analysis
• Data visualisation1 , 6 0 0

1 , 7 0 0

Data visualisation
• GLM
• Stepwise regression

1 , 4 0 0

1 , 5 0 0

• Stepwise regression
• ‘Ratio’ variables

1 , 1 0 0

1 , 2 0 0

1 , 3 0 0

W
ei

gh
t

9 0 0

1 , 0 0 0

6 0 0

7 0 0

8 0 0

3 , 2 0 0 3 , 4 0 0 3 , 6 0 0 3 , 8 0 0 4 , 0 0 0 4 , 2 0 0 4 , 4 0 0 4 , 6 0 0 4 , 8 0 0

L thLength
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Car classification – translating the frameworkg

Residual Spatial Variation

RandomStandard Random 
Noise

Standard 
Policy 

Factors

Requires a vehicle space...

Unsmoothed Smoothed

External

q p

2

External 
Vehicle 
Factors A

ttr
ib

ut
e 

Attribute 1
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Example adjacenciesp j

Example Adjacenciesp j

0.095

0.100

PEUGEOT 206 ZEST STYLE

VOLKSWAGEN POLO E SDI

PEUGEOT 206 
ZEST STYLE VOLKSWAGE

N POLO E SDI

0.090

PEUGEOT 206 LOOKPEUGEOT 206 
LOOK

0.080

0.085
LOOK

0.075

FIAT PUNTO 75 SX
FIAT PUNTO 

75 SX

0.065

0.070

-0.755 -0.750 -0.745 -0.740 -0.735 -0.730 -0.725 -0.720 -0.715 -0.710 -0.705 -0.700 -0.695 -0.690

TOYOTA YARIS L ZINC D-4D
TOYOTA 

YARIS L ZINC 
D-4D

75 SX
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Putting it all togetherg g

Classifying existing cars

Graph 
removed

Classifying new cars

Graphs 
removed

Classifying new cars
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Performance vs. ABI (TP)( )

Graph 
removed
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Performance vs. ABI (TP)( )

Graph 
removed
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So where does that leave us?
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Questions or comments?

Expressions of individual views by 
members of The Actuarial Profession 
and its staff are encouraged.
The views expressed in this presentation 
are those of the presenter.
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