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Introduction — Examples of Model Output

* Range of pension deficits over time

* Range of cash contribution requirements to meet a deficit

* How much to contribute each year to target a level of pension

* Likelihood of a deficit being eliminated within a given period

* Likelihood of insolvency / pension scheme entering PPF

* Likelihood of individual’'s fund exceeding a certain level at retirement

* Meeting performance conditions for share incentive plans
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Example: pension scheme funding position

° H i H m 5th-20thPerc = 20th-35thPerc 35th-50thPerc
Asset Ll_ablllty MOde”mg often 50th-65thPerc = 65th-80thPerc = 80th-95thPerc
used to illustrate range of
outcomes

» Can be used to ‘prove’ that the
downside risk is manageable /
affordable across a long time

horizon
. . 2014 2015 2016 2017 2018 2019
« Attempts to quantify the risks of
investing in risky asset classes R L
fx) ANEX = nstitute
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Introduction: The problem
+ Typical modelling / Monte Carlo approach:

— We estimate a model with parameters

— Produce a large numbers of scenarios all based on a single model and single set of
parameters

— Assign probabilities to outcomes and compare to risk appetite

» This supposes that we ‘know’ the true parameters and underlying distribution /
model

* However, these parameters are subject to uncertainty

« There’s another layer of risk associated with a lack of knowledge. Lee and Wilkie
(2000)* gave suggestions to deal with parameter uncertainty. RBs.

. Institute
However, these are not widely used. HERSLN | 2nd Facutey
19 June 2014 1Lee, P. J., and A. D. Wilkie. A comparison of stochastic asset models. (2000) 4
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How do YOU feel about uncertainty?

Volunteer. Possible cash prizes!
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How do YOU feel about uncertainty?
» Container has 30 red, blue and yellow balls

* There are 10 red balls. Each of the remaining 20 balls is either blue or
yellow (you don’t know how many of each)

* A ball is to be drawn randomly. You're offered a gamble on the outcome

+ Consider the following choice of gambles:

—T—

Win 100 if red | Win 100 if blue -

- Which gamble do you choose? ERIN
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How do YOU feel about uncertainty?

« Same container.
(Recap: 10 red balls; each of the remaining 20 is either blue or yellow)

* Now choose between the following gambles:

T —

Win 100 if red or yellow | Win 100 if blue or yellow
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* What is your preference?
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The Ellsberg Paradox

* Most people prefer gambles A and D (and are not simply indifferent
between the alternative options)

Gamble 1 Gamble 2
A B C D
100 for a red | 100 for a blue | 100 for a red or yellow | 100 for a blue or yellow
1/3 | ? | ? | 2/3

* Is it consistent to prefer A over B and D over C?
* People don’t make decisions based on a single probability law

* Most people demonstrate ambiguity aversion Institute
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The Ellsberg Paradox

* The Ellsberg Paradox highlights the distinction between stochastic risk
and model ambiguity (also called Knightian uncertainty)

* We like to know our odds... and we are willing to put a premium on
that privilege

» The underlying variance of investment returns constitutes risk.
Our inability to estimate this variance precisely constitutes ambiguity.
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Simple investor problem

* Investor makes one-off lump sum investment

+ Expected log return and volatility are estimated using (finite) historical
data

* A model, using these parameters, then projects the future returns in
order to estimate their distribution

* Require 90% likelihood that lump sum will exceed £1,000 at the end of
a fixed timeframe (e.g. 1, 10, 20, 50 years)

« How can we allow for the errors in the parameter estimates _
when assessing the confidence level? GRS | na Facury

> | of Actuaries
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Investor problem- the model
* Consider investing a lump sum at time O for time T

* Assume investment returns follow Geometric Brownian motion

If S(t) is the value of the sum at time t then we can write:
(St + 1) =In(S) +u+ 0 Z(t)

Log returns: geometric mean u , variance o2

The Z(t) are independent identically distributed with mean zero and
standard deviation 1.
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Investor problem- the model

e Estimate {1 and & from historical data

» Given a stable underlying return distribution, and estimated
parameters, we seek:

S(T) R R
Pr (ln [W] <Tph- kﬁa) =0.1

* What k satisfies the above equation for different underlying return
distributions?
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Investor problem model- methodology

« 3 Variables:
o Underlying return distribution
o Number of historical years to estimate parameters (5, 10, 50 or infinite)

o Number of years to invest into the future (1, 10, 20 or 50)
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Investor problem model- methodology
* For each combination of variables:

o A Monte Carlo simulation is performed with 100,000 runs

o For each runi, k; is then calculated as

K = In(S$;(T)) — TH;
G NT
o S;(T) is the fund value at the end of the investment period for run i
(initial value S;(0) =1)

o The 10" percentile is then taken to find k such that

In(S(T)) —-Ta =
Prob| —k>—2 " %1 _- 01 % | Institute
6T RN | e ooy
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Investor problem model- methodology

L = In(S5;(T)) — Ti
l O,_\l \/T

* k; (and subsequently k) is a function of parameters estimated from a
finite quantity of historical data

» Therefore, there will be some error incorporated into fi; ando;; the error
is worse if there are fewer data points.
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Tackling the problem analytically

» When the underlying log returns distribution is normal, then the
distribution of k follows a Student T distribution

* If nis the investment horizon, and m is the number of historical years
of data, then k follows the distribution:

k~|(1+ %) Ty

* As m tends to infinity, k tends towards (the underlying) normal
distribution
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* No corresponding formula known for other distributions ;%%‘5@
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Investor problem model- The Results (table of k)

* The results below are shown for the Gaussian distribution for the set
of parameters listed below

p=10% U=5% o
Years of history
> 10 50 Infinite
1 1.68 1.45
Investment horizon 10 2.65 1.96 1.42
20 3.44 2.41 1.54

50, 5.04 @ 3.41 1.84
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Investor problem model- The Results

« Alternatively, we can derive the amount needed now to be 90% sure
of having >£1,000 at the end of the investment period

p=10% H=5% 0=10%

Years of history

Infinite

1 1,114 1,096 1,083 1,081
Investment [y 1,335 1,108 949 910 Time Value of
horizon
POl 1,567 1,044 728 651 Money
) 2,345 852 300 204
i SR
. A = | Institute
Impact of parameter uncertainty ARSI | and Faculty
w2t | of Actuaries
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What does k represent?

* Does k represent the level of prudence needed to be 90% sure of
realising a target return?

* Yes in model framework, no in reality

* Our approach corrects for parameter uncertainty, but there are still
other heroic assumptions that assume away risk (for example, 11D
returns)

* We cannot quantify all types of uncertainty (in particular model
ambiguity) - we should keep this in mind when interpreting results

£roch
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Investor problem model- Important factors across
different timeframes

Short investment Moderate Long investment
period investment period period
Impact of chosen Chosen percentile Impact of parameter
distribution ambiguity
%%5@ nstitute
St Yt
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Distributions- arecap

* Normal Distribution
o Widely used

o Arguably has unrealistically
thin tails for modelling
extreme tail risks

CDF: F(x) =& (%) where

distribution of log returns

1 ¥ —-t2/2
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Distributions- arecap

* Hyperbolic Secant Distribution

o Alternatively known as the
inverse-cosh distribution

o Has a more acute peak and
heavier tails than the normal

23/06/2014

distribution
CDF —Normal —Hyperbolic Secant
2 T /X — o
F(x) = —arctan |exp _( H ) distribution of log returns
s 2\ o ‘
’rx@%gsf nstitute
B |ty
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Distributions- arecap
 Laplace Distribution
o Fatter tails than the normal
distribution
o Laplace density is expressed in
terms of absolute distance from
the mean
CDF —Normal —Hyperbolic Secant —Laplace

F(x) = % + %sgn(x D) (1 — e(_lx;ul))

* b is a scaling factor

distribution of log returns
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Alternative Distribution CDF Crossover points

* Intuitively fatter tails would require a higher buffer
* However, for a given variance, fat tails corresponds to thin ‘shoulders’

» Therefore for moderate percentiles, fat tail distributions have a lower k
than the normal distribution

* When p is increased, at some stage fat tail distributions will have a
higher k than the normal distribution

* At what point does assuming a normal distribution cease to be
prudent? B
1 A

£S1R
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Alternative Distribution CDF Crossover points

* Downside risk is
higher in the
Laplace and
hyperbolic secant
distributions as they
exhibit higher levels

of kurtosis
——Normal ——Hyperbolic Secant —— Laplace
-
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Alternative Distribution CDF Crossover points

The crossover points are as follows: 3.00
o T inverse 2.80
Distribution 1 Distribution 2 260
Gaussian Hyperbolic Secant 4.2% -1.72 -CDF-l(p)2'4O
Gaussian Laplace 4.6% -1.68 220
. 2.00
Hyperbolic Secant Laplace 5.8% -1.53 180
1.80 1.60
1.75 1.40 /
1.70 // 1.20
165 = 1.00
: Gassian 0.10 0.09 0.08 0.07 0.06 0.05 0.04 0.03 0.02 0.01
1.60 Hyperbolic p
' secant
1.55 / intefsection ——Gaussian ——Hyperbolic Secant ——Laplace
Gaussian &
1.50 Laptace
Hyperbolic intersection
145 sedant & Institute
140 +—Llapace — [ and Faculty
0.06 intersection 0.05 0.04 of Actuaries
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Alternative Distribution CDF Crossover points

Distribution 1 Distribution 2 p* (I;;/gre
Gaussian Hyperbolic Secant 4.2% -1.72
Gaussian Laplace 4.6% -1.68

Hyperbolic Secant Laplace 5.8% -1.53

* When considering 95% one year Value at Risk, assuming a normal
distribution would generate slightly more prudent k values than the
alternative distributions (since the crossover p* points of Gaussian with
the other distributions occur at <5%)
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Investor problem model- Discussion

 For shorter estimation periods, and longer investment periods, a
significant increase in the standard deviation is required in order to
capture parameter error impact

* In our problem, the impact of the chosen distribution over long
investment periods is limited

— This is a consequence of the central limit theorem by which compound log
returns converge to normality regardless of annual return distributions

— Distribution choice is more critical for short horizon problems, such as one-
year value-at-risk calculations )

B
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Impact of investment horizon

* As the investment horizon increases, the impact of parameter
uncertainty increases.

* When looking at a 20-year investment horizon, the lump sum needed
when estimating from 10 years of historical data is 1.6x as big as if the
underlying parameters were known

* When looking at a 50-year investment horizon, this factor increases to
around 4

N
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The Results (recap)

* The amount needed now to be 90% sure of having >£1,000 at the end
of the investment period

p=10% H=5% 0=10%

Years of history

Infinite
1 1,114 1,096 1,083 1,081
Investment [l 1,335 1,108 949 910 Time Value of
horizon Pl 1567 1,044 728 651 Money
50 2,345 852 300 204
i

Impact of parameter uncertainty !anrfotiitlgat?:ulty
of Actuaries
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Impact of Investment Horizon
+ 20 years of historical data

4
5 3
2
@
L 2
1]
0
1 10 20
Investment Horizon
. . Institute
m Gaussian mHyperbolic Secant mLaplace and Faculty
of Actuaries
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Impact of Historical Data Length

» With 50 years of data or more, there is enough data to estimate fairly
accurately into the future, and the impact of parameter uncertainty is
limited if the investment period is <20 years

* As quantity of historical data decreases, the impact of parameter
uncertainty becomes very significant

Y
23 June 2014 33
Impact of Historical Data Length
° * Factors for a 20-year

investment horizon

Factor

5 10 50
Number of Historical Years

o B
w485 | Institute

m Gaussian ®Hyperbolic Secant ®Laplace @ﬁqﬁ\ Institute ey
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Impact of Historical Data Length

* When looking at a 50-year investment horizon, 4.5x bigger lump sum
Is needed when estimating from 10 years of data vs known
parameters (based on 0 = 0.1)

* When the data is reduced to 5 years, this factor increases to 11.5

* What implication does this have for new asset classes with limited
historical data (i.e. infrastructure)?

o We shouldn’t treat them like another asset class and try to guess parameters,
as not knowing the underlying parameters is itself a key risk

R
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Impact of Chosen Percentile

* Increasing the required probability of reaching the funding target
increases the lump sum required

* Looking at a percentile further in the tail amplifies the effect of the two
other sensitivities described earlier
o Moderately amplifies the impact of the investment horizon

o Significantly increases the impact of the quantity of historical data available

R
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Limitations and Exclusions

* ldentical, independently distributed returns

o If this assumption is removed, Central Limit Theorem may not ‘save’ us over
the long term and the underlying distribution would have a more significant
impact across long investment horizons

« Stationarity of underlying population distribution
o Are investment returns 50 years ago reflective of investment returns today?

o If not, can we tell where these ‘breaks’ occur, and what is the impact of
including invalid data in our historical time series when estimating

parameters? )
&S
£
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Limitations and Exclusions

« Ignoring survivorship bias in collected data
* Ignoring data-mining bias (asset selection)

* When any or all of these assumptions are relaxed and taken into
account, they will increase our estimates of the impact of parameter
uncertainty

I~
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What about the assumptions you can’t make
stochastic?
» Possible approaches include:

o Subjective probability

o Limitations and exclusions

o Use judgement to “correct” unexpected results

o Trust the model less

o Mould the system such that if there are unanticipated shocks, it benefits us,
for example buying options (antifragility)

o Head in the sand

-
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Methodology - summary

Interest rates
Reference )

Parameter
||
model

estimates

Equity returns

Simulated
returns

10%-ile

estimate Verify

Interest rates Percentile

q nvestment
Returns 25,

i
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Possible model extensions

* Incorporate cash flows into the model

* Incorporate mortality into the model

o An individual makes contributions for a set timescale, and then draws down
income over the rest of his / her life

o Given an assumed mortality distribution and stochastic investment returns,
calculate the level of contributions needed in order to ensure the probability of
not running out of money equal to a particular threshold (i.e. 90%)

o The underlying investment return distribution is estimated from a finite quantity
of historical data
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Testing the models

Description Comparing the outputs of
different models calibrated to

available historic data.

What it tells you The range of different experts’

estimates given the data.

What it doesn’t
tell you

How much the results might be
distorted by random fluctuations
in the observed history.

Generating random data from a
model, and feeding that data back
into the calibration process to see if
you recover the parameters you
started with.

The likely accuracy of parameter
estimates, both in terms of bias and
variability.

What happens if the model
specification is incorrect?

23/06/2014

Taking random data from one
model, using it to fit a different
model, and seeing how good
the predictions are relative to
the first model.

How wrong your inference
could be if you pick the wrong
model.

How your fitting techniques
behave on real data.
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Conclusions
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Warnings

* Real life is not like classroom examples of urns containing a given
number of coloured balls, or fair dice and unbiased coins, because the
true model is unknown.

» The more you need to look into the tail of a distribution, and the less
data you have, the more model choice matters.

* We are averse to ambiguity and we should not just ignore it
* Risk can be tackled quantitatively; ambiguity cannot be so easily dealt
with, as by its very nature we cannot specify it precisely
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Questions for Discussion

+ LDI approaches use matching arguments that mitigate dependence
on expected return / risk assumptions, but introduce other
assumptions (for example basis risks, cost of collateralising swap
trades)

* Is ambiguity aversion a legitimate basis to favour LDI?

* Is it naive to suggest stochastic modelling ‘takes all risks into account’
if we ignore the ambiguity in the model itself?

* By ignoring parameter misspecification, are we providing false

comfort? S

£RIN
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Expressions of individual views by members of the Institute and Faculty of
Actuaries and its staff are encouraged.

The views expressed in this presentation are those of the presenters.
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