The Actuarial Profession

making financial sense of the future

Life conference and exhibition 2010 Greg Becker

$$
M A-C-1 / D
$$

Team talk - setting expectations

- Practical statistics
- Showing how a complex problem that can't be solved using traditional methods, can be solved using Monte Carlo methods
- Touching on Bayesian statistics, Monte Carlo methods
- Model development process
- Theoretical foundation
- Data \& data problems
- Testing and refining a model - an iterative process
- Practical application in other areas of actuarial work

Fixture List - a tale of two halves

Theory

- What could be in a model?
- What data could be used?
- Lessons learnt from the World Cup
- Article Written in The Actuary
- Compared to reality
- Half time - with half-time entertainment

Model in practice

- Model proposed
- Why and how?
- How would it have done in 2009-2010?
- How would it have done in 2008-2009?
- Betting stats
- Actuarial lessons

They say you should know your audience: Please clap or cheer when your team logo comes up

After 100 matches so far this season, this is the points table:

- In 2007/8, Arsenal and Manchester United were leading, and while Manchester United went on to win, but both Arsenal and Chelsea had led the table later in the season
- In 2008/9, Chelsea and Liverpool were leading at this stage, and neither went on to win!
- In 2009/10, Chelsea was already leading by 2 points, although Manchester United was leading the table as late as 2/4/2010

Team	P	GD	PTS
1 Chelsea	10	24	25
2 Arsenal	10	12	20
3 Man Utd	10	10	20
4 Man City	10	3	17
5 Tottenham	10	1	15
6 West Brom	10	-3	15
7 Newcastle	10	5	14
8 Everton	10	2	13
9 Blackpool	10	-6	13
10 Fulham	10	1	12
11 Bolton	10	-1	12
12 Sunderland	10	-3	12
13 Liverpool	10	-4	12
14 Aston Villa	10	-4	12
15 Birmingham	10	-2	11
16 Stoke	10	-4	10
17 wigan	10	-11	10
18 Blackburn	10	-3	9
19 Wolves	10	-6	9
20 West Ham	10	-11	6

Simplest prediction tool: The team leading is almost certainly the best team to bet on...

But many things should be taken into account

- games in hand
- the opposition to come
- the injury list
- involvement in other competitions and
- playing home or away
which all can influence the outcome

Arsenal	- Chelsea
-Manchester City	-Manchester United - Mottenham Hotspur

The points table leader (at this stage of the season) did not remain on top of the league until the end of the season

In 2007/8 Manchester United remained on top of the table from 15/3/2008 onwards In 2008/9 Manchester United remained on top of the table from 7/2/2009 onwards

How does everything fit together?

Prediction

What could be in a model to predict the season's league winner? Some ground rules...

(Simplifying) Assumptions

- Teams don't change over the season
- Results in other competitions do not affect the premier league outcome
- Each match is independent of each other
- Teams perform the same way independent of the competition
- No "bankruptcy" point penalties

Complications overlooked

- Players get traded, players get injured, or go into and out of form
- Players getting over-played by the end of the season due to success in other competitions
- Teams have streaks of form that affects their confidence
- Teams have derby's and particular rivalries remaining matches, and thus discern who will win

Why a Bayesian statistical approach? If we regard 2010/11 results as the only relevant data then...

- At the start of the season we know nothing
- Every team has the same chance of winning
- As the season progresses we gather more data
- Goals scored and goals conceded by every team, home and away
- Our prediction needs to be continuously refined to fit the latest data

This model relies on teams being consistent. Is this a valid assumption?

As we can see, in the 2009/2010 season, there were some outliers

- Burley scored 40% of their seasons points in their first 10 matches
- Everton scored 64\% of their points in the second half of the season

Home and Away: do we need to take this into account?

- Different for different teams?
- Home ground has bigger or smaller impact/difference?
- Which home fans are the best? Or is it teams not travelling well?

Season	Goals scored at home	Goals scored away	Home goals per match	Away Goals per match	Difference	Share of goals scored away
$2007 / 8$	581	421	0.76	0.55	0.21	42%
$2008 / 9$	532	410	0.70	0.54	0.16	44%
$2009 / 10$	645	408	0.85	0.54	0.31	39%
$2010 / 11^{*}$	153	106	1.39	0.96	0.43	41%

We could estimate that just over 40% of goals are scored by the away team

Why are we using the Monte Carlo method?

We can't solve the problem analytically!

- The winner of the premier league will be the result of the remaining 280 matches
- Since each match can have one of three outcomes

Win home + loss away
Draw
Loss home + Win away
modeling the rest of the season deterministically would result in 3^{280} different possible outcomes being calculated - which is a number that has 133 digits!

> We know that the best answer should reflect our uncertainty, and the Monte Carlo method reflects this, generating as a result, a distribution of the relative likelihood of the alternate outcomes

How can we set the model up to be run using the Monte Carlo method?

- Since the remaining matches all happen independently, we can model each independently
- Since each match has a home team and an away team we can reflect that too
- Since each team has played a series of matches, and has scored and conceded goals, we can model the probability of all possible results, where for instance the result
Home scores H and Away scores A
can be reflected as

[^0]> All we need now is estimates of these probabilities... DATA

Does it matter who plays who in each individual match?

Since our measure of how good the model is, is the likelihood estimate, and the likelihood estimate is of the following form:
it can be shown that the estimates are independent of who played who, but rather dependent on how many goals were scored or conceded by the home and away team each game:

> This may be counter intuitive, but reflects our underlying assumption that a team has a constant 'average scoring rate' and 'average conceding rate' which is constant across the season irrespective of the opposition

What do I mean by data?

Retrospective

- Past results
- Goals scored
- Goals conceded
- Who played
- Current league points

Prospective

- Fixture list
- Home and away
- Playing against whom

Clean the data, validate the data.

So what is our data?

100 Matches completed
 - We know where we've been

280 matches to go

- We know where we're going

Tue	09/11/10	Stoke City	19:45	Birmingham City
		Tottenham Hotspur	20:00	Sunderland
Wed	10/11/10	West Ham United	19:45	West Bromwich ...
		Wigan Athletic	19:45	Liverpool
		Wolverhampton ...	19:45	Arsenal
		Aston Villa	19:45	Blackpool
		Chelsea	19:45	Fulham
		Newcastle United	19:45	Blackburn Rovers
		Everton	20:00	Bolton Wanderers
		Manchester City	20:00	Manchester United
Sat	13/11/10	Aston Villa	12:45	Manchester United
		Manchester City	15:00	Birmingham City
		Newcastle United	15:00	Fulham
		Tottenham Hotspur	15:00	Blackburn Rovers
		West Ham United	15:00	Blackpool
		Wigan Athletic	15:00	West Bromwich ...
		Wolverhampton...	15:00	Bolton Wanderers
		Stoke City	17:30	Liverpool
Sun	14/11/10	Everton	14:00	Arsenal
		Chelsea	16:10	Sunderland

The number of goals scored/conceded by a team can be fit using a Poisson distribution

- In the 2009/10 season, there were 20 teams, and with each playing everyone else twice, there were 380 matches
- In each match, two teams 'scored goals' - making 760 data points, illustrated here
- A Poisson fits this distribution very well

The goals scored and goals conceded results have been used to estimate a Poisson parameter for each team

- We are using a Poisson distribution assuming that the chance of scoring / conceding in a match some time in the future can be estimated using results

$$
f(k ; \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k!},
$$ from earlier in the season

We are then able to model the outcome of a match using these goal "scoring" and "conceding" estimates

- A match coming up soon between Sunderland and Tottenham Hotspur can be modeled as follows
- Generate the goal scoring and goal conceding probabilities for each team based on it's record (in this case their involvement in the first 100 matches of the season)

		Probability of scoring or conceding					
Goals in first 10 matches	Team	0	1	2	3	4	5
9	Sunderland score	41%	37%	16%	5%	1%	0%
11	Tottenham Hotspur score	33%	37%	20%	7%	2%	0%
12	Sunderland concede	30%	36%	22%	9%	3%	1%
10	Tottenham Hotspur concede	37%	37%	18%	6%	2%	0%

- Use this to develop an estimate of the number of goals scored by Sunderland \& conceded by Tottenham
- Use this to develop an estimate of the number of goals conceded by
Sunderland \& scored by Tottenham
- Randomly simulate the match and calculate the result

We are then able to model the outcome of a match using these goal "scoring" and "conceding" estimates

- A match coming up soon between Sunderland and Tottenham Hotspur can be modeled as follows
- Generate the goal scoring and goal conceding probabilities for each team based on it's record (in this case their involvement in the first 100 matches of the season)
- Use this to develop an estimate of the - Use this to develop an estimate of number of goals scored by Sunderland \& conceded by Tottenham the number of goals conceded by Sunderland \& scored by Tottenham

	0	1	2	3	4	5
Sunderland score and Tottenham Hotspur concede	47%	42%	10%	1%	0%	0%
Tottenham Hotspur score and Sunderland concede	35%	47%	15%	2%	0%	0%

- Randomly simulate the match and calculate the result i.e.
- 3 points for Sunderland and 0 for Tottenham
- 1 each, or
- 3 for Tottenham and 0 for Sunderland

Once you have a parameter set, what next? Runs and runs and runs and runs and runs and runs and runs...

Now that we have agreed on the parameter set, we can 'randomly simulate the results of the rest of the season'
We have done this 10,000 times
As an aside, the actual likelihood for our best set of parameters (which is the best estimate for the model we have developed, or the maximum likelihood estimate of the parameters) can be used to show that the score lines so far this season have about a 1 in 10^{-225} probability of having occurred

This is a small number, but since there are an infinite number of possibilities...

Testing the model - sometimes the model answer isn't what you expect!

Just because you have a good looking model, doesn't mean you have the answer!

Predictions are difficult things to make... it's easy to make a blooper...

Man City are title rivals - Ancelotti

Manchester City manager Roberto Mancini still insists that Premier League pacesetters chelsea will retain their title despite losing 1-0 to his team.
(1) Watch Sport news bulletin

MANCHESTER CITY

- Your say-606
- Weather
- BBC Manchester sport
- Official club website

CHELSEA

- Your say-606
- Weather
- BBC London sport
- Official club website

SeE also

- Manchester City 1-0 Chelsea 25 Sep 10 | Premier League

Jose tipping City as a big title threat

日y Kevin Aitken

JOSE MOURINHO believes Manches ter City are abe of only dree team which can wie the Promer Leagoe this seaven and afrios the bif-spending Eastiands vuffit are "dominant in the transfer market.
The Real Madrid soss hual wantal bo sipn Aleksander Katarev this summer byit was anstad by City who poad Elomillion for the full-back and alwo splashed out over flMKIm on Davil Silva, James Milner. Mario Baloelli, Yyy Towre and Jerame Boaleng.
Ithink it will azain be Man United Chelsed and of course Man Cirs loo win the titive, because they hase a gread syadd: sad Mcouririon, who also \$6nued the is perparing a lane move for City striker Emmanoel Adehayor.
'His very sembult foe Roy [Hodpoon] to maker Leverpoof champons. I think ho neods time and it's not casy tecause Son't thinit the ctabent in the riel direction and dax Y think Anyzal (cal win it]?
And of Ciry, who impressed in Mon
 They are dymimant in the market. The phayer they say "this is the player I want is the playes they get. I was very

Micah still hoping

 for call from FabioMICAH RECHARDS is hoping his improved foms con onfapult him back into the England fold slthough the Manchester Cry defender will ittias the: European Championsh/p qualtifing double hesder naxt month as he hes been named in the Under 21 squad Instoad. Hopelully there is is ipot there for mo," Rlichands ssid Nuwcsatle atriker Andy Carroll has also been pirt on Under 21 duty for the matches againal Portagsl and lithasnia.
interested ia Kolougov when I cunc here hut fasuldn'teomple with them-they weot to mulaes that you canmet poo Mourinto also belivies his fonner player Balotelli can be a City, success. forlowing his i2ten urrival from lotet '1hat sene pmolem twanse to is a fod and becwuse a crach alwags wants re edncate a bod and always wanss a kid in 20 it the fighe dinetion: Mouritho teld Sky Sports News HD.
'Mario tas incredible potential. He has every foothall quality lo atore.

Half Time Entertainment: Clip of some great goals from the premier league season so far

BLOOPERS

```
* *
```


Lessons Learnt from the 2010 World Cup Prediction Model: retrospective data, prospective gamblers

Betfair was better than Frontier Economic, Goldman or JP Morgan!

There is only downside potential... unless you cover your bets...

The Capitalist

CITY LOSES

 TO OCTOPUS IN FOOTY FORECASTS weiday at cemparivons between the wordi's most famous cephalopod and put out predictions on the vutcume of ibe World Cups.Puol the peychic octopuc they snigh
zered, Mad managed to got EVEXY SINCII Zered, Mad managed to get EVEKY SINCIE:
ONE of his prodistions cormet beativi, ONE of his prodictions correct, beating Calistixal odata of 1235 jumped in on the action, ydling that in its own Wold cup peedieting comperition. IP Sargun. Coddinan Sachos Uess and Damike Bank bad zil fared between 29 th
 England to wis if - don't lauph is did sime -while the other thivee plomped for Irand!
All of che banks hept a diynifinel silence oa their thashing yesterday except for Evolution whose finod income spedaliss Cary Jenkins had also relescel a wenfue
incheek foreast for the tournamat ischeek forecast for the tournameat
(Baxit againt aind wis haper to give his
 Taparly agoinst houl, we've all done
appallingly- Jenkins mored enthusiastcally 'But he has zot a huge advantage over me - one he soesar wo to work
and cill sit in his tink all dry wanching fory, and twat bets gat mere briins Iverything's working in his smoar.? Good to see at leas one of the red faced andyats thiaing the defiat on the shin.

Advertiser

(
TENBURY WELLS ©
No suspicious circumstances in death of Paul the Octopus

ONE of the more fishy international stars on the books of a Tenbury theatrical agent has the bo
died.
Chris Davis has confirmed that Paul the

Paul has shown that some things are still certain though...

Analysis by David Forrest and Robert Simmons into tipsters, betting odds and statistical models shows...

- Statistical models do better than tipsters
- Combining tipster estimates can be better than using an individual tipster
- Betting odds are the best maybe because the bookies pay the biggest salaries?

But they conclude that the betting exchanges involve people working with more complex models and more data so don't bet against them!

21

John Goddard has looked at 'streaks', ‘firing a manager', 'fighting for survival', the effect of 'playing in Europe'...

- Winning teams keep on winning
- Confidence?
- Firing a manager doesn't seem to help a team if one controls for 'mean reversion'
- Home advantage has an effect, and while it has been decreasing over the most recent 35 seasons, the home ground advantage is larger when the away team has to travel further
- Relegation threatened teams "fighting for survival" are more likely to beat their mid-table rivals at the end of the season than before
- The "playing in Europe" effect has not been shown to be a hindrance, although it has been for some top teams
Goddard J 2006 "Who wins the football" RSS
Significance p16-19 Volume 3 Issue 1 March 2006

David Spiegelhalter and Yin-Lam Ng have shown that statistical models can outperform sports commentators

- They modelled a single round of matches
- Their model had similarities
- They also used a Poisson approach to estimate 'number of goals scored/conceded'
- They also looked at a result as being a combination of scoring/conceding
- They developed a way for teams to interact

Spiegelhalter D, Ng Y-L 2009 "One match to go" - RSS Significance p151-153 Volume 6 Issue 4 December 2009

The slide you have been waiting for: The darker, the more likely the team will win (2010-11)

The 2009-10 predictions after 100 games predicted that Chelsea was the most likely team to win

The model predicts that Chelsea is the most likely team to win - and they did!

The predictions at this stage of the 2008-2009 season had Chelsea as likely winners

Both Chelsea and Liverpool were in a better position. Manchester United was forecast to win with a 4\% probability, and finish in the top 3 more than 2 out of 3 times

This season, the premier league winner is getting almost as much press as the relegation zone

How good is the model at predicting the teams to be relegated at this stage of the season?

2008/2009

- Who was relegated? (Estimated probability of going down at this stage of the season in brackets)
- Middlesborough (14\%)
- Newcastle United (32\%)
- West Bromwich Albion (54\%)
- Who was predicted to be relegated after 100 games?
- The model predicted that many teams had a good chance of going down

- The three that did, were all in the 8 most likely to go down

This season, the premier league winner is getting almost as much press as the relegation zone

How good is the model at predicting the teams to be relegated at this stage of the season?

So the model worked very well for the last season, but not so well for the one before. How about 2010/11?

2009/2010

- Who was relegated? (Estimated probability of going down at this stage of the season in brackets)
- Burnley (40\%)
- Hull (87\%)
- Portsmouth (48\%)
- Who was predicted to be relegated after 100 games?
- The three forecast to have the greatest probability of going down, went down!

Who is forecast to get relegated? Something beginning with...

2010-11

- Who is being predicted to be relegated?
- West Ham United (91\%)
- Wigan Athletic (79\%)
- Wolverhampton

Wanderers (39\%)

Interestingly, the betting stats agree - the three W's are in trouble!

Key
2.14 odds
2.14 best odds
2.12 odds shortening 2.16 odds lengthening (click on odds to bet)

 $\begin{array}{lllllllllllll}1.69 & 1.91 & 1.91 & 1.85 & 1.91 & 1.83 & 1.91 & 1.91 & 1.91 & 1.91 & 1.91\end{array}$
$\begin{array}{lllllllllll}2.44 & 1.91 & 1.91 & 1.85 & 1.91 & 1.83 & 1.8 & 1.91 & 1.91 & 1.83 & 1.8\end{array}$
1.91
1.8

Wolverhampton Windrs
$\begin{array}{lllllllllll}1.95 & 1.8 & 1.91 & 2 & 2 & 1.83 & 1.91 & 2 & 1.91 & 1.91 & 1.91\end{array}$
$\begin{array}{llll}1.91 & 2.02 & 2.02 & 1.99\end{array}$
Wigan Athletic

$$
\begin{array}{lll}
1.95 & 1.8 & 1.9
\end{array}
$$

Birmingham City

$$
\begin{array}{c|c|c|c|c|c|c|}
\hline 15.5 & 6 & 6.5 & 6 & 6.5 & 6 & 6 \\
\hline 4.9 & 7 & 5.5 & 6.5 & 6.5 & 5.5 & 6 \\
\hline
\end{array}
$$

Stoke City
Newcastle United
Blackburn Rovers
Bolton Wanderers
Fulham 5.5
Sunderland
Aston Villa
Liverpool

Manchester City	500
Arsenal	-

Manchester United	-	751	751

6	6.8	7	6.4
7.5	8.6	8.4	8.2
7	9	4.8	8.8
8	9	9.2	8.6
8	9.6	9.4	9.2
9	12.5	12.5	11.5
11	12	10	10.5
26	30	31	28
34	34	32	
67	80	74	70
	400	395	
	300	295	260
	440	435	
	300	295	270
	720	715	

Chelsea

Betting odds have Chelsea as the 2010/11 favourite - with the odd's reflecting a $63-69 \%$ chance of winning the league

» English Premier League: Winner

ALL	BEST	EXCH	HANGE		EXCH	HANGE		-.. Find It	tt Quick!				\checkmark					
Key 2.14 odds 2.14 best odds 2.12 odds shortening 2.16 odds lengthening (click on odds to bet)		着						$\begin{aligned} & \text { 㞻 } \\ & \frac{\mu}{9} \end{aligned}$						$\begin{aligned} & 8 \\ & 3 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \frac{1}{40} \\ & \frac{10}{5} \\ & 0 \\ & 0 \end{aligned}$			
Chelsea	1.6	1.44	1.57	1.5	1.53	1.57	1.53	1.53	1.53	1.53	1.53		1.5	1.6	1.6	1.59	1.59	49-52
Manchester United	3.6	5	5	5	5	5	5	5	5	5	5		5	5	5.3	5.3	5.1	35-38
Arsenal		6	6	6	6	6	6	6	6	6	6		6	6	7.2	7.2	7	33-36
Manchester City	160	15	15	15	13	15	15	17	15	17	15		15	10	22	22	20	21-24
Tottenham Hotspur	320	81	81	126	101	101	101	101	126	126	101		101	75	180	200	170	7-9
Liverpool	500	151	126	151	201	151	151	126	151	151	151		151	150	160	170	150	4.5-6
Everton	190	201	301	251	201	251	251	251	351	401	251		251	150	500	530	480	3.5-4.5
Aston villa	999	501	751	751	751	601	751	751	1001	1001	751		751	150	1000	1000	930	0.5-1.5
Newcastle United	999	751	1001		1001	601	1501			1501	1501			500	1000	1000	950	0.25-1
Birmingham City	-	2001	2001		1001	1001	2501			2001	2501			1000	1000	1000	940	0.1-0.5
Blackburn Rovers	-	2001	1001		2001	1501	2001			2501	2001			2000	1000	1000	940	0.1-0.5
Sunderland	999	2001	1001		1251	1001	1501			2501	1501			500	1000	1000	950	0.1-0.5
Bolton Wanderers	-	2501	2001		1251	2001	2501			3501	2501			2000	1000	1000	950	
Fulham	-	2501	1001		1001	1001	2001			4001	2001			500	1000	1000	960	0.1-0.5
Stoke City	-	3501	2001		2501	1501	4001			3001	4001			1000	1000	1000	950	
West Bromwich Albion	999	2501	2001		501	1001	2501			1501	2501			5000	1000	1000	950	
West Ham United	-		2001		7501	2001				6001				1000	1000	1000	950	0.05-0.2
Wigan Athletic	-		2001		7501	2501				7501				5000	1000	1000	940	
Wolverhampton Whdrs	-		2001		2501	3001				7501				5000	1000	1000	950	
Blackpool	-		2001		7501	2501				12501				5100	1000	1000		

Are those betting taking into account more factors? Are those betting less rational?

- Manchester United is second most likely to win, and Arsenal third
- Our model has the same top 3, but reflects a belief that Arsenal has a better chance of finishing top
- The odds reflected by the betting stats are far less supportive of a Chelsea victory than our model

Betting on:

Price/Volume over time

Betting on: Man City v
Total matched on this event: $\mathbf{£ 4 , 7 4 9 , 7 6 0}$ Betting summary - Volume: $£ 472,297$

Last price matched: $\mathbf{2 2 . 0 0}$
Price/Volume over time

Man Utd
Betting on: Arsenal \downarrow
Total matched on this event: $\mathbf{£ 4 , 7 4 9 , 7 6 0}$
Betting summary - Volume: $£ 596, \mathbf{2 8 1}$
Last price matched: $\mathbf{7 . 0 0}$
Price/Volume over time

Betting on: Liverpool \vee
Total matched on this event: $£ 4, \mathbf{7 4 9}, \mathbf{7 6 0}$ Betting summary - Volume: $£ \mathbf{£ 1 9 5 , 9 5 2}$ Last price matched: $\mathbf{1 6 0 . 0 0}$
Price/Volume over time

Bringing it back to our day jobs...

- Be aware of your model limitations
- Just because it works for the past - doesn't mean it'll work for the future
- The known unknowns, and the unknown unknowns

- Otherwise, someone could get injured?
- Model predictions should be interpreted using actuarial judgement

Questions or comments? (No curve balls please...)

Expressions of individual views by members of The Actuarial Profession and its staff are encouraged.
The views expressed in this presentation are those of the presenter.

[^0]: P(Home=H and Away=A)=P(Home score H)P(Away concede H)P(Home concede A)P(Away score A)

