Conference Aston, Birmingham

Creating portfolio-specific mortality tables: a case study

Stephen J. Richards 16^{th} September 2014

Copyright (c) Longevitas Ltd. All rights reserved. Electronic versions of related papers and presentations can be found at www.longevitas.co.uk

Contents

- 1. About the speaker
- 2. Actuarial requirements
- 3. What kind of model should you use?
- 4. What risk factors are available?
- 5. What financial impact do risk factors have?
- 6. What can a portfolio's own experience tell you?
- 7. Conclusions

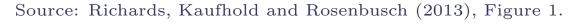
1. About the speaker

1. About the speaker

- Consultant on longevity risk since 2005
- Founded longevity-related software businesses in 2006:

mortalityrating.com

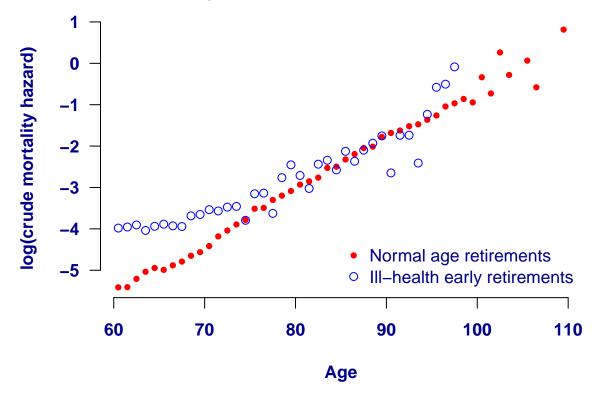
• Joint venture with Heriot-Watt in 2009:

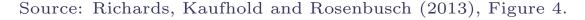

2. Data

- Case study of creation of portfolio-specific tables.
- Experience data for multi-employer pension arrangement in Germany:
 - 253,444 pension records.
 - -31,842 deaths in 2007–2011.
 - 1.03 million life-years lived in 2007–2011.
- Results published in European Actuarial Journal.

Source: Richards, Kaufhold and Rosenbusch (2013).

 \log_e (crude mortality hazard) from age 60, males and females combined:

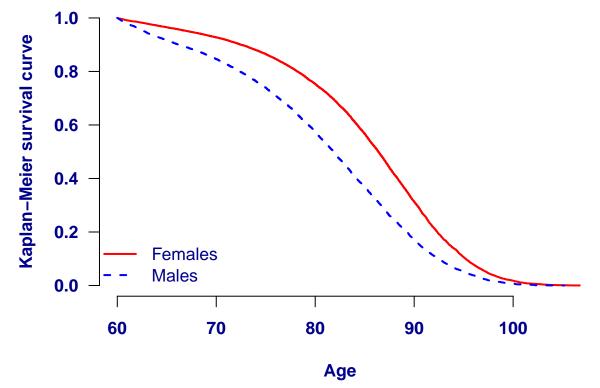



Slide 6

www.longevitas.co.uk

- Mortality increases with age.
- Smoothing is needed to iron out random variation.
- Extrapolation is needed for highest ages.

 $\log_e(\text{crude mortality hazard})$ from age 60 by retirement type:

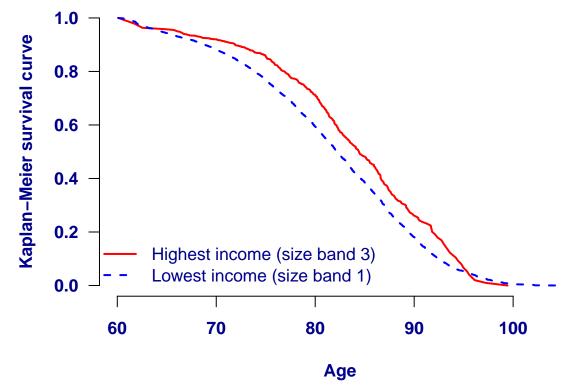

Slide 8

www.longevitas.co.uk

- Strong excess mortality for ill-health retirals, but
- Excess ill-health mortality reduces with increasing age.
- This phenomenon is known as *mortality convergence*.

2. Other risk factors: gender

Kaplan-Meier product-limit estimator by gender from age 60:


Source: Richards, Kaufhold and Rosenbusch (2013), Figure 2.

Slide 10

www.longevitas.co.uk

2. Other risk factors: pension size

Kaplan-Meier product-limit estimator by income from age 60:

Source: Richards, Kaufhold and Rosenbusch (2013), Figure 3.

Slide 11

www.longevitas.co.uk

• Unequal distribution of liabilities:

- 50% of all pensions are received by just 23.5% of lives.

— males are 34.5% of lives, but 59.7% of large-pension cases.

 \rightarrow Need a methodology to separate the impact of each risk factor.

Source: Richards, Kaufhold and Rosenbusch (2013).

Slide 12

- The data tell us what the requirements of the model are:
 - smooth out random variation,
 - extrapolate to higher ages,
 - allow for multiple risk factors simultaneously, and
 - allow risk factors to vary their impact by age.

www.longevitas.co.uk

- We need a statistical model.
- Should we model grouped counts or individual lives?
- Modelling grouped counts demands *stratification*...

Deaths stratified by six risk factors:

Member of largest scheme	Region	Scheme type	Pension size-band	Normal : Females	retirees: Males	Ill-health Females	retirees: Males	Widow Females	
No	В	1	1	5,142	5,313	525	738	4,434	618
			2	824	725	39	98	36	C
			3	282	413	14	33	24	1
		2	1	2,200	$1,\!323$	308	183	628	222
			2	305	275	20	39	18	(
			3	140	206	15	18	15]
	Р	1	1	695	811	51	99	798	89
			2	138	122	7	22	9	(
			3	59	72	1	5	3]
		2	1	174	274	26	33	166	23
			2	26	56	3	4	4	(
			3	8	41	5	2	5	(
Yes	В	1	1	480	338	41	45	224	47
			2	108	65	12	3	4	(
			3	60	45	1	3	4	(
Totals				10,641	10,079	1,068	1,325	6,372	1,002

Source: Richards, Kaufhold and Rosenbusch (2013), Table 8.

Slide 16

- Stratification quickly leads to cells with very small or zero counts.
- This applies even for large data sets.
- \rightarrow Models for grouped counts are only suitable with a few risk factors.

- Using individual data avoids stratification.
- Survival models make the most efficient use of your data.

4. What risk factors are available?

www.longevitas.co.uk

4. What risk factors are available?

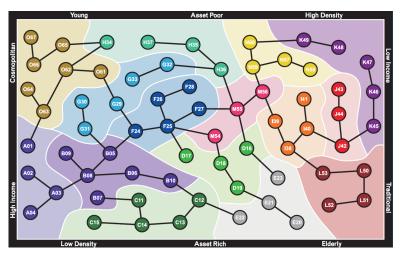
German pension scheme with seven risk factors for longevity:

- age,
- gender,
- pension size,
- retirement status: normal, ill-health or widow(er),
- employer type,
- region, and
- -time

Source: Richards, Kaufhold and Rosenbusch (2013).

4. What risk factors are available?

U.K. insurer with six available risk factors:


— age,

- gender,
- lifestyle (via postcode),
- duration (time since annuity purchase),
- pension size, and
- region.

Source: Richards and Jones (2004).

4. What risk factors should you use?

- Each portfolio is unique.
- Business practices determine the available information:
 - German data had employer type and health status at retirement.
 - U.K. data had postcodes to model socio-economic group.

Source: Experian Ltd.

Slide 22

4. What risk factors should you use?

- Your liabilities are your own.
- Insights from other people's data are only partially relevant.
- Fit models to your data using business-relevant risk factors:
 - internal v. open-market annuities.
 - GAR v. no GAR.
 - product group.
 - distribution channel.
 - etc.

5. What financial impact do risk factors have?

www.longevitas.co.uk

5. What financial impact do risk factors have?

Financial impact of mortality risk factors for German pensioners:

Risk factor	Change	Annuity factor	Relative change
Base case	-	16.114	
Gender	$Female \rightarrow male$	14.529	-9.8%
Retirement health status	$Normal \rightarrow ill-health$	12.974	-10.7%
Pension size	$Largest \rightarrow smallest$	11.717	-9.7%
Region	$B \rightarrow P$	11.025	-5.9%
Employer type	$Private \rightarrow public$	10.599	-3.9%
Overall			-34.2%

Source: Richards, Kaufhold and Rosenbusch (2013), Appendix 1.

Slide 25

www.longevitas.co.uk

5. What financial impact do risk factors have?

Financial impact of mortality risk factors for U.K. life-office annuitants:

Factor	Step change	Reserve	Change
Base case	-	13.39	
Gender	$Female \rightarrow male$	12.14	-9.3%
Lifestyle	$Top \rightarrow bottom$	10.94	-9.9%
Duration	$Short \rightarrow long$	9.88	-9.7%
Pension size	$Largest \rightarrow smallest$	9.36	-5.2%
Region	$South \rightarrow North$	8.90	-4.9%
Overall			-33.6%

Source: Richards and Jones (2004), page 39.

Slide 26

www.longevitas.co.uk

- Many commercial models are calibrated to large data sets.
- These are not directly related to your liabilities.
- There is a risk that your portfolio is different *basis risk*.

- Return to German pensioner data with over 250,000 lives.
- The largest scheme has approximately 12,000 members.
- Does the model for the large data set explain the mortality variation in this scheme?
- How large is the basis risk from using a model calibrated to other data?

- Mortality around 10% lower for largest scheme.
- Effect exists even after allowing for all seven other risk factors.
- Result was highly statistically significant (p-value 0.0001).
- Impact was an extra $2-2\frac{1}{2}\%$ on reserves.
- \rightarrow Useful to know in bulk-annuity pricing!

Q. Why does this scheme have lighter mortality?

A. The socio-economic profile was different. This was not captured by pension size due to a large proportion of part-time workers with higher socio-economic status but lower pension amounts.

- Using data unrelated to your portfolio is only partially useful.
- It cannot tell you about portfolio-specific effects.
- Portfolio-specific analysis is needed, not just comparision against a larger data set.

7. Conclusions

Slide 33

7. Conclusions

- Statistical models separate effects of each risk factor.
- Different portfolios will have different risk factors available.
- Data unrelated to your liabilities is only partially useful (basis risk).
- Even rich models from large data sets can't fully predict a portfolio's characteristics.
- Portfolio-specific analysis is highly advisable.

References

RICHARDS, S. J. AND JONES, G. L. **2004** *Financial aspects of longevity risk*, Staple Inn Actuarial Society, London.

RICHARDS, S. J., KAUFHOLD, K. AND ROSENBUSCH, S. **2013** Creating portfolio-specific mortality tables: a case study, European Actuarial Journal, DOI: 10.1007/s13385-013-0076-6.

