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Quotation

�Nothing is certain in life except death and taxes.�

� Benjamin Franklin
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Introduction(1)

Motivation

In the present day world, �nancial
institutions face the risk of un-
expected �uctuations in human
mortality

This Risk has two aspects

Mortality Risk: Actual rates of
mortality are in excess of those
expected
Longevity Risk: People outlive
their expected lifetimes
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Introduction(2)

Life insurers interested in mortality risk

Annuity providers, de�ned bene�t plans & social insurance programs
interested in longevity risk

A quick note on longevity risk
Life Expectancy in developed world has been increasing by approx 1.2
months every year
Global Life Expectancy has increased by 4.5 months per year
Substantial improvements in Longevity at older ages during 20th
century
Di�culties in Longevity Risk Management in Pension Funds due to
wrong estimation of mortality rate

What are the implications?
Underestimation of expected lifetimes leads to aggregate de�cit in
pension reserves
Equitable Life closed to new business in 2000 because GAO's in money
In 2010 alone improved life expectancy added 5 billion pounds to
corporate pension obligations in UK
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Introduction(3)

A quick note on mortality risk
Life being shorter than expected is referred to as premature death or
mortality risk
Factors that trigger mass premature deaths are CATASTROPHES!

Catastrophes can be natural or man-made

What is a catastrophe?
An event in which insured claims, total economic losses, or the number
of casualties exceed a certain threshold
Lost or missing lives 20, injured 50, homeless 2000

Number of catastrophes has risen sharply in the last four decades

In the 1970's roughly 100 catastrophic events per year

Number has more than tripled in the last decade

Between 1994 and 2013, EM-DAT recorded 6,873 natural disasters

Claimed 1.35 million lives or almost 68,000 lives on average each year

218 million people a�ected by natural disasters on average per annum
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Introduction(4) : Possible Mortality Catastrophes

Infectious diseases/ Pandemics

Natural Disasters

Terrorist Attacks

Wars

Meteorite Crashes

Accidents: Aviation or Industrial
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Historical Facts(1): Catastrophes lead to Mortality Spikes
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Historical Facts(2): The 1918 In�uenza Pandemic

 

 

 

 

• The 1918 influenza pandemic: Increase in mortality rate by 30% overall.  

• Most affected age groups: 15-24 and 25-34   

• For individuals aged 55 and over a little decrease in the death rate 
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Historical Facts(3): The 1918 In�uenza Pandemic

�The great �u pandemic of 1918 and 1919 is estimated to have killed
between 30 million and 50 million people worldwide. Among them
were 675,000 Americans. (source: CNN)�
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Historical Facts(4): H1N1 �u

�The global H1N1 �u pandemic may have killed as many as 575,000 people,

though only 18,500 deaths were con�rmed. The H1N1 virus is a type of swine �u,

which is a respiratory disease of pigs caused by the type A in�uenza virus.

(source: CNN)�
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Historical Facts(5): Pandemics in general

13 or more in�uenza pandemics since 1500

4 In�uenza Pandemics in 20th Century

Spanish Flu (1918)

most severe in�uenza pandemic
more than 675,000 excess deaths b/w
Sep 1918 & Apr 1919 in US

Asian Flu (1957)

Hong Kong Flu (1968)

Russian Flu (1977)

H5N1 Avian In�uenza in Hong Kong in 1997

Swine Flu in 2009

Could a �u happen again?

Virologists and Epidemiologists say YES!

Zika and Ebola: A taste of things to come?

Facts on Pandemic

Frequency: 3 per century

Attack Rate: 10-60%

Severity: 1x to 6x mortality
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Historical Facts(6): Pandemics in general

A (�u) pandemic may occur if three conditions are met:
a new in�uenza virus emerges
the virus infects humans
the virus spreads e�ciently and in a sustained manner

WHO �The World Health Report 2007: �Scientists agree that the
threat of a pandemic from H5N1 continues and that the question of a
pandemic of in�uenza from this virus or another avian in�uenza virus
is still a matter of when, not if.�
We don't know how infectious and deadly the new virus will be

Unlimited reservoir of in�uenza sub-types
Interspecies transmission, intraspecies variation and altered virulence

Factors attenuating virulence

Improvement in medical care

Establishment of global surveillance

Crisis/emergency plans

Factors supporting virulence

Population Growth

Urbanization

Increased Global Mobility
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Historical Facts(7): Current Pandemic?

�Philadelphia was struck with a yellow fever epidemic in 1793 that killed a 10th of

the city's 45,000-person population. (source: CNN)�

�The Ministry of Health in Angola has reported an ongoing outbreak of yellow

fever. At least 3,552 suspected & con�rmed cases have been reported, including

355 deaths. (source: CDC, 14th July, 2016)�
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Historical Facts(9): SARS

�Severe Acute Respiratory Syndrome, better known as SARS, was �rst identi�ed

in 2003 in China, though the �rst case is believed to have occurred in November

2002. By July more than 8,000 cases and 774 deaths had been reported. Diseases

like AIDS bring PERSISTENT changes in mortality curve. (source: CNN)�
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Historical Facts(10): ZIKA

`Nobody's looking': Why US Zika outbreak could be bigger than we know.

(source: The Guardian)

Raj Kumari Bahl (UoE) Mortality Bonds 22nd September 2016 17 / 101



Historical Facts(11): India Battling Chikungunya

�September 2016: India's capital Delhi is battling one of its worst outbreaks of

the mosquito-borne chikungunya virus - with more than 1,000 cases reported

across the city. (source: BBC)�

�The disease is spread by mosquitoes that bite and pass on the virus�

�O�cials have been fumigating densely populated areas of Delhi�
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Historical Facts(12): Earthquakes in 2016-1

THE EDUCADOR EARTHQUAKE 16th APRIL 2016

Atleast 660 people killed

More than 27,732 injured

Nearly 7,000 buildings destroyed

More than 26,000 people in shelters

Worst natural disaster since 1949

A DAY EARLIER: KUMAMOTO CITY, JAPAN

39 people killed
More than 1,000 injured
8,700 buildings damaged
A bridge collapsed in Aso

ALARMING FIGURES!!!!!
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Historical Facts(13): Earthquakes in 2016-2

�September 3: Oklahoma earthquake among strongest in state history. (source:

The Guardian)�

�The 5.6-magnitude quake was felt from Nebraska to North Texas�

�No major damage or injuries have been reported�
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Historical Facts(15): The China Floods in 2016

THE BLOOMBERG REPORTS ON JULY 11 2016
�Weeks of torrential rain across central and southern China have
caused the country's worst �ooding since 1998, killing 173 people,
ruining farms and cutting major transportation arteries � and creating
potential headwinds to economy growth.
A swollen Yangtze and other rivers spilled over their banks. That was
compounded by the arrival of Typhoon Nepartak, as it made landfall
on Saturday in Fujian province.
The Ministry of Civil A�airs said �ooding and rain associated with the
typhoon a�ected more than 31 million people in 12 provinces,
submerged more than 2.7 million hectares (6.7 million acres) of
cropland and caused 67.1 billion yuan ($10 billion) in damages.
Flooding is linked to El Nino, which originates from warm waters in the
Paci�c Ocean near the equator and disrupts global weather patterns.
While forecasters said the worst weather has passed, analysts said the
economic impact from farm damage and transport disruptions would
be tallied for months to come."
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Historical Facts(15): Louisiana's Catastrophic Floods

�Human-derived rising temperatures increased the risk of the natural disaster by

at least 40%, a National Oceanic and Atmospheric Administration study found�

�Nearly 7tn gallons of water was dumped on Louisiana in a week from 8 August,

killing 13 people and �ooding 60,000 properties.�

� The repair bill is likely to be close to $9bn.�
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Historical Facts(16): Terrorist Attacks

Types of Terrorism Attacks

4 7 7 3 34 7 7 3 3

Nuclear Conventional Radiological Biological Chemical

100 kiloton Cruise missile Cruise missile Large event Large event

20 kiloton Multiple aircraft Multiple aircraft Medium event Medium event

10 kiloton Single aircraft Single aircraft Small event Small event

1 kiloton Large truck bomb Large truck bomb

Small truck bomb Small truck bombSmall truck bomb Small truck bomb

Car bomb Car bomb

Human bomb Human bomb

Total attack types = 24
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The Problem (1): Extreme Mortality Risk

Life insurance companies provide protection to their policyholders in
the form of a payout made in the event of a policyholder's death, in
exchange for a premium

Extreme mortality events, such as a severe pandemic or a large
terrorist attack, could result in a life insurance company needing to
make sudden payouts to many policyholders

This large payout would be exacerbated in that the investment
portfolio would not yet have delivered su�cient returns � the payouts
to policyholders are made sooner than expected

Therefore it is crucial for life insurers, and life reinsurers, to manage
their exposure to extreme mortality risks where insurance portfolio
diversi�cation by itself is insu�cient
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The Problem (2): E�ects of the Problem

Mortality jumps are infrequent but when they occur they

Trigger a large number of unexpected death claims
A�ect the �nancial strength of the life insurance industry

[Stracke and Heinen(2006)]estimated that the worst pandemic would
result in

Approximately e45 billion of additional claim expenses in Germany
Amount equivalent to �ve times the total annual gross pro�t
Or 100% of the policyholder bonus reserves in the German Life
Insurance market

[Toole(2007)] found that in a severe pandemic scenario

Additional claim expenses would consume 25% of the Risk Based
Capital (RBC) of the entire US life insurance industry
Companies with less than 100 % of RBC are at the risk of being
insolvent
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Available Methodologies for Hedging Extreme Mortality Risk

Natural Hedging: compensating longevity risk by mortality risk

Drawback: Cost prohibitive

Mortality-linked Securities (MLS's) or Catastrophe (CAT) Mortality
(CATM) Bonds or Extreme Mortality Bonds (EMB's): Cash �ows
linked to a mortality index such that the bonds get triggered by a
catastrophic evolution of death rates of a certain population

Swiss Re Bond 2003 (VITA I): The �rst mortality bond
Swiss re Bond 2015 (VITA VI): The latest mortality bond
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Valuation approaches on MLS's

Risk-adjusted process/ No-arbitrage Pricing:

Estimate the distribution of future mortality rates in the real world
probability measure
Transform the real-world distribution to its risk-neutral counterpart
Calculate the price of MLS by discounting the expected payo� under
the risk-neutral probability measure at the risk-free rate

The Wang Transform:

Employs a distortion operator that transforms the underlying
distribution into a risk-adjusted distribution
MLS price is the expected value under the risk-adjusted probability
discounted by risk-free rate

Instantaneous Sharpe Ratio: Expected return on the MLS equals the
risk-free rate plus the Sharp ratio times its standard deviation

The utility-based valuation: Maximisation of the agent's expected
utility subject to wealth constraints to obtain the MLS equilibrium
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History of Mortality Linked Securities

Tontines: 17th and 18th century in France

Annuities in Geneva: Payo�s directly linked to the survival of Genevan
"mademoiselles"

Speculations came to an end during French Revolution

Detailed overview in [Bauer(2008)]
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Recent Developments(1)
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Recent Developments(2)

 

 

 

 

 

 

Chen and Cox (2009) Modelling mortality with Jumps 

Cox et al (2010)       Mortality Risk Modelling 

Shang et al (2011) Recursive Approach to MLS 

Cox et al (2013) Mortality portfolio Risk Management 

Lin et al (2013) Pricing mortality securities with 

correlated indexes 

Huang et al (2014) Price jumps of MLS in incomplete 

markets 

Pessler (2000) Criticism of Wang Transform 

Milidonis et al (2011) A regime switching mortality model 

with two states 

Deng et al (2012) 
Double-exponential jump diffusion 

model for mortality jumps & cohort 

effects 

Hunt & Blake (2015) Analysing the Swiss Re Kortis Bond 
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Prime Focus(1)

Catastrophe Mortality Bonds or CATM Bonds

What are these?

Bonds designed to transfer the risk of extreme mortality from a sponsor
to investors
Coupon & Principal payments depend on the non-occurence of a
pre-de�ned catastrophic event

Transaction involves three parties

The Ceding company or Sponsor
Special Purpose Vehicle (SPV) or issuer
Investors generally large institutional buyers

Transaction begins with formation of a SPV

Investment Period: 3 to 5 years

Can be purchased as OTC products

High yield debt instruments
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Prime Focus(2)

SPV issues bonds to investors

SPV invests the received capital in high quality securities such as
government or corporate AAA bonds

Generally held in a trust account

Coupon Payment

Investment returns from trust account &
Risk premium from ceding company

Embedded in the bonds is a call option

This call option gets triggered by a de�ned catastrophic event

Well de�ned Attachment or Trigger and Exhaustion Points

Principal is fully at risk

Our choice: Swiss Re Bond 2003
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Prime Focus(3)

Speci�cations VITA I VITA II TARTAN

Sponsor Swiss Re Swiss Re Scottish Re
Arranger Swiss Re Swiss Re Goldman Sachs
Modelling Firm Milliman Milliman Milliman
SPV domicile Cayman Islands Cayman Islands Cayman Islands
Size $ 400M $ 362M $ 155M
No.of Tranches 1 3 2
Issue date December 2003 April 2005 May 2006
Maturity 3 years 5 years 3 years
Index US, UK, France, US, UK, Germany, US

Italy, Switzerland Japan, Canada

Table 1: The Initial CAT Mortality Bonds
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Prime Focus(4)

Speci�cations OSIRIS VITA III NATHAN

Sponsor AXA Swiss Re Munich Re
Arranger Swiss Re Swiss Re Munich Re
Modelling Firm Milliman Milliman Milliman
SPV domicile Ireland Cayman Islands Cayman Islands
Size e 345M $ 705M $ 100M
No.of Tranches 3 2 1
Issue date November 2006 January 2007 February 2008
Maturity 4 years 4 & 5 years 5 years
Index France, Japan, US, UK, Germany, US, UK, Canada,

US Japan, Canada Germany

Table 2: The Middle Stage CAT Mortality Bonds
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Prime Focus(5)

Speci�cations Vita IV Vita IV Vita V

Sponsor Swiss Re Swiss Re Swiss Re
Arranger Swiss Re Swiss Re Swiss Re
Modelling Firm RMS RMS RMS
SPV domicile Cayman Islands Cayman Islands Cayman Islands
Size $ 300M $ 180M $ 275M
No.of Tranches 4 2 2
Issue date I: Nov'09; II: May'10 July 2011 July 2012

III & IV: Oct 2010
Maturity 4 & 5 years 5 years 5 years

I:US, UK; II:US/UK IV:Canada/ D-1:Australia,
Index III: US/Japan, Germany(Ger.), Canada

IV: Germany/ V:Canada/Ger./ E-1:Australia,
Canada UK/US Canada, US

Table 3: The Middle Stage CAT Mortality Bonds (Contd...)
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Prime Focus(6)

Speci�cations Mythen Re Atlas IX VITA VI

Sponsor Swiss Re SCOR Re Swiss Re
Arranger Swiss Re Aon, BNP Swiss Re

Paribas, Natixis
Modelling Firm AIR/RMS RMS RMS
SPV domicile Cayman Islands Ireland Cayman Islands
Size $ 200M $ 180M $ 100M
No.of Tranches 2 2 1
Issue date November 2012 September 2013 December 2015
Maturity 4 & 5 years 5 years 5 years
Index U.S. hurricane, US Australia,

UK mortality Canada, UK

Table 4: The Latest CAT Mortality Bonds
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Prime Focus(7)

Why Swiss Re Bond...?

An Innovative Security...one of its kind
A kind of pioneer and path setter
Shifted the risk exposure from the balance sheet to the capital markets

Attracted lot of attention and was fully subscribed (Euroweek, 19
December 2003)

Investors included a large number of pension funds

Established a Special Purpose Vehicle (SPV) called VITA I for the
securitization

A 3-year bond issued in December 2003 with maturity on Jan 1, 2007

Principal s.t. mortality risk de�ned in terms of an index qi in yr ti

Quarterly coupons of three-month US-dollar LIBOR + 135 basis points

Strength: Extreme Transparency
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The Bond Mechanism

 

 

 

 

Swiss Re  Bond holders  SPV (Vita 

Capital)  

Check 
terminal 
mortality 

index v alue  

Up to $400m if 
extreme 
mortality is not 

experienced  

Up to $ 400m if 
extreme 
mortality is 

experienced   

Quarterly coupons 

 (USD LIBOR + 135bps)   

Principal 

payment $400m  

Off balance 

sheet   
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The Mortality Index

Mortality index constructed as a weighted average of mortality rates
(deaths per 100,000) over age, sex (male 65%, female 35%) and na-
tionality (US 70%, UK 15%, France 7.5%, Italy 5%, Switzerland 2.5%)

qi =
∑

j Cj

∑
k Ak

(
Gmqm

k,j ,ti
+ G f qf

k,j ,ti

)

qmk,j ,ti and qfk,j ,ti = mortality rates (deaths per 100,000) for males and
females respectively in the age group k for country j at time ti

Cj = weight attached to country j

Ak = weight attributed to age group k (same for males and females)

Gm and G f = gender weights applied to males and females respectively

q0 = base index
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Index Distribution
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Design of the Swiss Re Bond(1)

Principal Loss Percentage

Li =


0 if qi ≤ K1q0
(qi−K1q0)
(K2−K1)q0

if K1q0 < qi ≤ K2q0

1 if qi > K2q0

(1)

For Swiss Re Bond: Trigger Point K1 = 1.3 and Exhaustion Point
K2 = 1.5

Coupons

C0j =


(
SP+LIj

4

)
.C if j = 1

4 ,
2
4 , ...,

11
4 ,(

SP+LIj
4 .C + X

)
if j = 3,

(2)

SP : Spread value (1.35%), LIj : LIBOR rates, C : Face Value, X : a
random variable
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Design of the Swiss Re Bond(2)

Proportion of the Principal returned on the maturity date

X = C

(
1−

3∑
i=1

Li

)+

, (3)

C = $400 million

Risk-neutral price of the random pay-o� at time 0 with Q as the EMM

P = e−rTEQ [X ] (4)

r is nominal annual interest rate

Discounted Cash�ow of Payments

DC (r) =
12∑
i=1

CO i
4(

1 + r
4

)i (5)
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Design of the Swiss Re Bond(3)
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Pricing?

What is the main Problem?

Pricing the Swiss Re Bond with no closed form solution

What can be done?

An incomplete mortality market that has no arbitrage guarantees the
existence of at least one risk-neutral measure termed the equivalent
martingale measure Q that can be used for calculating fair prices of
mortality securities
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Our Approach for Bond Evaluation

Steps

Adapt the payo� of the bond in terms of the payo� of an Asian put
option

Assume the existence of an Equivalent Martingale Measure (EMM)

Present model-independent bounds

Exploit comonotonic theory (for comonotonicity see
[Dhaene et al.(2002)Dhaene, Denuit, Goovaerts, Kaas, and Vyncke])
as illustrated for the pricing of Asian options in
[Albrecher et al.(2008)Albrecher, Mayer, and Schoutens]

Carry out Monte Carlo simulations to estimate the bond price under a
variety of models

Draw graphs of the bounds by varying the interest rate r and mortality
rate q0
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Payo� as that of an Asian Put Option

Alternative form of writing Payo�

P = De−rTE
[
(q0 − S)+] (6)

D = C
q0

Si = 5 (qi − 1.3q0)+

S =
3∑

i=1

Si

Call counterpart of the payo�

P1 = De−rTE
[
(S − q0)+] (7)

Raj Kumari Bahl (UoE) Mortality Bonds 22nd September 2016 46 / 101



Put-call parity for the Swiss Re Bond

The relation

P1 − P = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti )− q0

]
(8)

De�ne

G = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti )− q0

]
(9)

Bounding P1 by bounds l1 and u1

Corresponding bounds for the Swiss Re Mortality Bond:

(l1 − G )+ ≤ P ≤ (u1 − G )+ (10)
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Some Basic Concepts

De�nition

Stop-loss Premium: The stop-loss premium with retention d of a random
variable X is de�ned as E

[
(X − d)+].

De�nition

Stop-loss Order: Consider two random variables X and Y. Then X is said to
precede Y in the stop-loss order sense, written as X ≤sl Y , if and only if X
has lower stop-loss premiums than Y:

E
[
(X − d)+] ≤ E

[
(Y − d)+] −∞ < d <∞ (11)

De�nition

Convex Order: X is said to precede Y in terms of convex order, written as
X ≤cx Y , if and only if X ≤sl Y and E [X ] = E [Y ].
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Lower Bound for the Call Counterpart

Lower Bound using Jensen's Inequality

P1 ≥ De−rTE

[(
n∑

i=1

5 (E (qi |Λ)− 1.3q0)+ − q0

)+]
(12)

We de�ne: Zi = 5 (E (qi |Λ)− 1.3q0)+ ; i = 1, 2, ..., n & Z =
n∑

i=1

Zi

S ≥sl Z or E
[
(S − q0)+] ≥ E

[
(Z − q0)+]

The conditioning variable Λ is chosen in such a way that E [qi |Λ] is
either increasing or decreasing for every i
This implies the vector: Zl = (Z1, . . . ,Zn) is comonotonic & yields

Stop-loss lower bound for the call-counterpart

P1 ≥ De−rT
n∑

i=1

E

[(
5 (E (qi |Λ)− 1.3q0)+ − F−1Zi

(FZ (q0))
)+
]

(13)
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The Trivial Lower Bound

if the random variable Λ is independent of the mortality evolution
{qt}t≥0 we get

The Trivial Lower Bound

P1 ≥ Ce−rT

(
n∑

i=1

5 (exp (rti )− 1.3)+ − 1

)+

=: lb0 (14)

Using

G = De−rT

[
5

3∑
i=1

ertiC (1.3q0, ti )− q0

]
(15)

Corresponding bound for the Swiss Re Mortality Bond:

P ≥ ( lb0 − G )+ =: SWLB0 (16)
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The Lower Bound SWLB1

We choose Λ = q1 in (13)

Use the martingale argument for the discounted mortality process

E [qi |q1] = E
[
erti e−rtiqi |q1

]
= er(ti−t1)q1.

The Lower Bound SWLB1

P1 ≥ 5D
n∑

i=1

e−r(T−ti )C

(
q0.max

(
x ,

1.3

er(ti−t1)

)
, t1

)
=: lb1. (17)

where x is the solution of
n∑

i=1

(
er(tj−t1)x − 1.3

)+
= 0.2

C (K , t1) is the price of a European call on the mortality index with
strike K, maturity t1 and current mortality index q0

Raj Kumari Bahl (UoE) Mortality Bonds 22nd September 2016 51 / 101



A Model-independent Lower Bound(1)

Additional assumption that holds good for stationary exponential Lèvy
models

n∑
i=1

qi ≥sl

 j−1∑
i=1

q
(1−ti/t)
0 q

ti/t
t +

n∑
i=j

er(ti−t)qt

 (18)

for 0 ≤ t ≤ T and j = min {i : ti ≥ t}
We then use the following two results

Proposition

Let (X , Y ) ∼ BVN
(
µX , µY , σ

2
X , σ

2
Y , ρ

)
, where BVN stands for bivariate

normal distribution. The conditional distribution function of X , given the
event Y = y , is given as

FX |Y=y (x) = Φ

x −
(
µX + ρσXσY (y − µY )

)
σX
√
1− ρ2

 (19)
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A Model-independent Lower Bound(2)

Proposition

Let W = (Wt) , t ≥ 0 be a standard Brownian motion. Then the
conditional expectation of Wti given Wt is given as

E [Wti |Wt ] =
ti
t
Wt for any ti < t

The above proposition then leads to the following proposition

Proposition

The additional assumption (18) holds for stationary exponential Lèvy
models with mortality evolution qt = q0 exp (Ut), where (Ut)t≥0 is a Lèvy
process
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A Model-independent Lower Bound(3)

We use this result to achieve the lower bound for the Asian-type call
option

n∑
i=1

5 (E (qi |qt)− 1.3q0)+ =

j−1∑
i=1

5q0

((
qt
q0

)ti/t

− 1.3

)+

+
n∑
i=j

5q0

(
qt
q0

er(ti−t) − 1.3

)+

=: S l2 . (20)

S l2 is the same as Z with Λ being replaced by qt

So we have S ≥sl S
l2
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A Model-independent Lower Bound(4)

De�ne Y = (Y1, . . . ,Yn) with

Yi =

5q0

((
qt
q0

)ti/t
− 1.3

)+

i < j

5q0
((

qt
q0

)
er(ti−t) − 1.3

)+
i ≥ j

i = 1, 2, ..., n

Y is comonotonic:-components are strictly increasing functions of qt

By the comonotonic theory

E

[(
S l2 − q0

)+
]

=
n∑

i=1

E

[(
Yi − F−1Yi

(FS l2 (q0))
)+
]

(21)

where FS l2 (q0) is the distribution function of S l2 evaluated at q0
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A Model-independent Lower Bound(5)

such that for an arbitrary t, we have:

FS l2 (q0) = P
[
S l2 ≤ q0

]
= P

(
j−1∑
i=1

((
qt
q0

)ti/t

− 1.3

)+

+
n∑
i=j

((
qt
q0

)
er(ti−t) − 1.3

)+

≤ 0.2

)
(22)

Substitute x for qt/q0 in (22)

where x solves

j−1∑
i=1

(
x ti/t − 1.3

)+
+

n∑
i=j

(
xer(ti−t) − 1.3

)+
= 0.2 (23)

Then S l2 ≤ q0 if and only if qt ≤ xq0

Raj Kumari Bahl (UoE) Mortality Bonds 22nd September 2016 56 / 101



A Model-independent Lower Bound(6)

This yields

FS l2 (q0) = Fqt (xq0) =

FYi

(
5q0

(
x ti/t − 1.3

)+
)

i < j

FYi

(
5q0

(
xer(ti−t) − 1.3

)+
)

i ≥ j

The Lower Bound lb(2)
t

P1 ≥ 5De−rT

(
j−1∑
i=1

q
1−ti/t
0 E

[(
q
ti/t
t − q

ti/t
0 .max

(
x ti/t , 1.3

))+
]

+
n∑
i=j

ertiC

(
q0.max

(
x ,

1.3

er(ti−t)

)
, t

))
=: lb

(2)
t (24)
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A Model-independent Lower Bound(7)

lb
(2)
t is a lower bound for all t and can be maximized w.r.t. t to yield

the optimal lower bound:

P1 ≥ max
0≤t≤T

lb
(2)
t (25)

As before, we have on using the put-call parity

P ≥
(
lb

(2)
t − G

)+
=: SWLB

(2)
t (26)
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First Upper Bound for the Swiss Re Bond(1)

Proposition

The payo� of the call option is a convex functiona of the strike price, i.e.,
E
[
(X − x)+] is convex in x.

aA function f : I → R , where I is an interval in R, is convex if and only if
f (ax + (1− a) y) ≤ af (x) + (1− a) f (y) ∀a ∈ [0, 1] and any pair of elements
x , y ∈ I .

De�ne a vector λ = (λ1, . . . , λn) such that λi ∈ R and
∑n

i=1 λi = 1
With the help of λ we can write the payo� of the Asian-type call option
as

P1 = Ce−rTE

[(
n∑

i=1

(
5
(

qi
q0
− 1.3

)+
− λi

))+]
. (27)

The above result for the call option implies

P1 ≤ 5De−rT
n∑

i=1

ertiC

(
q0

(
1.3 +

λi
5

)
, ti

)
(28)
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First Upper Bound for the Swiss Re Bond(2)

Employing the Lagrangian with φ as the Lagrange's multiplier, we have

L (λ, φ) =
5

q0

n∑
i=1

ertiC

(
q0

(
1.3 +

λi
5

)
, ti

)
+ φ

(
n∑

i=1

λi − 1

)
(29)

The Upper Bound ub1

P1 ≤ 5De−rT
n∑

i=1

ertiC
(
F−1qi

(x) , ti
)

=: ub1 (30)

where x ∈ (0, 1) solves
n∑

i=1

F−1qi
(x) =

q0
5

(1 + 6.5n)

Put-Call parity yields: P ≤ (ub1 − G )+ =: SWUB1
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First Upper Bound for the Swiss Re Bond (3)(Aliter)

The same upper bound by using comonotonicity theory

De�ne the comonotonic counterpart of q = (q1, ..., qn) as

qu =
(
F−1S1

(U) , ...,F−1Sn
(U)
)
, U ∼ U (0, 1)

Let

Sc =
n∑

i=1

F−1Si
(U) =

n∑
i=1

Sc
i . (31)

Clearly,
S ≤cx Sc (32)

cx denotes convex ordering

So

E

[(
n∑

i=1

Si − q0

)+]
≤

n∑
i=1

E

[(
Si − F−1Si

(FSc (q0))
)+
]
. (33)
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First Upper Bound for the Swiss Re Bond(4) (Aliter)

As a result, an upper bound for the call counterpart of the Swiss Re
bond is given as

P1 ≤ 5De−rT
n∑

i=1

ertiC

(
1.3q0 +

F−1Si
(FSc (q0))

5
, ti

)
(34)

So the upper bound becomes

P1 ≤ 5De−rT
n∑

i=1

ertiC

(
1.3q0 +

F−1Si
(x)

5
, ti

)
(35)

x ∈ (0, 1) is the solution of the equation
n∑

i=1

F−1Si
(x) = q0 (36)

In fact, this yields the same upper bound

P1 ≤ 5De−rT
n∑

i=1

ertiC
(
F−1qi

(x) , ti
)

=: ub1 (37)
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Improved Upper Bound for the Swiss Re Bond(1)

A sharper upper bound is possible
if we assume that some additional information concerning the
stochastic nature of (q1, q2, ..., qn) is available
That is, if we can �nd a random variable Λ, with a known distribution
s.t. the individual conditional distributions of qi given the event Λ = λ
are known for all i and all possible values of λ
De�ne

Su =
n∑

i=1

F−1Si |Λ (U) =
n∑

i=1

Su
i (38)

Then
S ≤cx Su ≤cx Sc (39)

Let qu = (Su
1 , ...,S

u
n )(

F−1S1|Λ=λ, ...,F
−1
Sn|Λ=λ

)
is comonotonic, so that

F−1Su |Λ=λ (p) =
n∑

i=1

F−1Si |Λ=λ (p) , p ∈ (0, 1) . (40)
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Improved Upper Bound for the Swiss Re Bond(2)

It follows that, in this case
n∑

i=1

F−1Si |Λ=λ

(
FSu |Λ=λ (q0)

)
= q0. (41)

The tower property & the convex order relationship given by (39) yield

The upper bound ub(1)
t

5De−rT
n∑

i=1

∫ ∞
−∞

E

[(
qi − F−1qi |Λ=λ (x)

)+
∣∣∣∣Λ = λ

]
dFΛ (λ) =: ub

(1)
t (42)

where x ∈ (0, 1) solves the equation
n∑

i=1

F−1qi |Λ=λ (x) =
q0
5

(1 + 6.5n) . (43)

This is is an upper bound for all t and minimise (42) over t ∈ [0,T ]
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Examples

Bounds for Black Scholes Case

A Tight Lower Bound on lines of SWLB
(2)
t

Improved Upper Bound assuming dependence of Mortality index qi on
Brownian Motion

Bound for Transformed Gamma Distribution

A compact expression for SWLB
(2)
t
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A Lower Bound under Black-Scholes Model(1)

Assume that the mortality evolution process {qt}t≥0 follows the Black-

Scholes model written as qt = eUt

where

Ut = loge (q0) +

(
r − σ2

2

)
t + σW ∗

t (44)

and {W ∗
t }t≥0 denotes a standard Brownian motion

Ut ∼ N

(
loge q0 +

(
r − σ2

2

)
t, σ2t

)
(45)

Proposition

If (X , Y ) ∼ BVN
(
µX , µY , σ

2
X , σ

2
Y , ρ

)
, the conditional distribution of the

lognormal random variable eX , given the event eY = y is

FeX |eY =y (x) = Φ

 loge x −
(
µX + ρσXσY (loge y − µY )

)
σX
√
1− ρ2

 (46)
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A Lower Bound under Black-Scholes Model(2)

Given the time points ti , t for each i

let ρ be the correlation between Uti and Ut

Then, (Uti ,Ut) ∼ BVN
(
µUti

, µUt , σ
2
Uti
, σ2Ut

, ρ
)

where µUti
, µUt , σ

2
Uti

and σ2Ut
are given by (46)

Now qt = eUt

The distribution function of qi conditional on the event qt = st is
given as

Fqi |qt=st (x) = Φ (a (x))

where a (x) is given by

a (x) =

loge x −

(
log

(
q0
(

st
q0

)ρ√ ti
t

)
+
(
r − σ2

2

)
(ti − ρ

√
ti t)

)
σ
√
ti (1− ρ2)

.

(47)
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A Lower Bound under Black-Scholes Model(3)

For the mortality evolution process {qt}t≥0 de�ned as qt = eUt

E (qi |qt) =

q0
(

qt
q0

) ti
t
e

σ2ti
2t

(t−ti ) ti < t,

qte
r(ti−t) ti ≥ t.

(48)

Use this result to achieve the lower bound for the Asian-type call
option

De�ne Y = (Y1, . . . ,Yn)

where

Yi =

5q0

((
qt
q0

)ti/t
e

σ2ti
2t

(t−ti ) − 1.3

)+

i < j

5q0
((

qt
q0

)
er(ti−t) − 1.3

)+
i ≥ j

i = 1, 2, ..., n

Y is comonotonic
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A Lower Bound under Black-Scholes Model(4)

De�ne S l3 =
∑n

i=1 Yi

By the comonotonic theory

E

[(
S l3 − q0

)+
]

=
n∑

i=1

E

[(
Yi − F−1Yi

(FS l3 (q0))
)+
]

(49)

where FS l3 (q0) is the distribution function of S l3 evaluated at q0
such that for an arbitrary t, we have:

FS l3 (q0) = P
[
S l3 ≤ q0

]
= P

(
j−1∑
i=1

((
qt
q0

)ti/t

e
σ2ti
2t

(t−ti ) − 1.3

)+

+
n∑
i=j

((
qt
q0

)
er(ti−t) − 1.3

)+

≤ 0.2

)
(50)
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A Lower Bound under Black-Scholes Model(5)

Substitute x for qt/q0 in (50)

where x solves

j−1∑
i=1

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+

+
n∑
i=j

(
xer(ti−t) − 1.3

)+
= 0.2 (51)

Then S l3 ≤ q0 if and only if qt ≤ xq0

This yields

FS l3 (q0) = Fqt (xq0) =


FYi

(
5q0

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+
)

i < j ,

FYi

(
5q0

(
xer(ti−t) − 1.3

)+
)

i ≥ j
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A Lower Bound under Black-Scholes Model(6)

As a result we have:

P1 ≥ 5De−rT

(
j−1∑
i=1

q
1−ti/t
0 E

((
q
ti/t
t e

σ2ti
2t

(t−ti )

− q
ti/t
0

(
1.3 +

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+
))+)

+
n∑
i=j

ertiC

(
q0

(
1.3

er(ti−t)
+

(
x − 1.3

er(ti−t)

)+
)
, t

))
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A Lower Bound under Black-Scholes Model(7)

Denote the term within the �rst summation as E1 and its value is
given below.

E1 = 5q0

(
erti Φ (d1ai )−

(
1.3 +

(
x ti/te

σ2ti
2t

(t−ti ) − 1.3

)+
)

Φ (d2ai )

)
(52)

where d2ai and d1ai are given respectively as

d2ai =
− loge

(
dai
q0

)
+
(
r − σ2

2

)
t

σ
√
t

(53)

d1ai = d2ai + σ
ti√
t

(54)

and dai is given as

dai = q0

(
1.3

e
σ2ti
2t

(t−ti )
+

(
x ti/t − 1.3

e
σ2ti
2t

(t−ti )

)+)t/ti

(55)
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A Lower Bound under Black-Scholes Model(8)

As a result we have

The Lower Bound lb(BS)
t

5De−rT

(
j−1∑
i=1

q0

(
erti Φ (d1ai )−max

(
1.3, x ti/te

σ2ti
2t

(t−ti )
)
.Φ (d2ai )

)

+
n∑
i=j

ertiC

(
q0max

(
1.3

er(ti−t)
, x

)
, t

))
=: lb

(BS)
t (56)

The bound lb
(BS)
t can undergo treatment similar to lb

(2)
t in sense of

maximization with respect to t yielding

P1 ≥ max
0≤t≤T

lb
(BS)
t (57)
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The Upper Bound SWUB
(BS)
t (1)

SWUB1 is improved if there exists Λ s.t. Cov (Xi ,Λ) 6= 0 ∀i .
Suppose the mortality index {qt}t≥0 depends on an underlying
standard Brownian motion {Wt}t∈[0,T ]

Then

P1 ≤ 5De−rT
n∑

i=1

∫ ∞
−∞

E

[(
qi − F−1qi |Wt=w (x)

)+
∣∣∣∣Wt = w

]
dΦ

(
w√
t

)
(58)

where x solves

n∑
i=1

F−1qi |Wt=w (x) =
q0
5

(1 + 6.5n) . (59)

An explicit formula for the conditional inverse distribution function of
qi given the event Wt = w , is provided by the following result
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The Upper Bound SWUB
(BS)
t (2)

Proposition

Under the assumptions of the Black-Scholes model, conditional on the
event Wt = w , the conditional distribution function of qi is given by

F−1qi |Wt=w =

q0e

(
r−σ2

2

)
ti+σ

ti
t
w+σ

√
ti
t

(t−ti )Φ−1(x)
i < j ,

q0e

(
r−σ2

2

)
ti+σw+σ

√
(ti−t)Φ−1(x)

i ≥ j .
(60)

where j = min{i : ti ≥ t}.

From equation (59), we then solve the following for x .

0.2 + 1.3n =

j−1∑
i=1

e

(
r−σ2

2

)
ti+σ

ti
t
w+σ

√
ti
t

(t−ti )Φ−1(x)

+
n∑
i=j

e

(
r−σ2

2

)
ti+σw+σ

√
(ti−t)Φ−1(x)

(61)
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The Upper Bound SWUB
(BS)
t (3)

The improved upper bound for the call counterpart of the Swiss Re
bond in the Black-Scholes case

The Upper bound ub(BS)
t

P1 ≤ 5Ce−rT
∫ ∞
−∞

(
n∑

i=1

e

(
r−σ2(ti∧t)

2

2ti t

)
ti+σ

ti∧t
t

w
Φ
(
c

(i)
1

)
− (0.2 + 1.3n) (1− x)

)
dΦ

(
w√
t

)
=: ub

(BS)
t (62)

with

c
(i)
1 =

{
σ
√

ti
t (t − ti )− Φ−1 (x) i < j ,

σ
√

(ti − t)− Φ−1 (x) i ≥ j
(63)

and x ∈ (0, 1) solves equation (61)
For optimal upper bound minimise (62) over t ∈ [0,T ]
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Log Gamma Distribution (1)

Log Gamma distribution: a particular type of transformed Gamma
distribution

The mortality index `q' follows log Gamma distribution if

loge q − µ
σ

= x ∼ Gamma (p, a) , (64)

where µ, σ, p and a are parameters (> 0) and log is the natural
logarithm

Useful references for transformed gamma distribution are

[Johnson et al.(1994)Johnson, Kotz, and Balakrishnan]
[Vitiello and Poon(2010)]
[Cheng et al.(2014)Cheng, Tzeng, Hsieh, and Tsai]
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Log Gamma Distribution (2)

The Lower Bound lb(LG)
t

5Ce−rT

(
j−1∑
i=1

q
−ti/t
0

(
e

ti
t
µ

(σ”)
p

[
1− G

(
d
′
2, p, σ

”
)]
− K1

[
1− G

(
d
′
2, p

)])

+
n∑
i=j

er(ti−t)

q0

(
q0e

rt [1− G (d1, p)]− K2 [1− G (d2, p)]
))

(65)

s.t. σ” = 1− σ′ tit , σ
′

= 1− (q0e
rt−µ)

1/p
, d
′
2 =

lnd
′
1−µ
σ ,

d
′
1 = q0.max

(
x ti/t , 1.3

)t/ti
, K1 =

(
d
′
1

)ti/t
, K2 = q0.max

(
x ,

1.3

er(ti−t)

)
,

d1 = lnK2−µ
q0ert−µ−1 , d2 = d1 + lnK2 − µ,

G (x , p) =

∫ x

0

1

Γ (p)
xp−1e−xdx , G

(
x , p, σ”

)
=

∫ x

0

(
σ”
)p

Γ (p)
xp−1e−(σ”x)dx
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Numerical Results(1)

Assume that the mortality evolution process {qt}t≥0 obeys the
Black-Scholes model, speci�ed by the following stochastic di�erential
equation (SDE)

dqt = rqtdt + σqtdWt .

In order to simulate a path, we will consider the price of the asset on a
�nite set of n = 3 evenly spaced dates t1, ..., tn.

The Brownian Simulation

qtj = qtj−1 exp

[(
r − 1

2
σ2
)
δt + σ

√
δtUj

]
Uj ∼ N (0, 1) , j = 1, 2, . . . , n

(66)

Parameter choices in accordance with [Lin and Cox(2008)]

q0 = 0.008453, r = 0.0, T = 3, t0 = 0, n = 3, σ = 0.0388
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Numerical Results(2)

Table 5:  Table showing the various bounds and the Monte Carlo estimate for the B-S Model for varying values of r 

 

r SWLB0 SWLB1 SWLBt_(BS) MC SWUBt_(BS) SWUB_(1) 

0.035 0.899130889131400 0.899130889153152 0.899131577418890 0.899130939228525 0.899131588499602 0.899131637780299 

0.03 0.913324024542464 0.913324024546338 0.913324256505855 0.913324120543246 0.913324317265175 0.913324320930395 

0.025 0.927447505802074 0.927447505802722 0.927447580428344 0.927447582073642 0.927447605312234 0.927447619324390 

0.02 0.941626342686440 0.941626342686542 0.941626365599735 0.941626356704134 0.941626369726985 0.941626384748977 

0.015 0.955935721003105 0.955935721003120 0.955935727716106 0.955935715488521 0.955935732229503 0.955935736078305 

0.01 0.970419124545862 0.970419124545864 0.970419126422140 0.970419112046475 0.970419126801821 0.970419129771609 

0.005 0.985101139986133 0.985101139986134 0.985101140486345 0.985101142704466 0.985101140839740 0.985101141738075 

0 0.999995778015617 0.999995778015617 0.999995778142797 0.999995730678518 0.999995778174612 0.999995778583618 

 

 

Table 6:  Table showing the various bounds and the Monte Carlo estimate for B-S Model  for varying values of q0 when r=0.0 

 

q0 SWLB0 SWLB1 SWLBt_(BS) MC SWUBt_(BS) SWUB_(1) 

0.007 0.999999999999517 0.999999999999517 0.999999999999517 1.000000000000000 0.999999999999517 0.999999999999517 

0.008 0.999999915251651 0.999999915251651 0.999999915252175 0.999999935586330 0.999999915252765 0.999999915253115 

0.008453 0.999995778015617 0.999995778015617 0.999995778142797 0.999995730678518 0.999995778174612 0.999995778583618 

0.009 0.999821987943444 0.999821987949893 0.999822025862818 0.999816103328680 0.999822374801022 0.999822875816246 

0.01 0.978292691034648 0.978310383929407 0.978503560221499 0.978738658827918 0.978292691184203 0.986262918346612 

0.011 0.572750782003669 0.610962124257773 0.610962123857400 0.652440509314875 0.572755594265253 0.877336305501968 

0.012 0.000000000000000 0.040209774144029 0.040209770810359 0.094615386163640 0.000000000000000 0.395672911251278 

0.013 0.000000000000000 0.000000000000000 0.000000000000000 0.001662471990070 0.000000000000000 0.083466184427206 

0.014 0.000000000000000 0.000000000000000 0.000000000000000 0.000003376858132 0.000000000000000 0.008942985848261 
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Numerical Results(3)

Figure1:  Rel. Diff. of LBt(2), LBt(3) and UB1 w.r.t. MC estimate under Black-Scholes model 

 

 

Figure2:  Comparison of different bounds under B-S model in terms of difference from MC estimate for r=0 
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Numerical Results(4)

 

 

 

 

 

Figure3:  Price Bounds under Black-Scholes model for the parameter choice of Lin and Cox(2008) Model 
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Numerical Results(5)

Assume that the mortality rate ‘q′ obeys the four-parameter
transformed Normal (Su) distribution ([Johnson(1949)] and
[Johnson et al.(1994)Johnson, Kotz, and Balakrishnan]) which is
de�ned as follows

sinh−1
(
q − α
β

)
= x ∼ N

(
µ, σ2

)
, (67)

α, β, µ and σ are parameters (β, σ > 0) and sinh−1 is the inverse
hyperbolic sine function

Let q0 = 0.008453.

Parameter choices in accordance with [Tsai and Tzeng(2013)]

α = [0.008399, 0.008169, 0.007905], β = [0.000298, 0.000613, 0.000904],

µ = [0.70780, 0.58728, 0.58743] and σ = [0.67281, 0.50654, 0.42218].
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Numerical Results(6)

 

 

 

 

 

 

Table 7:  Table showing the various bounds and the Monte Carlo estimate for the Su distn. for varying values of r 

 

         r                SWLB0                SWLB1            SWLBt_(2)                    MC             SWUB_(1)

0.035 0.883255461690070 0.884321427701533 0.885548150428771 0.884689900254432 0.886806565750194

0.03 0.903403981322902 0.904010021303490 0.904693957669362 0.904223406591320 0.905481788284534

0.025 0.921607066867317 0.921935518850858 0.922291170234705 0.922030679117868 0.922759498340311

0.02 0.938407830148741 0.938576980453810 0.938747560828014 0.938598989786277 0.939010425491579

0.015 0.954287129640998 0.954369722665066 0.954444088119093 0.954415686472720 0.954582647473048

0.01 0.969639544072264 0.969677756802278 0.969706604342752 0.969683647401862 0.969774875755017

0.005 0.984762743262391 0.984779521693468 0.984789115794819 0.984784143645972 0.984820459036106

0 0.999861354235404 0.999868375732131 0.999870879263060 0.999871208429012 0.999884274666239
 

 

Note: LBt2 obtained by Numerical Integration in MATLAB 
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Numerical Results(7)

Assume that the mortality index {qt}t≥0 follows log gamma
distribution, which is de�ned as

loge q − µ
σ

= x ∼ Gamma (p, a) , (68)

µ, σ, p and a are parameters (> 0) and log is the natural logarithm.

Parameter choices in accordance with
[Cheng et al.(2014)Cheng, Tzeng, Hsieh, and Tsai]

q0 = 0.0088, p = [61.6326, 64.2902, 71.8574], a = [0.0103, 0.0098, 0.0080],

µ = [−5.2452,−5.4600,−5.7238] & σ = [7.4×10−5, 9.5×10−5, 9.4×10−5].

Raj Kumari Bahl (UoE) Mortality Bonds 22nd September 2016 85 / 101



Numerical Results(8)

Table 8:  Table showing the various bounds and the Monte Carlo estimate for the TGD for varying values of r 

 

r SWLB0 SWLB1 SWLBt_(LG) MC SWUB_(1) 

 0.035 0.848032774815386 0.848424044789595 0.855969730838120 0.854167495146694 0.866104360048102 

 0.03 0.873577023530120 0.873813448730075 0.879110918002518 0.878026709161428 0.887240130128182 

 0.025 0.897102805167311 0.897242672828637 0.900881660116024 0.900486935407607 0.907283088296566 

 0.02 0.918896959516680 0.918977921696450 0.921421185492669 0.921030195923945 0.926366403382851 

 0.015 0.939240965473512 0.939286791778834 0.940888331577441 0.941092453291025 0.944633306794068 

 0.01 0.958403723325991 0.958429070673721 0.959452704642603 0.959485386731500 0.962230654369936 

 0.005 0.976635430514097 0.976649121750369 0.977286229664468 0.977322136744823 0.979302971604630 

 0 0.994162849651329 0.994170066410978 0.994555652671267 0.994698510160850 0.995987334249625 

  

 

      
 

 

 

 

Table 9:  Table showing the various bounds and the Monte Carlo estimate for the TGD  for varying values of q0 when r=0.0 

 
 

       q0                SWLB0                SWLB1 SWLBt_(LG)                    MC SWUB_(1) 

0.008 0.999766066714250 0.999766066846378 0.999772840361840 0.999793281501976 0.999779562416927 

0.0088 0.994162849651329 0.994170066410978 0.994555652671267 0.994686720834666 0.995987334249625 

0.009 0.989104987070782 0.989146149900171 0.989952105692831 0.990012775482666 0.993383346707654 

0.01 0.876692543049394 0.888049181229988 0.896376305638172 0.891609413787780 0.958189590378894 

0.011 0.410971060715423 0.596089667856852 0.596089667856850 0.568675584083477 0.837207974723077 

0.012 0.000000000000000 0.271045973759684 0.271045973759680 0.207081909248152 0.613838720959082 

0.013 0.000000000000000 0.082740708460284 0.082740708460278 0.045779872978350 0.381822437530697 

0.014 0.000000000000000 0.012702023135424 0.012702023135418 0.006694089213835 0.212229375394606 

0.015 0.000000000000000 0.000000000000000 0.000000000000000 0.000883157235603 0.110420349200491 

0.016 0.000000000000000 0.000000000000000 0.000000000000000 0.000084710725625 0.055539272590864 

0.017 0.000000000000000 0.000000000000000 0.000000000000000 0.000004497045497 0.027576845294053 

0.018 0.000000000000000 0.000000000000000 0.000000000000000 0.000000019842250 0.013697961782757 
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Numerical Results(9)

Figure 4:  Rel. Diff. of Lower Bounds and UB1 w.r.t. MC estimate under Transformed Gamma Distribution 

 

 

Figure 5:  Comparison of different bounds under Transformed Gamma distn in terms of difference from MC estimate for r=0 
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Numerical Results(10)

 

 

 

Figure 6:  Price Bounds under Transformed Gamma Distn. for the parameter choice of Lin and Cox(2008) Model 
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What did Swiss Re achieve?

Swiss Re thrives from Life Insurance Business

It achieved Mortality Risk Transfer
Protection against extreme mortality events
Got counter parties to o�oad mortality risk
No dependence on retrocessionaire

Pro�tability negatively correlated to mortality rates

Methodology: Catastrophic bond with loss measurement based on a
parametric index

Investors in the bond took opposite position

Received an enhanced return if an extreme mortality event doesn't
occur
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What Lies Ahead...?

Mortality risk transfer expected to become more of a concern for life
insurers and reinsurers

Under Solvency II access to fully collateralized ILS capacity bene�cial
on a capital e�ciency basis

More such transactions predicted in the future
ILS investors pleased to see VITA VI

A new extreme (or excess) mortality catastrophe bond deal
Keen to access the diversi�cation it can o�er
The fact that it is Swiss Re again welcomed

The giant has transferred over $ 2.2 billion of mortality risk to the
capital market

A lot of variations being tried
Swiss Re has experimented with

Longevity Trend Bond - KORTIS (2010)
Multiple Peril Bond - MYTHEN RE (2012)

A more transparent and liquid Longevity and mortality market is
emerging (since the formation of LLMA (2010))
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Further Research

This research is a crucial breakthrough in the pricing of catastrophic
mortality bonds

Model-independent bounds give freedom of choice for selecting
mortality models

Only one earlier publication by
[Huang et al.(2014)Huang, Tsai, Yang, and Cheng] in direction of
price bounds for the Swiss Re bond

These authors propose gain-loss bounds that su�er from model risk

The present scenario poised for further research

Deriving even more tighter upper bound

Using these bounds for the Longevity Trend Bond - KORTIS

The success of our research hinges upon the trading of vanilla options
written on the mortality index
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Bene�ts

TO THE BOND ISSUER

Securing protection for insurance liabilities when claims are horrendous
Multiyear coverage compared to 1-year given by stop-loss reinsurance
Gaining access to capital from investors which is used to generate
further returns
Flexibility to access capital markets when required by using shelf
programs
A kind of 'ALTERNATIVE RISK TRANSFER'

TO THE BUYER

High yields o�ered from these bonds
Diversi�cation to the portfolio
A type of charity for the rich

A WIN-WIN situation for both

One phrase to summarize these bonds: 'HIGH RISK HIGH REWARD'
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A Few Disadvantages

Signi�cant up-front transaction costs
Legal
Risk Modeling
Broker
Rating agency
Bank fees

that require minimum transaction sizes for the issuance to be
economical
`BASIS RISK'

since the payo� trigger is index based
and the actual loss su�ered is unlikely to be perfectly matched by the
bond payo�

Capital Credit given by regulators and rating agencies may be reduced
for CATM's in comparison to traditional reinsurance

Terms are �xed throughout the duration of coverage but can be
adjusted for traditional reinsurance every year allowing for short term
commitment and �exibility
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The Modeling Aspect

Pricing of the CAT mortality bonds depends on the estimation and
forecast of mortality rates

The development of new catastrophic mortality bonds and
longevity-linked securities is

Aided by and in turn encouraged the development of increasingly
sophisticated 'Mortality Models'

Many stochastic models are being proposed
Experimentation being done with the celebrated

Lee-Carter Model ([Lee and Carter(1992)])
CBD Model ([Cairns et al.(2006)Cairns, Blake, and K.])

Mortality modeling with Lévy Processes very popular

Mortality jumps are being incorporated in these models
Examples of Mortality Models

DEJD: Double Exponential Jump Di�usion
([Deng et al.(2012)Deng, Brockett, and MacMinn])
Geometric Brownian Motion with log-normal jump size distribution
([Lin and Cox(2008)])
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�If there will be one day such a severe world-wide pandemic that one
of the bonds I bought will be triggered, there will be more important
things to look after than an investment portfolio.�

� ANONYMOUS CATM INVESTOR

Thanks!
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Questions/Comments

The views expressed in this [publication/presentation] are those of
invited contributors and not necessarily those of the IFoA. The IFoA
do not endorse any of the views stated, nor any claims or
representations made in this [publication/presentation] and accept no
responsibility or liability to any person for loss or damage su�ered as a
consequence of their placing reliance upon any view, claim or
representation made in this [publication/presentation].

The information and expressions of opinion contained in this
publication are not intended to be a comprehensive study, nor to
provide actuarial advice or advice of any nature and should not be
treated as a substitute for speci�c advice concerning individual
situations. On no account may any part of this
[publication/presentation] be reproduced without the written
permission of the IFoA [or authors, in the case of non-IFoA research].
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