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C4: Pricing Workshop 
– Overview and Practical Applications of Machine Learning Methods in Pricing

2

Objective:

to give you a working knowledge of some machine 

learning methods that may be used to improve GLM 

results and/or offer valuable insights in their own right in 

the field of P&C insurance pricing

Agenda

Context of machine learning in pricing

• Decision trees

• Random forests

• Gradient boosting machines

Practical applications of ML techniques

Conclusions

Q&A

25 April 2019



Agent/Broker 
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Applications of machine learning in the insurance sector
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This is not new….
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What are these machine learning methods?
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Choosing a method
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Focus on Trees
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Group < 15?

Age < 40?

All data

Decision Trees
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A simple Tree example
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A simple Tree example
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Group < 3?

Y N
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A simple Tree example
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A simple Tree example
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Shortcomings of using trees
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They may miss interactions…

… they may struggle with 

categorical variables….

…and they can be bad at turning points
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Focus on Random Forests
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Random Forests
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– Tree 1:  Prediction 1 = Signal 1 + Noise 1

– Tree 2:  Prediction 2 = Signal 2 + Noise 2

– Tree 3:  Prediction 3 = Signal 3 + Noise 3

– …

– Tree 1000:  Prediction 1000 = Signal 1000 + Noise 1000

– Random Forest: 

– Prediction = AVERAGE(Tree Predictions)

– = AVERAGE(Tree Signal) + AVERAGE(Tree Noise)

 Average Noise  0 if the trees are independent

 Independence of trees achieved by fitting each tree to:

• Random subset of data (bootstrap sample)

• Random subset of factors

 Average Signal  Underlying trend, provided trees are complex enough to represent it

 This is bagging (bootstrap aggregation) – fit lots of independent models and take an average
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A simple Random Forest example
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A simple Random Forest example
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A simple Random Forest example
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A simple Random Forest example
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A simple Random Forest example
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Focus on Gradient Boosting Machines
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Gradient Boosted Machine or “GBM”
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A GBM
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Four main assumptions
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 l Learning rate / “shrinkage”

 Amount by which the old model predictions 

are varied for the next model iteration

 New model = 

Old + (Prediction x Learning rate)

 Interaction depth

 Number of splits allowed on each tree 

(or the number of terminal nodes – 1)

 N Number of trees (iterations) allowed

 Bag fraction

 Trees are fitted to a subset of the data (the 

bag fraction) on a randomized basis

 Additional noise-reduction can be achieved 

by using a random subset of the available 

factors at each iteration

All DataGroup < 5?

Y N

Age < 40?

Y N

Y N

Group < 15?
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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A simple GBM example
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Calibrating the assumptions
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• n-fold cross validation used to develop the interaction depth and learning rate 

assumptions 

– Eg for 3-fold validation, split into 3, fit on gold, test on blue parts, take average

• Resulting plots can be used to determine the optimal assumption choice

– Including how many trees to run

Fit

Fit

Test

Fit

Test

Fit

Test

Fit

Fit

1 2 3
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Example 5-fold cross validation

52

Best result shown by brown line as 

has lowest minimum validation error 

(interaction depth 2 and learning 

rate 2% in this case)

Minimum point shows optimal 

number of trees in each case.

This example is based on 

artificial data – large insurance 

datasets indicate a larger 

number of trees to be optimal
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What does a GBM look like?
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What does a GBM look like?
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What does a GBM look like?
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 Does it work?

 How does it work?
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Factor importance – relative influence
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0 5 10 15 20 25 30

Number of Drivers

Marital Status Main Driver

Number of Past Claims
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Annual Mileage

Gender of Youngest Driver

Year of analysis

Deductible

Age of Youngest Additional Driver

Age of Youngest Driver

Claim Free Years

Vehicle Value

Vehicle Age

The relative influence of a factor can be measured as the total reduction in error attributable to splits by that factor, 
across all trees in the GBM



Partial dependency plots
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Partial dependency plots
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Vary the value of Factor only

for observation 1 and make a 
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observation 1 across Factor.
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Partial dependency plots
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Partial dependency plots
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Partial dependency plots
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Partial dependency plots
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The full picture of the 

variation in predictions for 

all observations is the 
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plot.

25 April 2019

Example
Repeat for all observations.



Partial dependency plots
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Partial dependency plots
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Rebasing all lines to pass through 

a single point gives a sense of 

the interactions present in the 

model.

This is a Centered

PDP/ICE plot

(c-PDP/c-ICE)
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Partial dependency plots
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Colouring the c-ICE plots by each 

observation’s value of a secondary 

factor can help locate the 

interaction.
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Partial dependency plots etc
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Partial dependency plots

• Advantages

– Qualitative description of properties of relationships

– Most revealing of additive and multiplicative relationships

• Disadvantages

– “GLM view of a non-GLM thing”

– Interaction effects outside of the chosen subset may be 

obfuscated 

– eg if X1X2 is important and X2 is averaged out in the 

partial dependence plot, X1 may show as being 

heterogeneous, thus obfuscating the complexity of the 

modelled relationships
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Model build process
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Deploying GBMs
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Age Exposure
Burning 

Cost

Vehicle 

Group
Exposure

Burning 

Cost

1 <=20 1,720 179 1 1-10 164,107 77 

2 21-30 34,893 122 2 11-14 84,859 101 

3 31-50 118,182 102 3 15-18 28,952 116 

4 51+ 127,054 70 4 19-20 3,931 272 

5 Age Total 281,849 91 5 VG Total 281,849 91 

Gender Exposure
Burning 

Cost

1 Male 197,339 92 

2 Female 84,510 87 

3
Gender 

Total
281,849 91 

Model down into multiplicative 

tables via GLMs

Deploy directly
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A summary…
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Machine Learning in Pricing

• There are many forms of ML models

• New data and feature/response engineering generally add more value than new methods BUT we 

need to continuously explore which methods work on which problems

• Traditional measures of prediction value may not reflect applications in insurance

• And it’s not all about predictive power anyway – other criteria are important

• GBMs can provide predictive lift benefits by capturing higher order effects … BUT

– Can you cope with not seeing the model and instead use broad diagnostics

– Effort is required to expose/understand higher order effects in an expeditious manner

– How will business leaders and regulators respond to this method?

– Do you have the software and hardware to fit to large dataset

– Do you have a rating engine that can implement a GBM

25 April 2019 74

Conclusions



Practical applications of tree based methods in pricing
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Questions
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Thank you


