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Overview of Machine Learning Techniques

Logistic Regression
 Decision Trees

 Random Forest

Evaluation of Classification Models

* Other points to consider
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Workshop & Presentation

Access R Notebook
— Download with presentation
OR

— Download from RPubs

* Open in browser

Follow instructions:
— Download code
— Install R & RStudio
Learn to DIY in R!

+ Slides follow R Notebook (broadly)

Machine Learning Actuaries
Lowis Aossocw. Gan Re

Introduction \
Getting the most from this session
T, Institute
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Statistical Learning vs. (pure) Machine Learning

Statistical / mathematical origins

Statistical Models take account of
uncertainty explicitly

Structured (additive) predictor effects

Can allow for complexity

Programming / Computer Science
origins

Algorithmic with no predefined
relationships

Difficult to isolate effect of variables

Easily deal with complexity
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Machine Learning Overview

Classification
§ suvenicec [

Regression

m Unsupervised

= Reinforcement
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Use cases for classification problems

* Predict a decision
— Underwriting decision (accept at standard — Y/N)
— Credit decision
* Propensity modelling
— Propensity to lapse on month to month
— Propensity to buy
* Mortality

— Though often Poisson regression is more convenient (exposure)

S
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Titanic Survivor Data

» Passenger List of the Titanic

 Survival indicator

Categorical outcome

Split between training (75%) and testing
data (25%)

Field Description

pclass Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

survival Survival (0 = No; 1 = Yes)

name Name

sex Sex

age Age

sibsp Number of Siblings/Spouses Aboard

parch Number of Parents/Children Aboard

ticket Ticket Number

fare Passenger Fare

cabin Cabin

embarked Port of Embarkation (C = Cherbourg; Q =
Queenstown; S = Southampton)

home.dest Home/Destination

GefiRe.
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Logistic Regression

Bernoulli Distribution

(p) = In P
logit(p) = In e

logit(p) = X x;B;

1
* P wh

odds = eXXibi

odds ratio = ePi

+ The odds are multiplied by efi for every
unit increase in x;

« If x; is an indicator (1 or 0) then efi s
simply the odds ratio the event given
data point is in that class (relative to not
being in that class)

GaniRe.
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Interpretation of parameters

Predicting survival

Odds ratio for age ¢~%-010089 = ¢ 990

I.e. odds of survival decrease by 1% for
every year increase in age

Odds ratio for a Miss ¢9216780 — 1242

I.e. odds of a “Miss” survival is 24.2%
higher than a “Master” surviving.

Coefficients:
Estimate

(Intercept) 1.945421

titleMiss 0.216780
titleMr -2.605564
titleMrs 0.681932

titleOfficial -1.835108
family_size  -0.432111

embarkedQ -0.907650
embarkedS -0.541077
age -0.010089
fare 0.011518

Signif. codes: @ ©x¥*’

Std. Error z value Pr(>|z]|)
0.486424 3.999 6.35e-05
0.410777 0.528 0.59768
0.432944 -6.018 1.76e-09
0.449904 1.516 ©0.12959
0.683201 -2.686 0.00723
0.073558 -5.874 4.24e-09
0.344113 -2.638 0.00835
0.215449 -2.511 0.01203
0.007967 -1.266 0.20539
2]

.002338  4.926 8.40e-07

0.001 “**’ @9.01 ‘¥’ 0.05 ‘.’ 0.1 <’ 1

GefiRe.
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Decision Trees — Depth 1

0
0.38
100%

title = Mr,Official

0.16
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Decision Tree — Depth 2

0
0.38
100%

——{yes [Hitle = Mr,Official

=3

0 1
0.16 0.94
60% 20%
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Full Decision Tree o
100%
——— /== Hitle = Mr,Official .
0.70
40%
pclass =3
0.46
0%
family_size >=95 1
0.56
16%
1 fare < 16
0.51
12%
are >= 14
0 0 3
0.16 0.27 0.58
60% 3% 10%
03 May 2019 N

Other points on decision trees

Predictions are made based on the observed probabilities in the leaf nodes
— If p>0,5 = predict survival

— Or we can simply use the probability as a score

In the above example Gini impurity was used to decide best splits

Various stopping conditions can be used

— Impacts over- or underfitting
+ Can interpret results (if tree remains small)
Institute

and Faculty
of Actuaries
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Ensemble Models

* Models where predictions from multiple models are combined

* We could combine different kinds of models

* But we could also combine many combinations of the same model
* Forest = many decision tree models

e Each tree is fit on a random subset of rows and columns

> Random Forest
 Prediction is based on aggregate prediction from trees

* 1 tree = 1 vote Institute
and Faculty

of Actuaries

GefiRe.
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Out of Bag Error Rates

» Each tree has data it was not
trained on rf_model

e Calculate the error rate of the
tree on the data it was not trained

oEnN
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» Aggregate these error rates

Error
0.20
!

0.15
|

0.10
|

trees
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Interpretation is problematic...

* How do you review the impact of each
variable?

» Same variable could be used multiple
times in the same tree or different tree

title
fare
* We have 500 trees... :ZZ
pclass

* Variable importance plot ook

— Sum the reduction in “impurity” every f?:‘"y—me
. X . sibsp
time a variable is used embarked
— Compare variables parch

rf_model

20 40 60 80

MeanDecreaseGini

03 May 2019
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Classification Model Evaluation

» Confusion Matrix
* Receiver operator characteristic
* Area under the curve

» Over- and underfitting

03 May 2019
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What do we have?

row predict_prob_gim predict_gim survived
1045 0.6680738 1 1
986 0.1426785 0 1
512 0.0748915 0 0
447 0.4889538 0 1
472 0.7950490 1 1
259 0.8562478 1 1
- Institute
GenRe. 70 i
03 May 2019 19

Confusion Matrix

Accuracy = (90 + 171)/ 327 =79.8%

Actual =0 Actual=1 Total » Sensitivity = True Positive Rate
=90/129 =69.8%
Predicted » Specificity = True Negative Rate
=0 171 39 210 =171/ 198 = 86.4%
. * This uses threshold p of 0.5

P'e:':’ted 27 90 117
Total 198 129 327

( Va.| m lanrfctiit#atte:ul_ty

of Actuaries
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Change the threshold?

Predict survival if p>0.1
 Sensitivity = 98.4%

» Specificity = 14.6%

* Accuracy =47.7%

Predict survival if p>0.9
 Sensitivity = 12.4%
+ Specificity = 99.5%
* Accuracy = 65.1%

GefiRe.
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Receiver Operator Characteristic (ROC) Curve for GLM

Sensitivity
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Area Under the Curve (AUC)

who died

Gini Coefficient =2 * AUC — 1
AUC >70% OK

AUC > 80% good

AUC is measure of overall performance of the model

AUC = Probability that score of a random survivor > score of random person

Institute
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Random Guessing
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Over- vs. underfitting

Model Training Testing |
AUC AUC @
Decision Tree — 77.5% 76.1%| .«
Underfitted 3
Decision Tree 833%  82.7%| ~ °
Decision Tree — 915%  783%  °] =4
Overfitted 2 . . | of_under
1h 10 05 00 05
Specihaty
( va.-l I h ;n;éit;;gww
of Actuaries
03 May 2019 25
Model Comparison
Model AUC
Random Guessing 51.9%
GLM 84.6%
Decision Tree 82.7%
Random Forest 86.7%
( Va.| I h L\nrfc?tlgatgul_ty
of Actuaries

03 May 2019
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Model Comparison — ROC
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Shortcomings of ROC / AUC

Measures classification

The probabilities are not calibrated

Random Forest does not strictly produce a probability

— a proportion of votes of trees

Measures the accuracy of “ordering” of data

historiska

Institute
and Faculty
of Actuaries
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Other considerations when deciding on a model

* How important is interpretability?
— Do you need to be able to explain the model in detail?
* Technical issues

— Computation speed & resources

* Do you need to be able to explain the model in depth?

- ) w@%&%
GenRe. 9
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Further thoughts

« Other machine learning techniques

* Opening the black box

Testing data

Cross-validation

* Hyperparameter tuning l

03 May 2019 30
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Other Machine Learning Algorithms

Statistical Learning Machine Learning

* Generalised Linear Regression » Gradient Boosted Machines
* Generalised Additive Models » Support Vector Machines

» Penalised Regression * (Deep) Neural Networks

1 n L L L 1 1 n n 1
- = =% <4 -+ [] 1 H ¥ + L]
X

Institute
and Faculty
of Actuaries

03 May 2019

31

Opening the black box...

» Variable Importance Plot
 Partial Dependence Plot

» Surrogate model
— Simple decision tree

— Local interpretable model-agnostic
explanations (LIME)

Jalali (2018) ? % i

03 May 2019

32

16



03/05/2019

Testing (hold-out) Data

« Statistical models

— Test validity of the model using statistics

— Hold-out data is not required (but can be good)
* Machine Learning Models

— Maybe prone to overfit etc.

— Hold-out data validates that it did not occur

— Hold-out should not be used repeatedly to refine model

* Also consider cross-validation

Institute
and Faculty
of Actuaries

GnRe.

03 May 2019 33
Cross-validation 70000000000000000000
[teraton 2} SOOI 2DV IO 990000000
1. Split data into k datasets m-»ooooooooooooo

— Called folds (e.g. 4

(e.g-4) i 0000000000009000TTITT
— 4 separate datasets

Fit model on 3 folds Fabian Flbok

Calculate metric (e.g. AUC/error rate) on remaining fold

Repeat 4 times until each fold has been held back

o kM @b

Average/aggregate error metrics across the 4 folds

Institute
and Faculty
of Actuaries

GenRe.
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Hyperparameter tuning
* ML techniques require many parameters

Maximum depth

Minimum child weights

Number of variables selected

Number of data rows selected

« Search parameters that minimise error / maximise accuracy
— Grid / random / ranges

— Cross validation

- Still validate with a hold-out dataset if possible Gwm etiute

of Actuaries
03 May 2019 35
Conclusion

* Overview of machine learning techniques
— Logistic regression
— Decision trees

— Random Forest

» Evaluation of classification models
— Confusion matrix
— ROC curve & AUC

— Other considerations

* Further thoughts
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We did not cover

Data validation

Feature engineering

Regression problems

— Poisson

Ensemble techniques

And so much more...
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Expressions of individual views by members of the Institute and Faculty of Actuaries
and its staff are encouraged.

The views expressed in this presentation are those of the presenter.
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