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Motivation

I Projecting mortality rates is an essential part of valuing
liabilities in life-insurance portfolios and pension schemes.

I An important tool for risk-management and solvency purposes
is a stochastic projection model for mortality:

I we acknowledge that there is uncertainty about projected
mortality rates coming from unpredicted future changes in
mortality rates (volatility) =⇒ mortality scenarios and
probabilities for scenarios

I but there is also uncertainty about the stochastic model itself
and its parameters.
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Motivation

I Stochastic models often include: age effects, cohort effects
and period effects

I Time series models are commonly used to project period and
cohort effects and generate mortality scenarios.

I In particular, ARIMA processes and random-walks with drift
are often used to generate scenarios for the period effects.

I While random walk models are the most widely used models,
projections based on ARIMA models can look very different.
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Motivation

I Parameters for those models need to be estimated and,
therefore, parameter risk becomes an issue.

I We consider parameter risk from the point of view of an
insurer using stochastic models for regulatory risk reporting.

I Decomposing overall risk into undiversifiable trend risk
(parameter uncertainty) and diversifiable volatility.
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Questions for this Presentation

I How should time series be projected for mortality forecasts?

I What is the importance of different sources of uncertainty?

I Is goodness of fit a reliable criterion for choosing forecasting
models?

I What impact does parameter instability have on projected
mortality rates and solvency capital requirements?

I How do central projections compare to the CMI model and
how can we set the long-term rate in the CMI model?
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The Lee-Carter model

Dx ,t ∼ Poisson
(
µx ,tE

c
x ,t

)
For each calendar year y and age x we observe

Dx ,t : Number of deaths,

E c
x ,t : Central exposure-to-risk

µx ,t : force of mortality

Model for the force of mortality µ:

logµx ,t = αx + βxκt

with age effects αx and βx , and period effect κt .
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The Lee-Carter model

Future liabilities in year t + h will depend on the number of deaths
Dx ,t+h.

Dx ,t+h ∼ Poisson
(
µx ,t+hE

c
x ,t+h

)
logµx ,t+h = αx + βxκt+h

Sources of Uncertainty (given information up to current calendar
year t):

I Poisson noise in year t + h

I uncertainty about estimated age parameters αx , βx
I uncertainty about future values κt+h of period effect κ
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The Lee-Carter model

To investigate the risk coming from the period effect we
distinguish between

I the realised period effect κt+h in year t + h

I the predicted value of the period effect κ̂t(h) for year t + h
given information up to year t based on the estimated model
for κ.

We will study the distribution of κ̂t(h) and compare it to κt+h for
an example data set (England & Wales).
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The Lee-Carter model

Parameter estimates for Lee-Carter model fitted to mortality data
for males in England & Wales aged 50–104 over the period
1971–2013.
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The Lee-Carter model
Parameter estimates for Lee-Carter model fitted to mortality data
for males in England & Wales aged 50–104 over the period
1971–2013.
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Period Effect as Random Walk
Model for the period effect κ (εt ∼ N(0, σ2ε ) i.i.d.):

κt+1 = κt + µ0 + εt+1

And the realised value h years ahead is given by

κt+h = κt + hµ0 +
h∑

j=1

εt+j

What is unknown at time t?

I future error terms εt+j : Replaced by their expectation
(Eεt+j = 0) to obtain a central prediction for κt+h given
information up to time t and the true drift parameter µ0

I drift parameter µ0: Replaced with an estimate, µ̂0 to obtain a
forecast estimator h years ahead as

κ̂t(h) = κt + hµ̂0 (1)
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Period Effect as Random Walk

We will use the standard estimator

µ̂0 =
1

t − 1

t∑
i=2

(κi − κi−1) =
κt − κ1
t − 1

(2)

with variance:

Var(µ̂0) = Var

(
κt − κ1
t − 1

)
=

σ2ε
t − 1

(3)

For our data we obtain µ̂0 = −0.011176.

Our estimate of σ2ε is the appropriate sample variance, σ2ε : which
gives σ̂2ε = 0.00011 (σ̂ε = 0.010512).
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Period Effect as Random Walk
For risk management we are interested in

I the uncertainty about the realised κt+h, and

I the relative role of parameter uncertainty and uncertainty
about future values εt+j (volatility)

Projection error:

E
[(
κ̂t(h)− κt+h

)2]
=

h

t − 1
hσ2ε︸ ︷︷ ︸

parameter
uncertainty

+ hσ2ε︸︷︷︸
volatility

(4)

where the parameter uncertainty is the variance of hµ̂0, i.e.
h2Var(µ̂0).

Parameter uncertainty (variance of hµ̂0) =
h

t − 1
Volatility
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Period Effect as Random Walk

2000 2050

−1

−0.5

0

(i) Uncertainty about µ̂.

2000 2050

−1

−0.5

0

(ii) Uncertainty from volatility.
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Period Effect as Random Walk

2020 2040 2060
−1.2

−1

−0.8

−0.6

−0.4

−0.2

(iii) Uncertainty about µ̂ v.
uncertainty from volatility.

2020 2040 2060
−1.2

−1

−0.8

−0.6

−0.4

−0.2

(iv) Uncertainty about µ̂
and volatility combined.
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Period Effect as Random Walk

Predicted κ values κ̂t(h) from RW model

and ARIMA(1,1,2)
model

.

1980 2000 2020 2040 2060

−1

−0.5

0

Year

κy
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Period Effect as ARIMA process

The structure of an ARIMA(p,1,q) process is just like the structure
of a RW:

κt+1 = κt + µ+ X 0
t+1

κt+h = κt + hµ+
h∑

i=1

X 0
t+i

But with a different noise process:

X 0
t = ar1X

0
t−1 + . . .+ arpX

0
t−p + ma1εt−1 + . . .+ maqεt−q + εt

where εt are i.i.d. normal.
In particular, an ARIMA(0,1,0) process is a random walk.
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Period Effect as ARIMA process

κt+h = κt + hµ+
h∑

i=1

X 0
t+i

We define h-step ahead projections for κ as in the previous section,
that is:

κ̂t(h) = κt +
h∑

i=1

X̂ 0
t (i) + hµ̂
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Period Effect as ARIMA process

h-step ahead projections for κ:

κ̂t(h) = κt +
h∑

i=1

X̂ 0
t (i) + hµ̂

For ARIMA(1,1,2) we obtain (all future noise terms ε are set to
zero)

i = 1 : X̂ 0
t (1) = âr1X

0
t + m̂a1εt + m̂a2εt−1

i = 2 : X̂ 0
t (2) = âr1X̂

0
t (1) + m̂a2εt

i > 2 : X̂ 0
t (i) = âr i−2

1 X̂ 0
t (2)
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Period Effect as ARIMA process

As for the Random Walk, we estimate µ with

µ̂ =
1

t − 1

t∑
i=2

(κi − κi−1) =
κt − κ1
t − 1

(5)

Since X 0 is a stationary ARMA process, we have E[µ̂] = µ.
Variance of µ̂:

Var (µ̂) =
Var(X 0)

t
+

2

t

t−1∑
k=1

γ(k)

[
1− k

t

]
(6)

where γ(k) = Cov(X 0
t ,X

0
t+k) is the auto-covariance function of

X 0.
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Period Effect as ARIMA process

AICc values for various ARIMA(p, 1, q) models.

q
p 0 1 2 3

0 -260.16 -259.54 -260.81 -262.78
1 -260.22 -257.88 -269.83 -267.14
2 -258.10 -261.00 -267.14 -264.58
3 -258.95 -262.60 -264.17 -261.29
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Period Effect as ARIMA process

Parameter estimates for ARIMA(1,1,2)

Standard
Parameter Estimate error

ar1 0.935 0.060
ma1 -1.577 0.173
ma2 0.815 0.149
σ2ε 0.000068 n/a

µ̂ -0.011 0.002

8 September 2016 22



Period Effect as ARIMA process

κ values with RW and ARIMA(1,1,2) forecasts, κ̂t(h).

1980 2000 2020 2040 2060

−1

−0.5

0

Year

κy
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Period Effect as ARIMA process

A Bootstrap method (Pascual et al. 2004)1 is applied to study
uncertainty about the Time series parameters.
Idea:

I Simulate the past many times using estimated parameters and

I then re-estimate parameters for each simulated scenario.

I This gives an empirical distribution for the estimated
parameters.

1L. Pascual, J. Romo and E. Ruiz (2004): Bootstrap Predictive Inference
for ARIMA Processes, Journal of Time Series Analysis 25(4)
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Period Effect as ARIMA process

ar1

N = 1000   Bandwidth = 0.1009
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Forecast κ values from ARIMA(1,1,2)

2020 2040 2060
−1.5

−1

−0.5

(i) Uncertainty over µ̂

2020 2040 2060
−1.5

−1

−0.5

(ii) Uncertainty over TS parameters
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Forecast κ values from ARIMA(1,1,2)

2020 2040 2060
−1.5

−1

−0.5

(iii) Uncertainty from volatility only

2020 2040 2060
−1.5

−1

−0.5

(iv) Uncertainty from volatility and σ2
ε
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Alternative ARIMA(1,1,0) process

Long term central projections for ARIMA(p,1,q) processes depend
on AR terms and drift, but not on MA terms.
But estimated parameter values and goodness of fit depend on
both, AR and MA terms.
Estimated values for ARIMA(1,1,0):

ARIMA(1,1,0) ARIMA(1,1,2)
Parameter Estimate Std. error Estimate Std. error

ar1 -0.259 0.166 0.935 0.060
σ2ε 0.000102 0.000068

µ̂ -0.011 0.002
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Impact on Central projections

κ values with ARIMA(1,1,0) forecast and residuals from the
ARIMA(1,1,0) fit

2000 2050
−1

−0.5

0

Year

κy

1980 2000
−2

0

2

·10−2

Year

Residuals
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Period Effect as ARIMA process

ar1

N = 1000   Bandwidth = 0.0327
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Period Effect as ARIMA process

ar1

N = 1000   Bandwidth = 0.03548
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Period Effect as ARIMA process

Figure: κ values with forecast from ARIMA(1,1,0) model with 95%
bounds for various kinds of uncertainty.
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−0.8
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−0.2

(i) Uncertainty over µ̂ only.
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−0.4
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(ii) Uncertainty about the ar1
parameter only.

8 September 2016 32



Period Effect as ARIMA process

Figure: κ values with forecast from ARIMA(1,1,0) model with 95%
bounds for various kinds of uncertainty.
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(iii) Uncertainty from volatility
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(iv) Uncertainty over µ̂ v.
uncertainty from volatility
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Period Effect as ARIMA process

The importance of ar1 can be seen when central projections are
considered, i.e. where we set future error terms ε to zero.

h RW and ARIMA(1,1,0) ARIMA(1,1,2)

1 X 0
t (1) = ar1X

0
t X 0

t (1) = ar1X
0
t + ma1εt + ma2εt−1

2 X 0
t (2) = ar21X

0
t X 0

t (2) = ar1X
0
t (1) + ma2εt

> 2 X 0
t (h) = arh−2

1 X 0
t (2)

Random Walk: ar1 = 0
ARIMA(1,1,0): ar1 = −0.259
ARIMA(1,1,2): ar1 = 0.935
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Period Effect as ARIMA process

Figure: Sensitivity of central projections when up to three years are
removed from the end of the sample. Left panel: ARIMA(1,1,2) model.
Right panel: ARIMA(1,1,0) model.
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Capital Requirements

Para. VaR99.5 CTE99

Model Volatility uncert. ā50%
70:35

ā99.5%
70:35

capital capital

RW Yes No 12.50 12.70 1.62% 1.70%
No Yes 12.50 12.54 0.33% 0.34%
Yes Yes 12.49 12.72 1.79% 1.96%

(1,1,0) Yes No 12.51 12.68 1.36% 1.40%
No Yes 12.51 12.55 0.31% 0.34%
Yes Yes 12.51 12.69 1.43% 1.58%

(1,1,2) Yes No 12.59 12.87 2.25% 2.32%
No Yes 12.53 12.61 0.63% 0.64%
Yes Yes 12.53 12.87 2.70% 2.79%

interest rate: 2.5% p.a.
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Capital Requirements

I Both Value-at-risk and CTE calculations are driven by the
variability of mortality experience over a one-year horizon and
how the model fit responds to this.

I Volatility makes the largest contribution: short time horizon
for projections (1 year)

I The best fitting model, ARIMA(1,1,2), leads to
I highest capital requirements
I highest extra requirements for parameter uncertainty
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Comparing Time Series Models

Random Walk

I standard model, most commonly used, very simple statistical
methods required

I least flexible, few estimated parameters and strong
assumptions (mortality improvements over time are i.i.d.)

ARIMA(1,1,2)

I best fitting model

I great uncertainty about parameters and projected rates
leading to high capital requirements

ARIMA(1,1,0)

I similar goodness of fit as RW

I lowest capital requirements

I weaker assumptions than RW allowing for structure in error
terms
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Conclusions

I Both, volatility and parameter uncertainty contribute to
forecast uncertainty

I Parameter uncertainty is the driving force behind forecast
uncertainty only for long forecast horizons

I The best fitting model, ARIMA(1,1,2), might not be the best
model for projections since projected rates are not robust (one
extra year of observed rates changes projected rates
significantly)

I ARIMA (1,1,0) vs. ARIMA(1,1,2): Although formulas
(X 0

t (h) = arh−2
1 X 0

t (2)) for projected mortality improvements
are the same for projection horizons > 2, the inclusion of
moving average terms leads to very different projected rates.

I Choosing a model requires actuarial judgement taking
objectives into account
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Questions?
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