

Bayesian Hierarchical Models for Loss Development

Michael Cooney, Jake Morris and Cynon Sonkkila

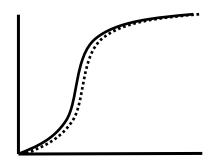
"Modern Bayesian methods provide **richer information**, with **greater flexibility** and broader applicability than 20th century methods.

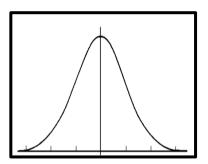
Bayesian methods are intellectually coherent and intuitive ...[and] readily computed..."

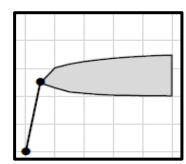
John K. Kruschke

Actuarial work is fundamentally assumptions-based:

- Key challenge: updating assumptions as new information arises
 - Are existing assumptions still relevant?
 - To what extent should we react? Are we consistent?







Standard actuarial problems → credibility theory:

$$Estimate = Z\bar{X}_i + (1 - Z)\mu$$

- OK, but we might also like...
 - Model flexibility, e.g. nonlinearities, time-series, ...
 - Full distribution of estimates (reflecting uncertainty in $\bar{X}_i \& \mu$):

"Given [our] estimate of future payments and ... current state of knowledge, what is the probability that final payments will be no larger than the given value?"

Bayes' theorem (probability):

$$P(A|B) = \frac{P(A \cap B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

Events

• Bayes' theorem (inference):

$$p(\theta|X) \propto p(\theta)L(X;\theta)$$

RVs (Data are fixed)

Posterior ∝ Prior x Likelihood

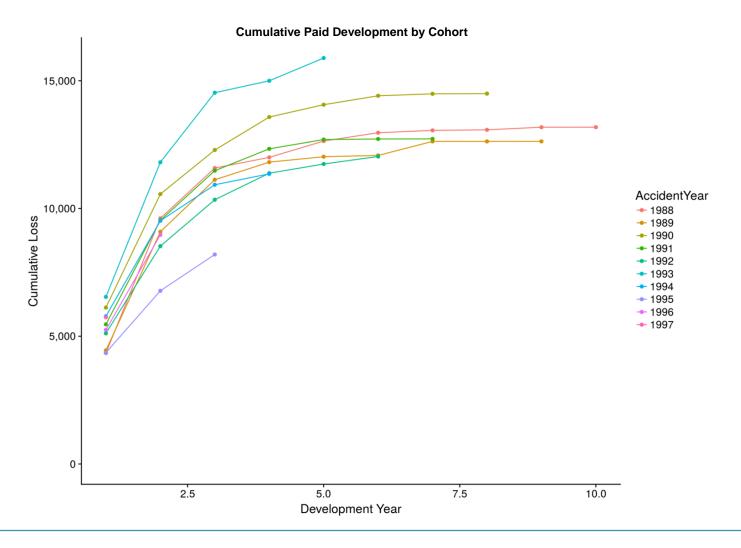
For actuaries:

$$p(ULR|Inc) \propto p(ULR)L(Inc;ULR)$$

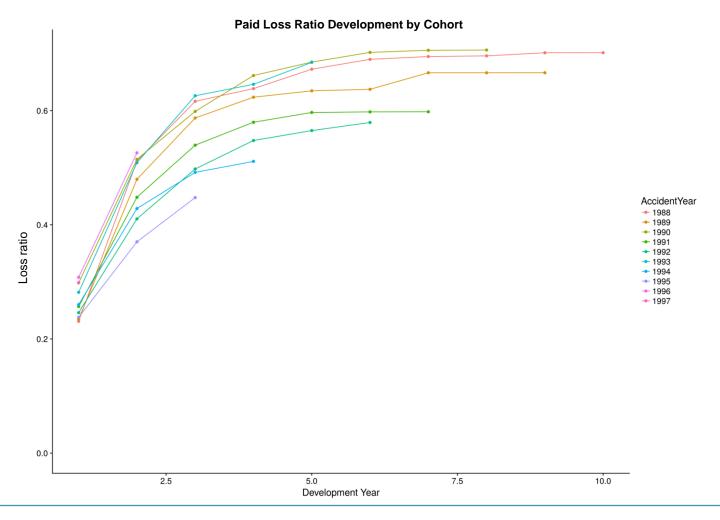
ULR unknown & probability modelled

Application: Loss Development Models

Cumulative losses by Cohort



Loss Ratios by Cohort



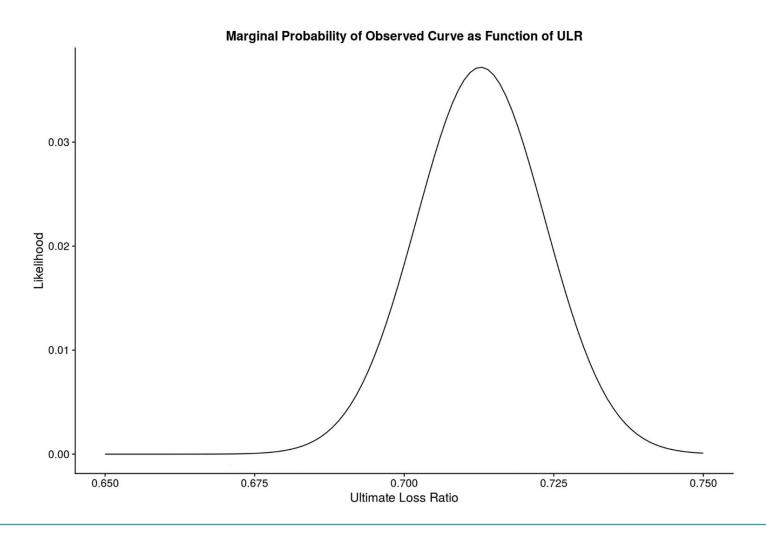
A Potential Model

Loss(t) = Premium × Ultimate Loss Ratio × GF(t)

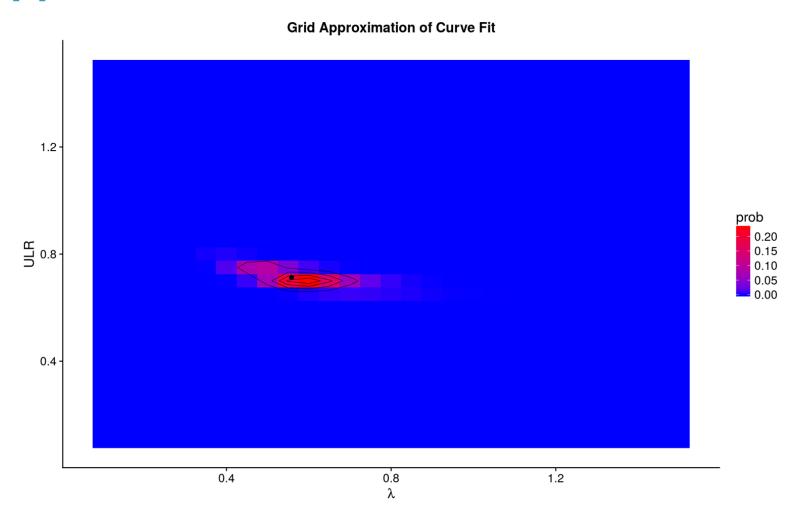
- Model growth function as Weibull or Log-logistic
- Clark (2003)

25 October 2017

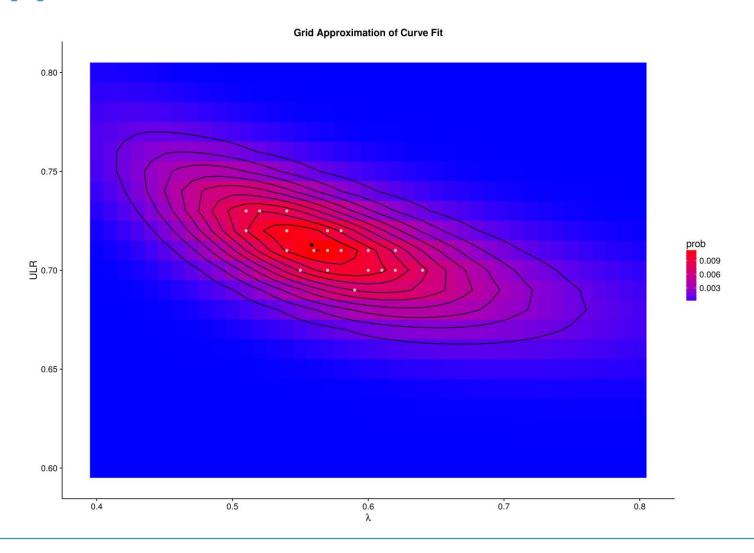
Grid Approximation



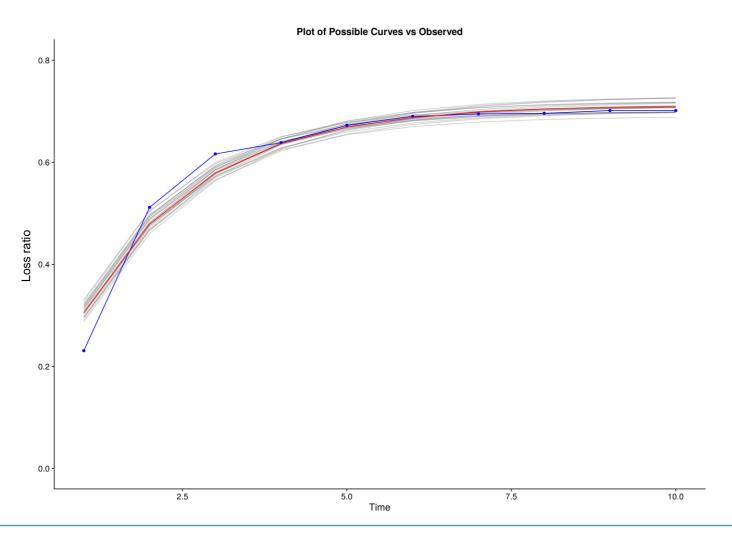
2D Grid Approximation



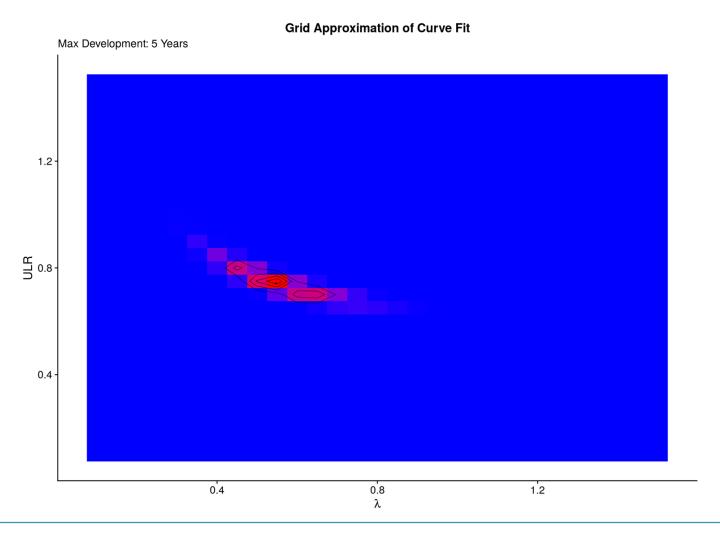
2D Grid Approximation



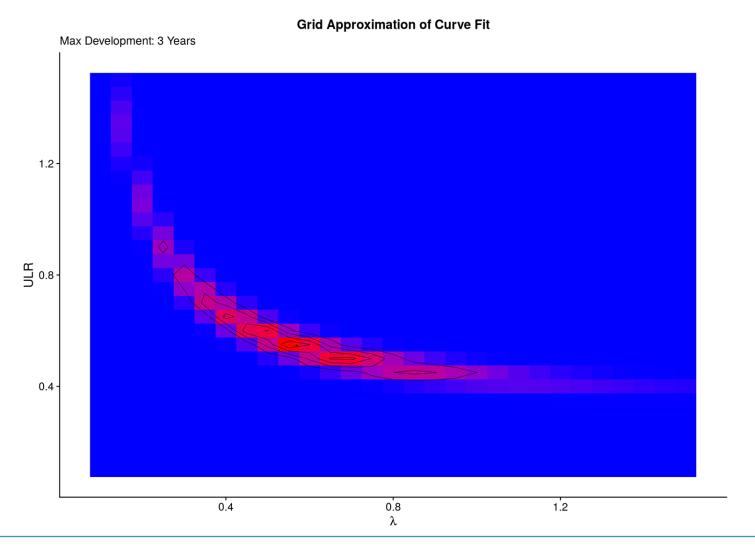
Observed vs Fitted Loss Ratio Development



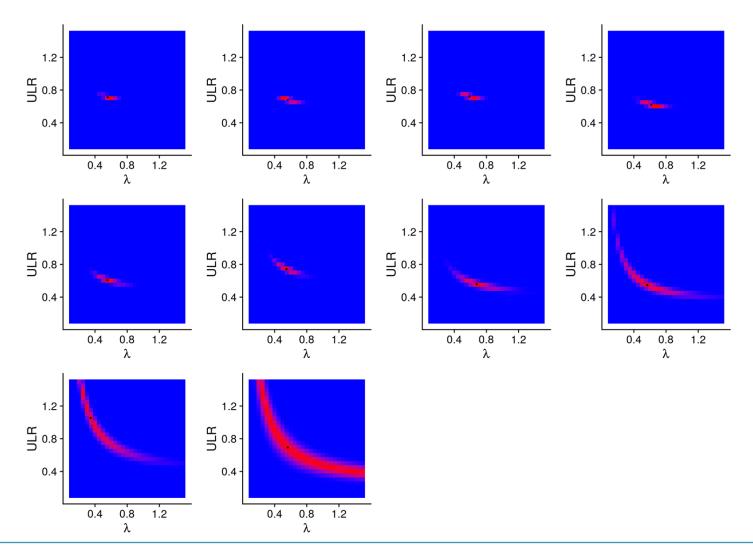
5 Years of Development Only



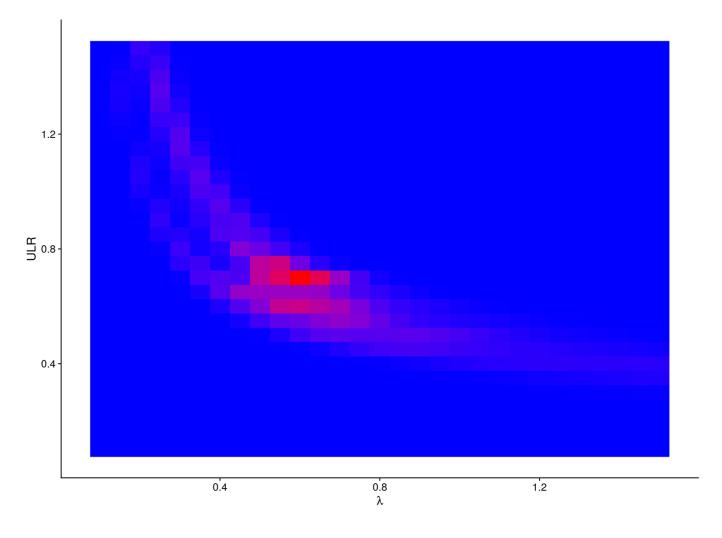
3 Years of Development



Different Accident Years



Sum of all Accident Years



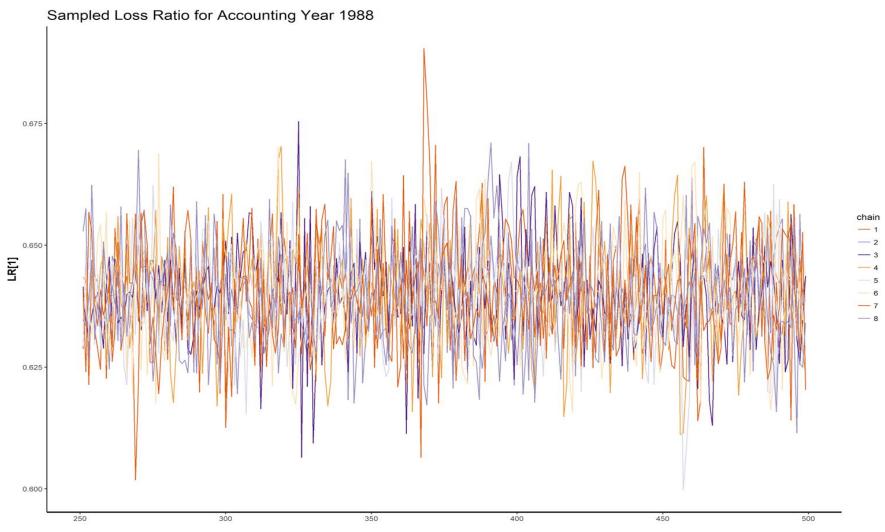
Hierarchical Model Specification

```
\begin{aligned} \text{Loss}(Y,t) &\sim \text{Normal}(\mu(Y,t),\,\sigma_Y) \\ \mu(Y,t) &= \text{Premium}(Y) \times \text{LR}(Y) \times \text{GF}(t) \\ \sigma_Y &= \text{Premium}(Y) \times \sigma \\ \text{LR}_Y &\sim \text{Lognormal}(\mu_{LR},\sigma_{LR}) \\ \mu_{LR} &\sim \text{Normal}(0,0.5) \end{aligned}
```

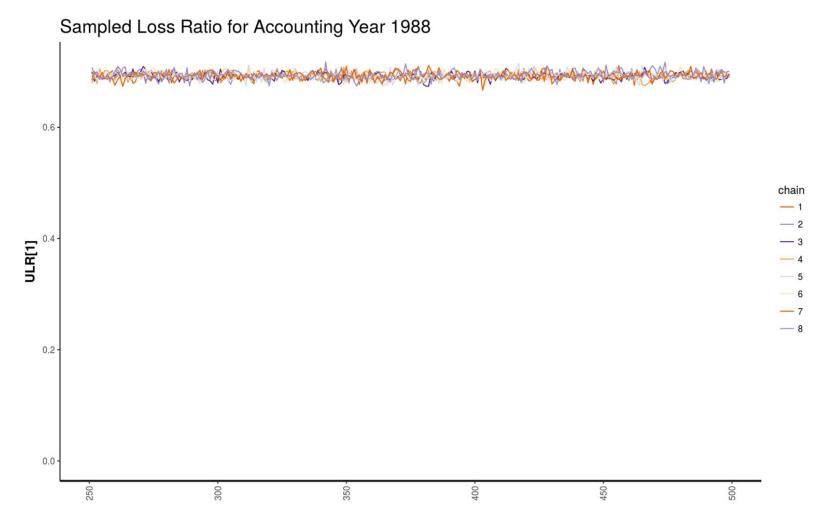
Posterior Sampling

- High-dimensional integrals
- Computationally infeasible
- Sample instead
- Stan (mc-stan.org)
- Hamiltonian Monte Carlo

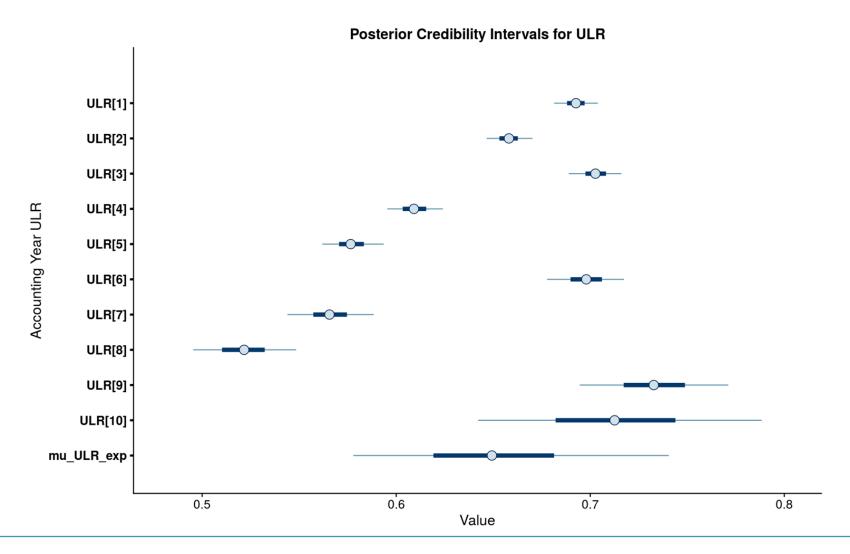
Outputs of MCMC



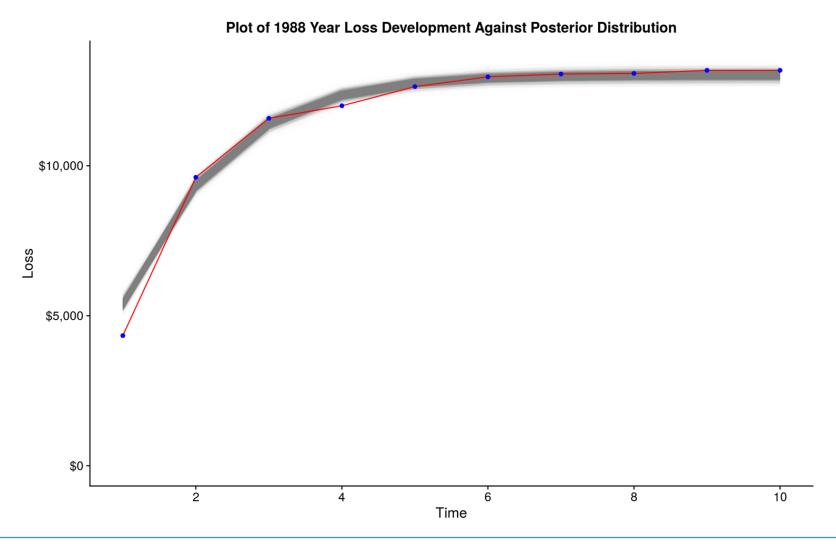
Outputs of MCMC



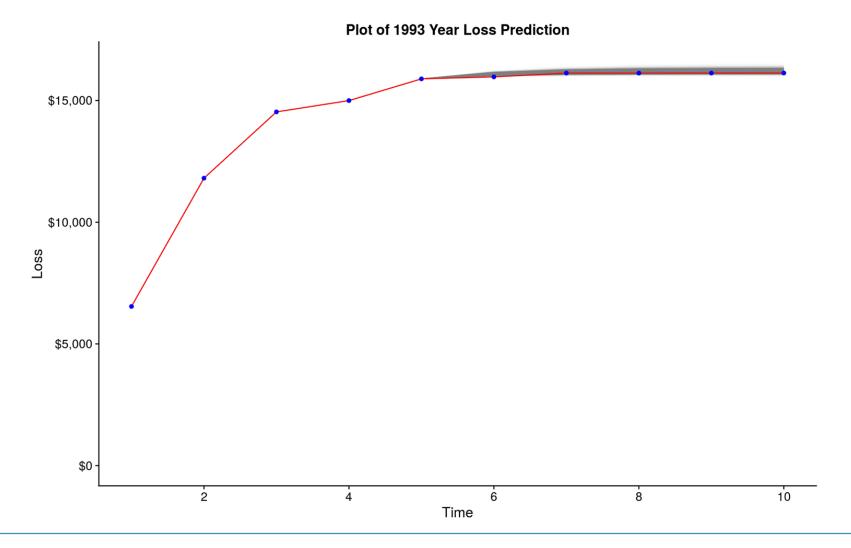
Parameter Inference



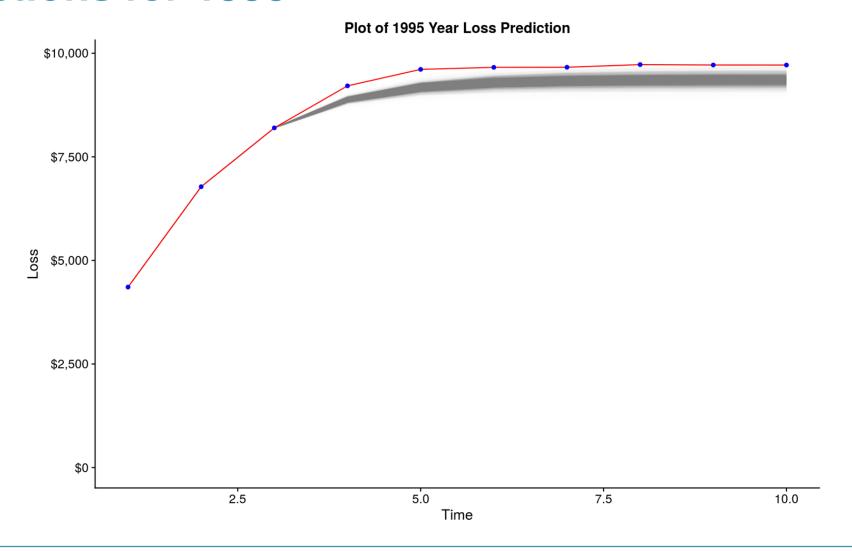
Sanity Check for 1988



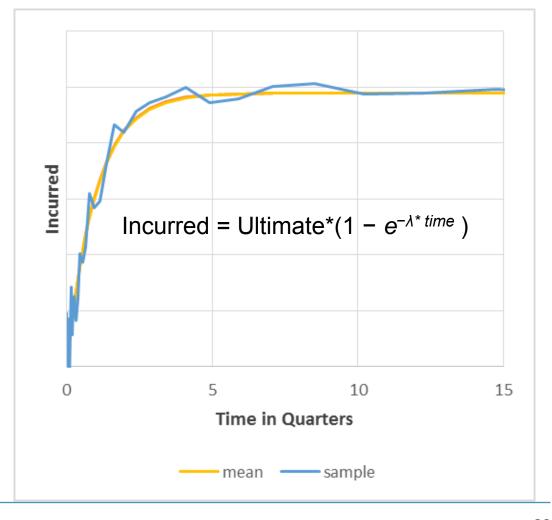
Predictions for 1993



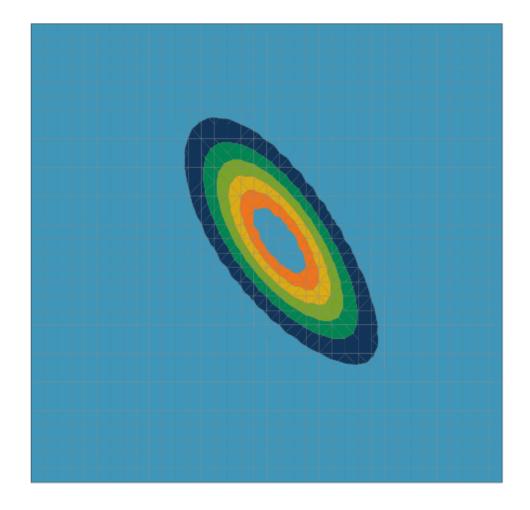
Predictions for 1995



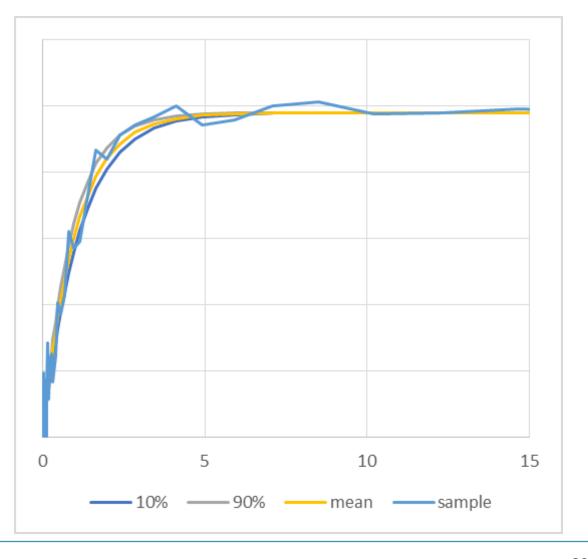
- We have seen how a time varying development pattern can be approximated using a CDF like curve.
- Relatively low number of parameters are needed.
- The example shown is for:
 - an exponential CDF fit
 - 2 parameters: Ultimate and Lambda.



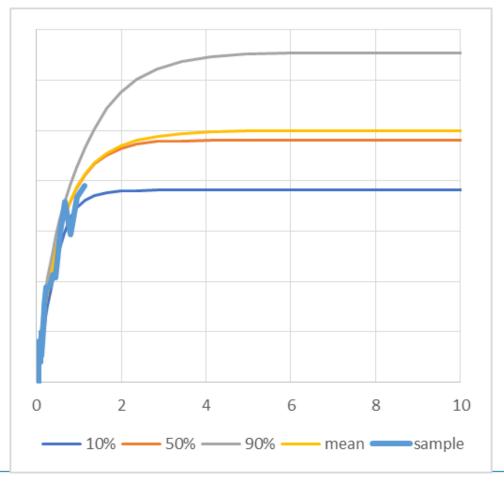
- Parameter Uncertainty can be represented using the likelihood function (of MLE fame).
- Presented here on a grid.
- MLE would be in the centre.



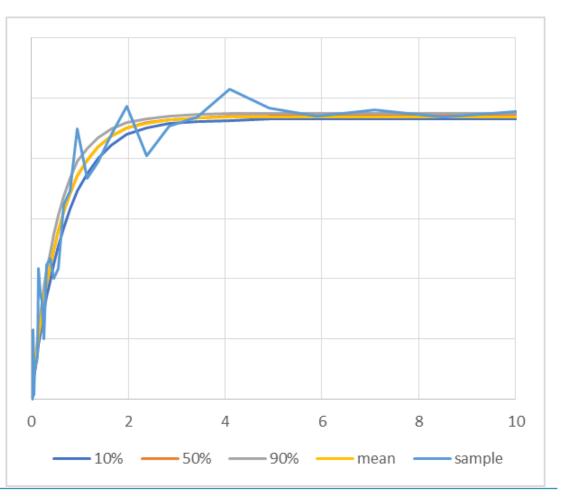
- Sampling is conducted on the Likelihood distribution
- Sample development curves give an envelope of reasonable development patterns that fit the data.



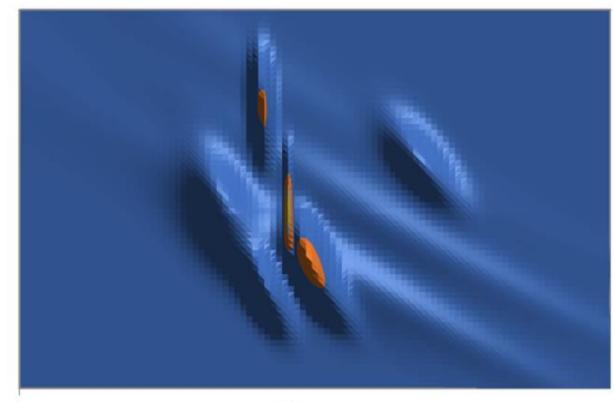
• Less data creates more uncertainty.



More data creates less uncertainty.

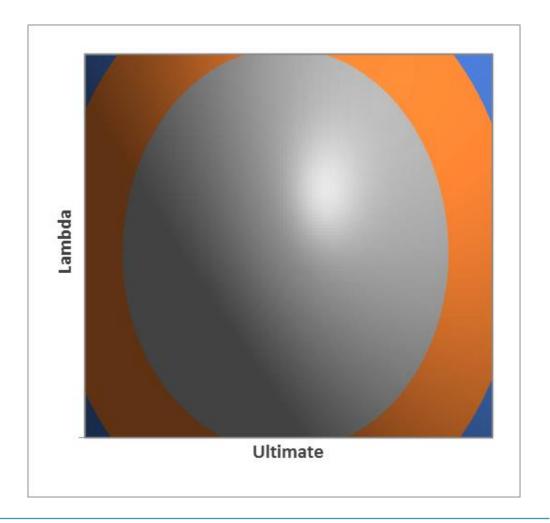


- Sharing credibility from year to year is incorporated using a prior.
- One method is to think of the prior years as samples "what might happen" for a new year.
- So the "sum" of previous years is a suggestion for a new year i.e. a prior.
- 14 years of data shown here as an example.
- Perhaps there is a better way?

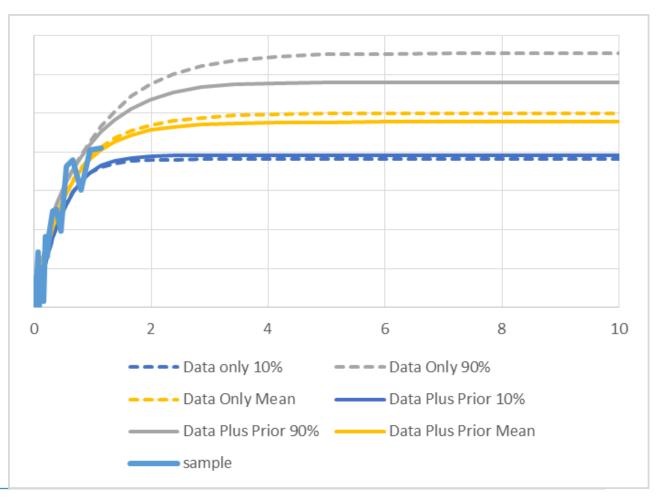


Ultimate

- The prior is better approximated as a smooth distribution.
- A lognormal prior for Lambda and Ultimate are shown here.
- The prior can be fitted as part of a hierarchical model.

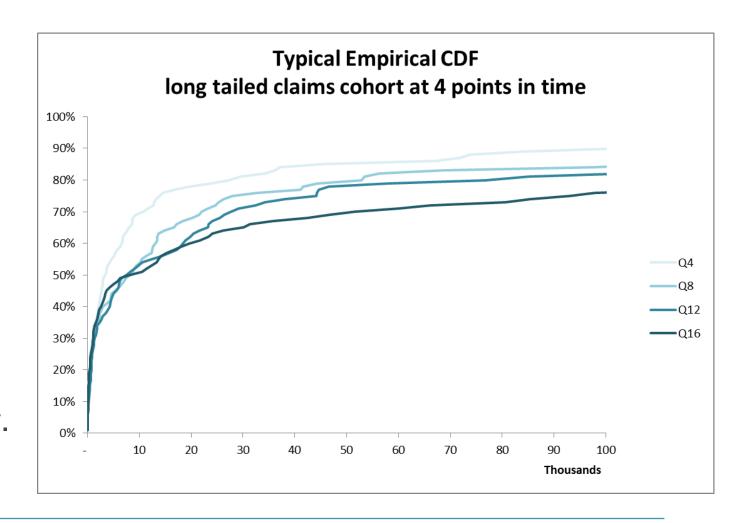


- Applying a prior based on other years lends credibility to a year with limited samples.
- Reduced mean and spread can result when a combination of the prior and data are used to estimate the range of reasonable ultimates.



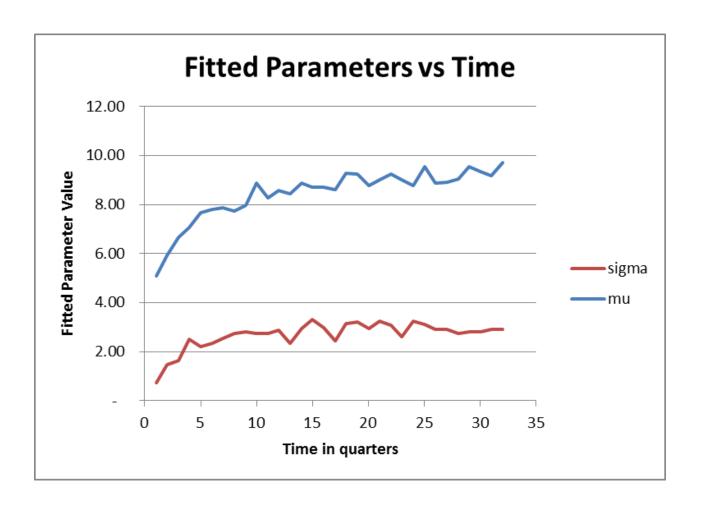
Extensions

- Instead of tracing the path of "incurred" development we can trace the path of some other parameters.
- Opposite is the path of a typical AY cohort of 100 claims as they develop.
- Mean and standard deviation tend to increase with time as heavier claims are reported later.



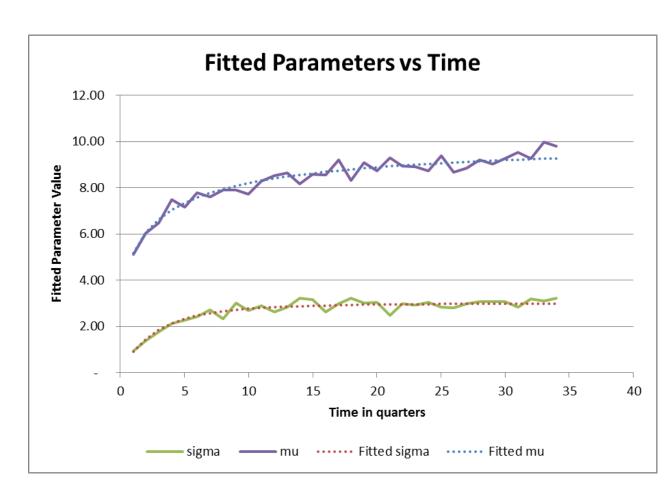
Time series of fitted parameters

- This behaviour can be represented as a trend in the fitted parameters.
- Here we fit a lognormal at each point in time and plot the parameters.
- Mu and Sigma trend much like a development curve.



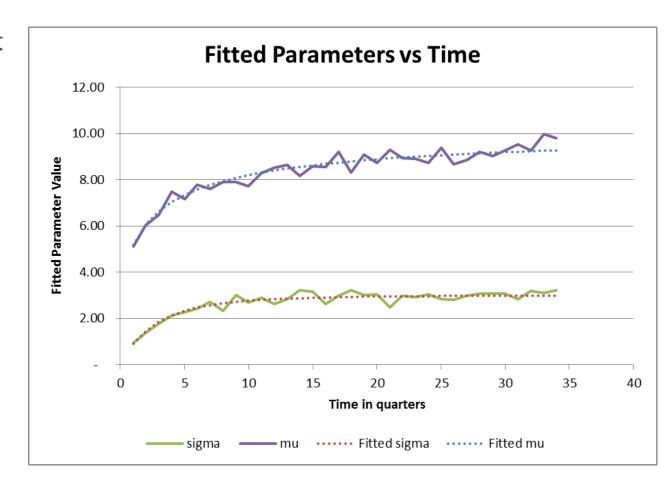
Time series regression

- This behaviour can be modelled with a growth curve.
- Here mu and sigma are fitted using a lognormal CDF with a start and end parameter.
- For example:
 - Mu = start + (end-start)*LNCDF(mu_{development}, sigma_{development})
- In this case the "ultimate" distribution of claims are given by the ultimate mu and sigma (the "end" parameter).



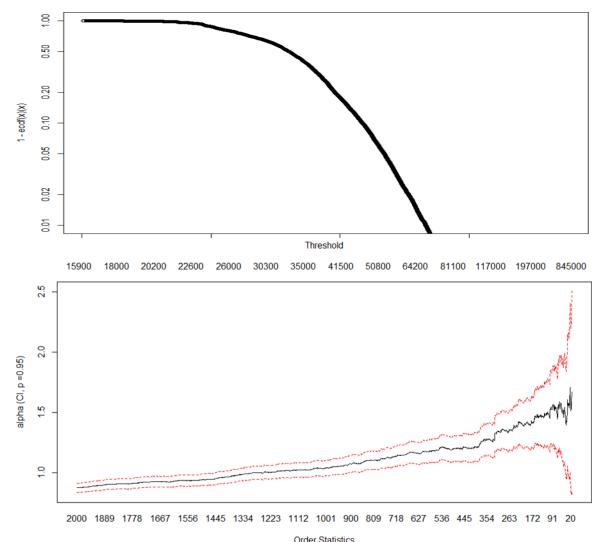
Time series regression

- Such a model does not require development factors.
- Bayesian techniques are best used to estimate mu and sigma.
- The ultimate expected mu and sigma are then given with parameter uncertainty.
- Recent years where there is limited data would utilise a credible prior based on previous years as before.



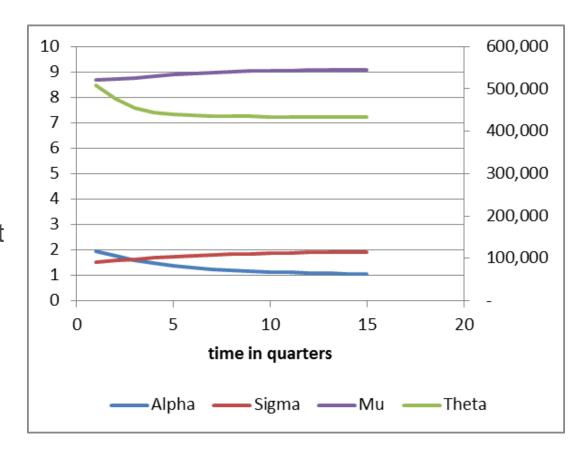
Further extensions to treat extreme events

- Some loss data may be described using Extreme Value Theory type distributions.
- A typical plot is a log-log survival plot or Hill plot shown opposite.
- Linear behaviour on the upper plot would better be modelled by a Pareto distribution.
- A Hill plot (lower right) would show stable fitted alpha above some level.



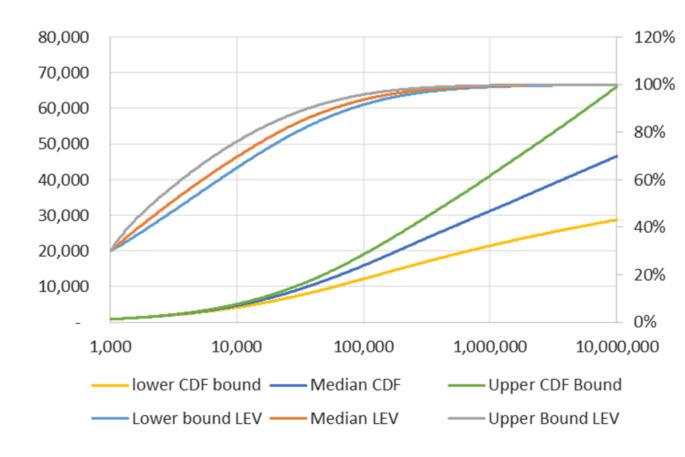
Fitting a Lognormal-Pareto distribution

- The method for fitting a lognormal distribution with a Pareto tail is outlined by Teodorescu, S. (2009).
- The model has three parameters:
 - Alpha, the Pareto distribution parameter
 - Theta, the level at which the Pareto distribution will be fitted
 - Sigma, one of the lognormal parameters
- Other parameters are fixed due to the requirement for the distributions to be continuous and smooth at theta.
- These three parameters are modelled through time just as mu and sigma previously.
- An example fit is shown opposite.



Estimating Ultimate CDF/LEV for a Typical Dataset

- After MCMC we calculate fitted CDFs and LEVs with error bounds.
- Of note is the level of error in the LEV (and therefore any ILF) for the upper layers.



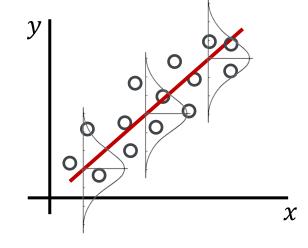
Summary

- Long tailed claims can be modelled as a distribution that changes through time to some ultimate position.
- Each parameter of the distribution can be modelled through time using a growth curve.
- A Lognormal distribution with a Pareto distribution acting in the tail may be useful for including treatment for extreme events seamlessly in your severity model.
- Hierarchical models are useful for projecting undeveloped claims without development factors.
- MCMC methods can provide reasonable measures of uncertainty for parameters such as portfolio ILFs.
- Uncertainty in ILFs may then be useful for credibility based pricing for excess layers using frequency/severity models.

- Ordinary Least Squares (OLS)
- Independent variables (X), parameters (β)

$$y = \beta X + \epsilon$$
$$\epsilon \sim \mathcal{N}(0, \sigma^2)$$

Restate as a probability model:



- Data are modelled as Normal with mean βX and variance σ^2
 - Equivalent, yet more intuitive

Auto claims data:

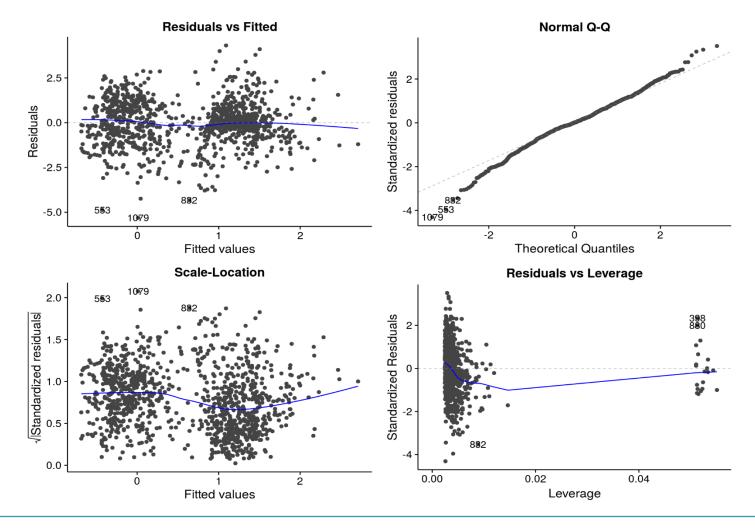
log_loss	lawyer	gender	seatbelt	age
3.6	yes	male	yes	50
2.4	no	female	yes	28
-1.1	no	male	yes	5
2.4	yes	male	no	32
-2.0	no	male	yes	30
		•••		

Linear model for loss cost:

$$log_loss = \beta_0 + \beta_1 lawyer + \beta_2 gender + \beta_3 seatbelt + \beta_4 age$$

• R implementation:

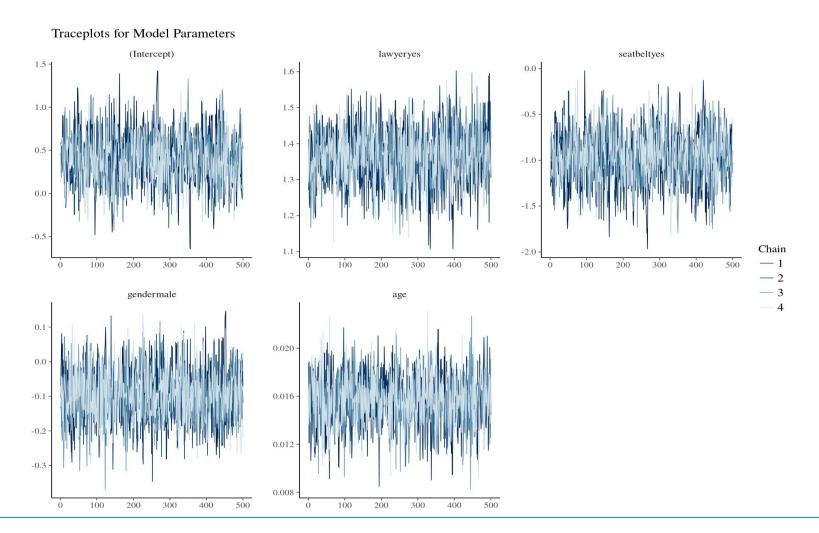
model_lm <- lm(log_loss ~ lawyer + seatbelt + gender + age, data = data)

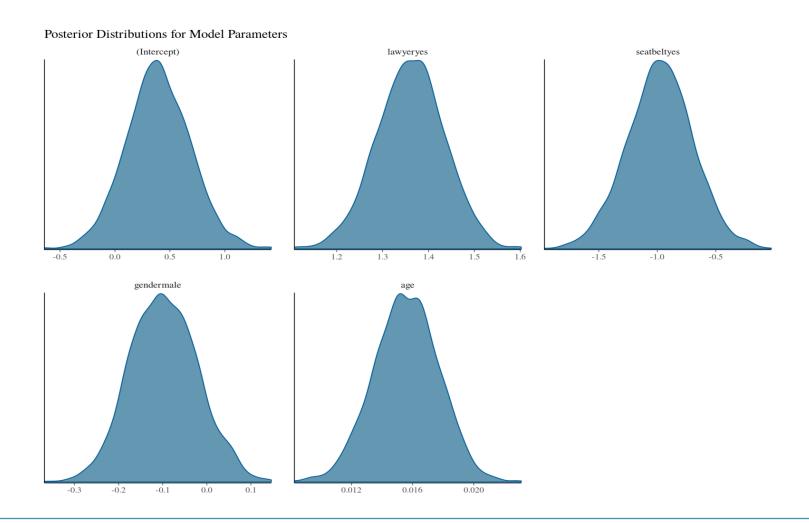


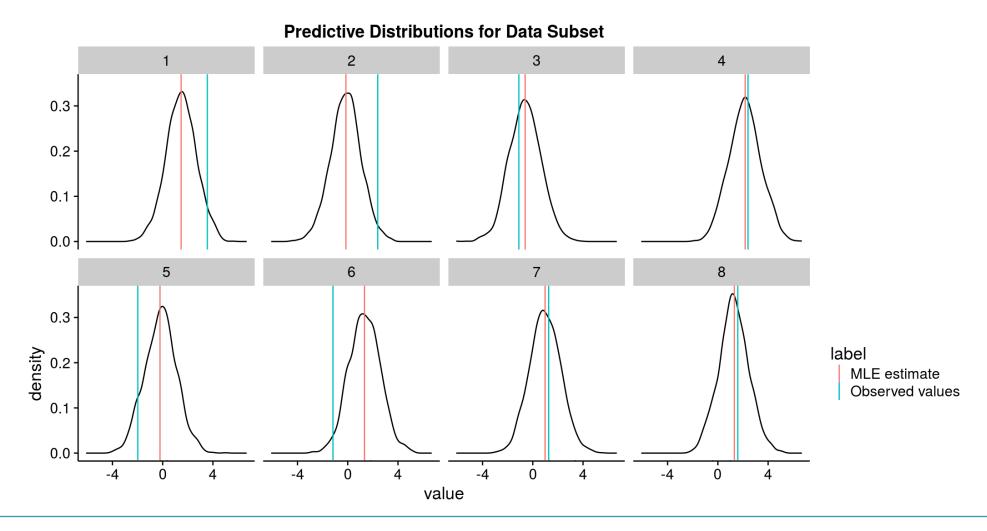
- Bayesian version?
 - Setting up from scratch in Stan → time/effort
- R package 'rstanarm' reduces coding requirements
 - Pre-built Stan models (e.g. linear models, GLMs, ANOVA…)
 - R syntax relatively simple:

```
model_stanlm <- stan_lm(log_loss ~ lawyer + seatbelt + gender + age,
prior = R2(location = 0.8),
data = data)
```

Offers various outputs...







Conclusions

- Bayesian methods offer a variety of benefits
 - Reflect uncertainty, model flexibility, external data/judgement, hierarchical models, ...
- Numerous potential actuarial applications
 - Reserving, pricing, profitability studies, portfolio optimisation, ...
- Learning curve → 'rstanarm' a good place to start

"Scientific disciplines from astronomy to zoology are moving to Bayesian data analysis. We should be leaders of the move, not followers."

- John K. Kruschke (2010)

49

Further Reading

Hierarchical Growth Curve Models for Loss Reserving - Guszcza (CAS Forum 2008)

Hierarchical Compartmental Models for Loss Reserving - Morris (CAS E-Forum, Summer 2016)

On the Truncated Composite Lognormal-Pareto Model - Teodorescu (2009)

Doing Bayesian Data Analysis - John Kruschke

Statistical Rethinking - Richard McElreath

Data Analysis Using Regression and Multi-level/Hierarchical Models - Gelman and Hill

An Introduction to Statistical Learning - Tibshirani and Hastie

<u>Stan Documentation</u> - (tutorials, case studies, etc)

Modelling Loss Curves in Insurance with RStan (Stan Case Study) - Cooney

Open Actuarial - Various

Questions Comments

The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFoA. The IFoA do not endorse any of the views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this [publication/presentation] be reproduced without the written permission of the IFoA [or authors, in the case of non-IFoA research].