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“Modern Bayesian methods provide richer information, with
greater flexibility and broader applicability than 20th century
methods.

Bayesian methods are intellectually coherent and intuitive
...[and] readily computed...”

John K. Kruschke
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Introduction to Bayesian methods

 Actuarial work is fundamentally assumptions-based:

— Data + Models + Judgements, = Predictions < > Assumptions
J
Assumptions

- Key challenge: updating assumptions as new information arises
— Are existing assumptions still relevant?

— To what extent should we react? Are we consistent?
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Introduction to Bayesian methods

- Standard actuarial problems — credibility theory:

Estimate = ZX; + (1 — Z)u

* OK, but we might also like...
— Model flexibility, e.g. nonlinearities, time-series, ...

— Full distribution of estimates (reflecting uncertainty in X; & p):

“Given [our] estimate of future payments and ...
current state of knowledge, what is the probability that final
payments will be no larger than the given value?”
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Introduction to Bayesian methods

- Bayes’ theorem (probability):
P(ANnB) P(B|A)P(4)

P(A|B) =
(415) P(B P(B

- Bayes’ theorem (inference):

* For actuaries:

p(61X) o« p(6)L(X; 0)

Posterior o¢ Prior x Likelihood

p(ULR|Inc) « p(ULR)L(Inc; ULR)

Events

RVs
(Data are fixed)

ULR unknown & probability
modelled
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Application: Loss Development Models
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Cumulative losses by Cohort

Cumulative Paid Development by Cohort
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Loss Ratios by Cohort

Loss ratio
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A Potential Model

Loss(t) = Premium X Ultimate Loss Ratio x GF(t)

* Model growth function as Weibull or Log-logistic
» Clark (2003)
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Grid Approximation
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Likelihood
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2D Grid Approximation

Grid Approximation of Curve Fit
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2D Grid Approximation

Grid Approximation of Curve Fit
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Observed vs Fitted Loss Ratio Development

Plot of Possible Curves vs Observed
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5 Years of Development Only

Grid Approximation of Curve Fit

Max Development: 5 Years
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3 Years of Development

Grid Approximation of Curve Fit

Max Development: 3 Years
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Different Accident Years
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Sum of all Accident Years
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Hierarchical Model Specification

Loss(Y,t) ~ Normal(u(Y,t), oy)
u(Y,t) = Premium(Y) x LR(Y) x GF(t)
o, = Premium(Y) x o
LR, ~ Lognormal(y, r,0r)
U r ~ Normal(0,0.5)
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Posterior Sampling

« High-dimensional integrals
« Computationally infeasible
e Sample instead

e Stan (mc-stan.orq)

« Hamiltonian Monte Carlo
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Outputs of MCMC
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Outputs of MCMC

Sampled Loss Ratio for Accounting Year 1988
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Parameter Inference
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Sanity Check for 1988

Plot of 1988 Year Loss Development Against Posterior Distribution
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Predictions for 1993

Plot of 1993 Year Loss Prediction
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Predictions for 1995
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Recap

- We have seen how a time varying
development pattern can be
approximated using a CDF like
curve.

* Relatively low number of parameters
are needed.

Incurred

Incurred = Ultimate*(1 — e™"time )

« The example shown is for:
— an exponential CDF fit

— 2 parameters: Ultimate and Lambda. 0 5 10 15

Time in Quarters

mean sample
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Recap

« Parameter Uncertainty can be
represented using the likelihood
function (of MLE fame).

* Presented here on a grid.

« MLE would be in the centre.

25 October 2017
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Recap

« Sampling is conducted on the
Likelihood distribution

- Sample development curves give an
envelope of reasonable development
patterns that fit the data.

—_—10% =—90%

10

mean

sample

15
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Recap

 Less data creates more uncertainty.

10%

25 October 2017

50%

90%

8 10

mean —sample

29



Recap

- More data creates less uncertainty.

2 -
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Recap

 Sharing credibility from year to year
IS Incorporated using a prior.

* One method is to think of the prior
years as samples “what might
happen” for a new year.

Lambda

* So the “sum” of previous years is a
suggestion for a new year i.e. a prior.

« 14 years of data shown here as an
example.

* Perhaps there is a better way?

Ultimate
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Recap

* The prior is better approximated as a
smooth distribution.

* A lognormal prior for Lambda and
Ultimate are shown here.

» The prior can be fitted as part of a
hierarchical model.

Lambda

Ultimate
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Recap

* Applying a prior based on other
years lends credibility to a year with
limited samples.

* Reduced mean and spread can
result when a combination of the
prior and data are used to estimate
the range of reasonable ultimates.

T T T T T L
- -
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2 4 b 8 10

= = = = [ata only 10% = = = = Data Only 90%
Data Only Mean

Data Plus Prior 10%

Data Plus Prior 90% Data Plus Prior Mean

e SaMple
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Extensions

* Instead of tracing the path of
“incurred” development we can
trace the path of some other
parameters.

* Opposite is the path of a typical
AY cohort of 100 claims as they
develop.

« Mean and standard deviation
tend to increase with time as

heavier claims are reported later.

Typical Empirical CDF

long tailed claims cohort at 4 points in time
100% -

90% -

0%
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Time series of fitted parameters

* This behaviour can be
represented as a trend in the
fitted parameters.

- Here we fit a lognormal at each
point in time and plot the
parameters.

* Mu and Sigma trend much like a
development curve.

Fitted Parameter Value
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Time series regression

* This behaviour can be modelled with
a growth curve.

* Here mu and sigma are fitted using
a lognormal CDF with a start and
end parameter.

* For example:

— Mu = start + (end-start)*
I—NCDF(mudevelopment’Sis.:]madevelopment)

* |n this case the “ultimate” distribution
of claims are given by the ultimate

mu and sigma (the “end” parameter).
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Time series regression

« Such a model does not require development
factors.

« Bayesian techniques are best used to
estimate mu and sigma.

« The ultimate expected mu and sigma are
then given with parameter uncertainty.

« Recent years where there is limited data
would utilise a credible prior based on
previous years as before.
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Further extensions to treat extreme events

1.00

050
I

» Some loss data may be described using
Extreme Value Theory type distributions.

1 - ecdfix)(x)

A typical plot is a log-log survival plot or Hill
plot shown opposite.

005 010 020
|

 Linear behaviour on the upper plot would

001 002

better be modelled by a Pareto distribution. | | Trestor

15900 18000 20200 22600 26000 30300 35000 41500 50800 64200 81100 117000 197000 845000

25

« A Hill plot (lower right) would show stable fitted i
alpha above some level. |

20

alpha (Cl, p =0.95)
15

1.0

2000 1889 1778 1667 1556 1445 1334 1223 1112 1001 900 809 718 627 536 445 354 263 172 91 20

Order Statistics

25 October 2017 38



Fitting a Lognormal-Pareto distribution

« The method for fitting a lognormal distribution with

a Pareto tail is outlined by Teodorescu, S. (2009).

10 600,000
. : 9 - -
The model has three parameters: N — 500,000
— Alpha, the Pareto distribution parameter 7 400,000
— Theta, the level at which the Pareto distribution will be fitted 6
_ 5 300,000
— Sigma, one of the lognormal parameters a
. . - 200,000
- Other parameters are fixed due to the requirement | 3
. : 2 — - 100,000
for the distributions to be continuous and smooth A _— '
at theta. 0 . | . -
0 5 10 15 20
« These three parameters are modelled through time in quarters
time just as mu and sigma previously.
.o i = Alpha Sigma Mu =—Theta
« An example fit is shown opposite.

25 October 2017 39



Estimating Ultimate CDF/LEV for a Typical Dataset

« After MCMC we calculate fitted CDFs and  go000 120%
LEVs with error bounds. 70,000 oo
« Of note is the level of error in the LEV (and 60,000
therefore any ILF) for the upper layers. 50,000 80%
40,000 60%
30,000 40%
20,000
10,000 20%
0%
1,000 10,000 100,000 1,000,000 10,000,000
lower CDF bound Median CDF —— Upper CDF Bound

Lower bound LEV

Median LEV —— Upper Bound LEV
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Summary

* Long tailed claims can be modelled as a distribution that changes through time to some
ultimate position.

- Each parameter of the distribution can be modelled through time using a growth curve.

* A Lognormal distribution with a Pareto distribution acting in the tail may be useful for including
treatment for extreme events seamlessly in your severity model.

« Hierarchical models are useful for projecting undeveloped claims without development factors.

- MCMC methods can provide reasonable measures of uncertainty for parameters such as
portfolio ILFs.

« Uncertainty in ILFs may then be useful for credibility based pricing for excess layers using
frequency/severity models.
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Getting started

* Ordinary Least Squares (OLS)

» Independent variables (X), parameters (f3)

y
0]
0]
- Restate as a probability model: GB)’O
o)
7
y ~N(BX,0%) x

- Data are modelled as Normal with mean fX and variance ¢

— Equivalent, yet more intuitive
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Getting started

« Auto claims data:

Iog_lossé lawyer gender seatbelt age
3.6 | yes | male | yes .50
24 | no | female | yes | 28
1.1 no | male | yes | 5
2.4 | yes | male no . 32

20 ¢ no | male | yes | 30

* Linear model for loss cost:
log_loss = By + Bilawyer + B,gender + B3seatbelt + [3,age
* R implementation:

model _Im <- Im(log_loss ~ lawyer + seatbelt + gender + age,
data = data)
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Getting started
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Getting started

- Bayesian version?

— Setting up from scratch in Stan — time/effort

* R package ‘rstanarm’ reduces coding requirements
— Pre-built Stan models (e.g. linear models, GLMs, ANOVA...)
— R syntax relatively simple:
model_stanlm <- stan_Im(log_loss ~ lawyer + seatbelt + gender + age,

prior = R2(location = 0.8),
data = data)

» Offers various outputs...

31 October 2017
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Getting started
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Getting started

Posterior Distributions for Model Parameters

(Intercept)

gendermale

lawyeryes

seatbeltyes
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Getting started

Predictive Distributions for Data Subset
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Conclusions

- Bayesian methods offer a variety of benefits

— Reflect uncertainty, model flexibility, external data/judgement, hierarchical models,

* Numerous potential actuarial applications

— Reserving, pricing, profitability studies, portfolio optimisation, ...

* Learning curve — ‘rstanarm’ a good place to start

“Scientific disciplines from astronomy to zoology are moving to Bayesian
data analysis. We should be leaders of the move, not followers. ”

- John K. Kruschke (2010)
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Further Reading

Hierarchical Growth Curve Models for Loss Reserving - Guszcza (CAS Forum 2008)

Hierarchical Compartmental Models for Loss Reserving - Morris (CAS E-Forum, Summer 2016)

On the Truncated Composite Lognormal-Pareto Model - Teodorescu (2009)

Doing Bayesian Data Analysis - John Kruschke

Statistical Rethinking - Richard McElreath

Data Analysis Using Regression and Multi-level/Hierarchical Models - Gelman and Hill

An Introduction to Statistical Learning - Tibshirani and Hastie

Stan Documentation - (tutorials, case studies, etc)

Modelling Loss Curves in Insurance with RStan (Stan Case Study) - Cooney

Open Actuarial - Various
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The views expressed in this [publication/presentation] are those of invited contributors and not necessarily those of the IFOA. The IFOA do not endorse any of the
views stated, nor any claims or representations made in this [publication/presentation] and accept no responsibility or liability to any person for loss or damage
suffered as a consequence of their placing reliance upon any view, claim or representation made in this [publication/presentation].

The information and expressions of opinion contained in this publication are not intended to be a comprehensive study, nor to provide actuarial advice or advice of
any nature and should not be treated as a substitute for specific advice concerning individual situations. On no account may any part of this
[publication/presentation] be reproduced without the written permission of the IFOA [or authors, in the case of non-IFoA research].
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