The Actuarial Profession making financial sense of the future

The Cairns-Blake-Dowd Model

Andrew Cairns Maxwell Institute & Heriot-Watt University David Blake Pensions Institute & Cass Business Schoo Kevin Dowd Nottingham University Business School

April 2008

Plan for Talk

- Introductory remarks
- The Cairns-Blake-Dowd (CBD) model
 Pros and cons
- Assessment criteria
- Extension to include a cohort effect
- Backtesting

The Actuarial Profession making financial sense of the fu

Introduction - CBD Model

- Model designed for:
 - Annuities and pensions longevity risk
 - Not for short-term mortality risk
- Model for mortality at higher ages
- CBD model:
 - exploits relative simplicity of mortality curve at higher ages
 - Not designed for lower ages

The Actuarial Profession

Introduction

- Pensions e.g. 30 year old
 - Uncertainty in value of deferred annuity is mostly affected by post-60 mortality
 - Model for mortality below age 60 is relatively unimportant
 - E.g. Prob(Survival to age 60) = 0.96 with St.Dev. 0.005

The Actuarial Profession making financial sense of the fi

Background

- Part of wider LifeMetrics research programme
 - Comparison of 8 models
 - Within sample fit
 - Out of sample performance/backtesting
 - Development of new models
- Focus here on specific models we have developed

Introduction

- Why do we need stochastic mortality models?
- Data => future mortality is uncertain
- Good risk management
- Setting risk reserves
- Annuity contracts with embedded options
 E.g. guaranteed annuity options
- Pricing and hedging longevity-linked securities
- E.g. q-forwardsMany models to choose from:
 - Limited data => model and parameter risk

The Actuarial Profession making financial sense of the fu

Measures of mortality

- q(t,x) = underlying mortality rate:
 in year t at age x
- m(t,x) = underlying death rate
- Poisson model:
- Actual deaths:
- $D(t,x) \sim independent \operatorname{Poisson}(m(t,x)E(t,x))$
- E(t,x) = central exposed to risk

The Actuarial Profession making financial sense of the fu

Need good mortality forecasting model

- 'Process-based' models
 - Model process of dying
 - Not used much yet
- 'Explanatory' or 'causal' models
 - Model causes of death
 - e.g. heart disease or socio-economic factors
 - Not used much yet, but post-code modelling more common
- 'Extrapolative' projection models
 - Will only be reliable if the past trends continue:
 - Medical advances can invalidate extrapolative projections by changing the trend

The Actuarial Profession

Models	
Lee-Carter (1992) LC	
$\log m(t,x) = \beta_x^{(1)} + \beta_x^{(2)} \kappa_t^{(2)}$	
Cairns-Blake-Dowd (2006) CBD-1	
$\operatorname{logitq}(t,x) = \kappa_t^{(1)} + (x-\bar{x})\kappa_t^{(2)}$	
Cairns et al. (2007) CBD-2	
$\operatorname{logit}_q(t,x) =$	
$\kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)} + \left((x - \bar{x})^2 - \sigma_x^2\right)\kappa_t^{(3)} + \gamma_t^{(3)}$	[4) - x → tuture

The Actuarial Profession making financial sense of the fu

How to compare stochastic models

- Quantitative criteria
 - Log-likelihood; BIC
 - Pattern of standardised residuals (i.i.d. ???)
- Qualitative criteria
 - Robust relative to age and period range
 - Biologically reasonable

Suitability for specific applications

The Actuarial Profession making financial sense of the fu

Models - LC	
Lee-Carter (1992) LC	
$\log m(t, x) = \beta_x^{(1)} + \beta_x^{(2)} \kappa_t^{(2)}$	
Cairns-Blake-Dowd (2006) CBD-1	
$\mathrm{logit}q(t,x) = \kappa_t^{(1)} + (x-\bar{x})\kappa_t^{(2)}$	
Cairns et al. (2007) CBD-2	
$\operatorname{logit} q(t,x) =$	
$\kappa_t^{(1)} + (x - \bar{x})\kappa_t^{(2)} + \left((x - \bar{x})^2 - \sigma_x^2\right)\kappa_t^{(3)} + \gamma_{t-x}^{(4)}$	e future

Backtesting

- Forecasts of 2004 mortality rates
- Fixed forecast date 2004
- Data: 1960-1980
- Forecast for 2004
- Data: 1961-1981
 - Forecast for 2004
- ...
- Data: 1973-2003
 - Forecast for 2004

The Actuarial Profession making financial sense of the fu

Conclusions

- · Results between models are reasonably consistent
- Backtesting:
 - No model emerges as obviously better
- · Eg general year-on-year noise swamps subtlety of cohort effect Revert to other criteria:
- Quantitative and qualitative
- Recapitulation:
 - CBD-2 is a good, robust model for higher ages
 - CBD-1 good at modelling the bigger picture
 - Alternatives or adaptations needed for lower ages

The Actuarial Profe

References

- Cairns, Blake and Dowd (2006)
- A two-factor model for stochastic mortality: Theory and calibration. J. Risk and Insurance, 73: 687-718 Cairns, Blake, Dowd, Coughlan, Epstein, Ong and Balevich (2007) . A quantitative comparison of stochastic mortality models using data from England and Wales and the United States. Working paper, Pensions Institute and Heriot-Watt University.
- Cairns, Blake, Dowd, Coughlan, Epstein and Khalaf-Allah (2008) Mortality density forecasts: an analysis of six stochastic mortality models. Working paper, Pensions Institute and Heriot-Watt University.

See:

http://www.ma.hw.ac.uk/~andrewc/papers/ http://www.pensions-institute.org/papers.html i

The Actuarial Profess