CASH MECHANICS OF PROPORTIONAL TREATIES

BY
P. N. MATTHEWS

CONTENTS

1. Introduction
2. Computer Model
3. Main Results
4. General Observations
5. Conclusion
6. Graphs
7. Appendices
1.1 When the Underwriter is presented with a slip covering reinsurance of a primary carrier on the basis of a proportional treaty he has no great scope for negotiation.
1.4 The emergence of claims of a special type, however, may well influence the results somewhat more greatly. A winter of bad weather could be one such cause. Such factors may possibly be covered by catastrophe excess loss protections, which may be inbuilt to the treaty.
deciding whether to accept the Risk are:-
(a) General underwriting results for primary carriers overall on that class of business world-wide and, in particular, within the country concerned.
(b) The primary carrier's own record and its managerial capability.
(c) Any legislation in the country concerned that might bear on underwriting results;pressures of consumerism, social attitudes and attitudes of the courts.
(d) Whether legislation requires the retention of premium reserves and how outstanding losses are to be covered.
(e) Inflation rates, strength of the currency, delays in settlement.
(f) The standing of the Broker bringing in the business, how valuable is his portfolio to the Underwriter, what other business he brings in, both for the same Reassured and overall.

All these are factors over which the Underwriter has no control. He must assess them and take a decision accordingly as to whether to reject the proposal outright or to go on to the next stage. This stage includes the negotiation of terms over which he can have some control:
(g) The actual detailed terms and conditions of the treaty; in particular, any exclusions.
(h) Whether the treaty is protected by an excess loss protection for joint account.
(i) Ihe amount of commission allowed to the cedant office (there is usually less scope for negotiations over the rate of brokerage allowed to the Broker).
(j) The rate of interest allowed on premium reserves.
(k) (Perhaps) Whether 0/S losses are to be covered by loss reserves retained or by a Letter of Credit (which in turn may make a considerable difference to the rate of interest earned on funds allocated for that purpose).

(i)	Ultimate Premiums	UP
(ii)	Ultimate Claims	UC
(iii)	Commission and brokerage percentage	c8\%
(iv)	Quarterly interest rate on reserves retained	r
(v)	Quarterly market rate of intrest	i
(vi)	Loss reserves retained factor	LRR
(vii)	Premium reserves retained factor	PRR
(viii)	Cumultative premium development factor	
	at quarter j	WPj
(ix)	Cumulative paid claims development	
	factor at quarter j	PC ${ }^{\text {j }}$
	Cumultative notified claim development	
	factor at quarter j	$N C j$
(xi)	Time lag of cash settlement from the	
	quarter end	t

Symbol(i) Ultimate PremiumsUC

C8\% I
2.2 Given this data it is possible to generate the quarterly development of premiums, paid loss and notified claims by applying the quarterly cumulative patterns respectivly to ultimate premiums and claims as follows:-

```
Written Premium during quarter j = UP X (WPj - WPj - |)
Paid Claims during quarter }\quadj=UCX(PCj-PCj - 1)
Notified Claims during quarter j = UC X (NCj - NCj - 1)
```

```
2.3 The loss reserves retained are a function of the known
    case reserves (the outstanding losses) prevailing at the
    quarter end. It is normal for this relationship to be
    100% of the known case reserves although this can vary
    from 0% to 150%. This variation is accommodated within
    the loss reserves retained factor (LRR). A similar
    rationale applies to the premium reserves where it is
    common to have a reserve of 25% of the previous calendar
    year's premium. Again this can be anything from 0%
    upwards.
2.4 Given these restrictions on cash it is possible to simulate
the quarterly cash flow of a proportional treaty as:
    Premium
plus
    Interest on Loss & Premium Reserves Retained
less
    Commission & Brokerage
less
    Paid Losses
less
    Change in Premium Reserves Retained
less
Change in Loss Reserves Retained
```

The generated monetary receipt are then lagged in
accordance with normal market practice, let's say two
quarters, and net present valued back to inception using
the quarterly market discount rate i. The underwriter can
then assess the true profit or loss in current monetary
terms.

```
Appendix 1 at the end of this paper gives an example of a
typical set of results. The model has proved
invalvable in measuring the impact on cash flow and its
net present value of varying certain input variables
whilst keeping others constant. Numerous linear
relationships have been uncovered. From these a
predictive theory of proportional treaty cash mechanles
has been developed. The results of this research to date
can be summarised as follows:
```

Result 1
Given a fixed development pattern of premiums and claims, fixed interest on reserves retained and a constant combined ratio;
(i) the change in the undiscounted total cash flow is directly proportional to the change in commission and brokerage. The gradient of change is constant and equal to:

$$
\underset{A L j}{\Gamma \cdot L R R \cdot \sum\left(N C_{j-1}-P C_{j-1}\right)}
$$

```
(ii) the change in the discounted total cash flow is
            directly proportional to the change in
            commission and brokerage. The gradient of
            change is constant and equal to:
```



```
                    (iii) the gradient of the discounted cashflow is
                        geometrically affected by the time lag t of cash
                        settlement.
```

 Providing the following are constant,
 (a) loss ratio
(b) commission \& brokerage
(c) interest on reserves retained
(d) premium and claim patterns
(e) loss reserves retained percentage
(i) the change in the undiscounted cash flow is directly proportional to the change in premium reserves retained factor. The gradient of change is constant and equal to:

$$
r \cdot \sum_{\text {ALL }}\left(W P_{j-1}-W P_{j-5}\right) \cdot U P
$$

$$
\begin{aligned}
& \text { (ii) }
\end{aligned}
$$

> A full expose of the theory behind these results is given in appendices 2 and 3 respectively.
4.0
4.2

General Observations

General observations of the work conducted to date are best illustrated in graphical form. Results 1 and 2 described earlier can be seen on graphs 1 and 2 respectively. payable on reserves retained. This is demonstrated in graph 3. Here again, we can clearly see how the underwriter when reviewing the undiscounted cash receipt can easily overstate the true profitability of his account.

```
Lastly, we investigated the undiscounted and discounted
effect on cash of changing the combined ratio (graph 4).
Here again, the monetary restrictions of proportion
treaties cause the true profit or loss always to be less
than that observed from historical undiscounted
receipts.
```

4.4 The model is a simple but powerful tool allowing any underwiter to assess, given a set of assumptions, the undiscounted and discounted profit or loss. Furthermore, the model provides an easy way of interpreting the break even loss ratio associated with a proportional treaty, an essential indicator for management. This knowledge is critical if underwriters are to insist on the inclusion or exclusion of clauses which maximise cash flow and hence profit.
5.0 Conclusion
5.1 We have only just started to uncover the mysteries surrounding the cash mechanics of proportional treaties. Much work still remains to be done. We need to consider the implications of letters of credit, the allocation of administrative costs both direct and indirect, the influence of premium and claim portfolio transfers, together with further theoretical analysis behind our general observations.
5.2

The paper has been written with a view to stimulate an interest and understanding of the monetary implications of proportional treaties. We look forward to an active and lively discussion at this years GIRO conference.

Cash Value \% of Total Premiums:-....

Cash Value \% of Total premiums

Lash Value \% of Total Premiums

急

APPENDIX 2

Given a fixed development pattern of premiums and claims, fixed interest on reserves retained, and a constant combined ratio, a change in commission and brokerage is proportional to
(i) The change in undiscounted cash flow
(ii) The change in discounted cash flow

PROOF :
Let: $W P j=$ Cumulative Premium Development Factor at time j PCj $=$ Cumulative Paid Claim Development Factor at time j NCj $=$ Notified Claim Development Factor at time j

UP = Totai Ultimate Premiums
UC $=$ Total Ultimate Claims
TCB $=$ Total Ultimate Commission of Brokerage
r = Interest on Reserves Retained (Quarterly Rate)
$i=$ Commercial Rate of Interest (Quarterly Rate)
t = Time Lag of Cash Settlement from Quarter End.


```
(i) Given a constant combined ratio we can anticipate the effect
    on the undiscounted cash flow of varying the Commission
    and Brokerage whilst keeping premiums, interest and
    development patterns fixed.
    Therefore:
        UP1 = UP2
        TCB1 + UC1 = TCB2 + UC2
    TCB1 - TCB2 = UC2 - UC1
        LRR1 = LRR2
        PRR1 = PRR1
Undiscounted Total Cash Flow Changes
    = UTCF2 - UTCF1
    = (WF" + INT2 - TCB2 - UC2) -
        (LPP`+ INT1 - TCA1 - UC1)
    = INT2- INT1 + (ICR1--7CO2)
        (WC2-0C7)
    = INT2 - INT1
    =r. 
```



```
    = r. (UC2 - UC1).LRR. \sum (NCj-1 - PCj-1)
```



```
Now r = Constant; }\mp@subsup{\sum}{j}{}(N\mp@subsup{C}{j}{\prime-1}-PCj-1) is constant; LRR is
constant.
```

Hence: The change in the undiscounted cash flow is proportional
to the change in commission \& brokerage.
The gradient of change is constant and equal to

$$
\left.r \cdot \operatorname{LRR} \cdot \sum^{(N C} j-1-P C j-1\right)
$$

A \llcorner j
(ii) The change in the discounted (net present value) total cash flow is: (DICF)

$$
\begin{aligned}
& \text { DTCF2 - DTCF1 } \left.=\sum_{i}^{t+j} U P_{2}+W P_{j}-W P_{i-1}\right)-\sum_{j}^{t} v_{j}^{t j} P R R_{2}\left(W P_{j}-W P_{j-4}-W P_{j-1}+W P_{j-5}\right), U P_{2} \\
& +D \mid N T_{2}-\sum_{j} T C B_{2} \cdot v^{t+j}\left(W P_{j}-W P_{j-1}\right) \\
& -\sum_{j} v^{t+j} U C_{2} \cdot\left(P C_{j-P C_{j-1}}\right)-\sum_{j} U^{t+j} L R R_{2} \cdot\left(N C_{j}-N C_{j-1}\right), U C_{2} \\
& =\sum_{j}^{j} U^{t+i} \cup P_{T}\left(W P_{j}-W P_{j-1}\right)+\sum_{j}^{t} U^{j} \cdot j R R_{T}\left(W P_{j}-W P_{j-4}-W P_{j+1}+W P_{j-5}\right) U P_{1} \\
& -D I N T_{1}+\sum_{j} T C B_{1}, v^{t+j}\left(W P_{j}-W P_{j-1}\right) \\
& +\sum_{j} v^{t+j} U C_{j} \cdot\left(P C_{j}-P C_{j-1}\right)+\sum_{j}^{t+j} v^{t+j R R_{1}}\left(N C_{j}-N C_{j-1}\right)\left(V C_{1}\right. \\
& =D I N T_{2}-D I N T_{1}+\left(T C B_{1}-T C B_{2}\right) \cdot \sum_{i}^{t+j}\left(W P_{j}-W P_{i-1}\right) \\
& +\left(U C_{1}-U C_{2}\right) \cdot\left[\sum_{j} v^{t+j}\left(P C_{j}-P C_{j-1}\right)+\sum_{j}^{b+j}\left(N C_{j}-N C_{j-1}\right)\right] \\
& =r \cdot\left(P R R_{2}-P R R_{1}\right) \cdot \sum_{j}^{t+j}\left(W P_{j-1}-W P_{j-5}\right) . U P \\
& + \text { r. LRR } \cdot\left(U C_{2}-U C_{1}\right) \cdot \sum_{j} v^{+1} \cdot\left(N C_{j-1}-P C_{j-1}\right) \\
& +\left(T C 8_{1}-T C 8_{2}\right) \cdot \sum_{j} v^{t+j} \cdot\left(W P_{j} \cdot W P_{j-1}\right) \\
& +\left(U C_{1}-U C_{2}\right) \cdot\left[\sum_{j} V^{t+j}\left(P C_{j}-P C_{j-1}\right)+\sum_{j}^{t+j}\left(N C_{j}-N C_{j-1}\right)\right]
\end{aligned}
$$

Now: $T C B_{1}-T C B_{2}=U C_{2}-U C_{1}$
Therefore:

$$
\begin{aligned}
D T C F_{2}-D T C F_{1}=\left(T C B_{1}\right. & \left.-T C Q_{2}\right) \cdot \dot{v}^{E} \cdot\left[\Gamma \cdot L R R \cdot \sum_{j}^{j} \cdot\left(N C_{j-1}-P C_{j-1}\right)\right. \\
& \left.\left.+\sum_{j} v^{j} \cdot\left(W P_{j}-W P_{j-1}\right)-\sum_{j}^{j} \cdot\left(C_{j}-P C_{j-1}\right) \cdot-\sum_{j}^{j} \cdot W C_{j}-N\right)\right]
\end{aligned}
$$

$$
\begin{array}{r}
\text { Now } v^{t} \text { is constant if } t \text { is constant } \\
\text { r.LRR. }(N C j-1-P C j-1) \text { is constant } \\
\sum_{j}^{j}(W P j-W P j-1) \text { is constant } \\
\sum_{j}^{j}(P C j-P C j-1) \text { is constant }
\end{array}
$$

Therefore: The change in the discounted total cash flow is proportional to the change in commission \& brokerage.
The gradient of change is constant and equal to:

$$
v\left[r \cdot L R R \cdot \sum_{A L L j} v^{j}\left(N C_{j-1}-P C_{j-1}\right)+\sum_{A L L j} v_{j}^{j}\left(W P_{j}-W P_{j-1}\right)-\sum_{A L j} v_{j}^{j}\left(P C_{j}-P C_{j-1}\right) \cdot \sum_{A L j} j\left(N C_{j}-N C_{j-1}\right)\right]
$$

Note: The gradient of change is geometrically
affected by the time lag t of cash settlement.

```
Providing the following are constant:
    (i) Loss Ratio
    (ii) Commission & Brokerage
    (iii) Interest on Reserves Retained
    (iv) Premium & Claim Patterns
    (v) Loss Reserves Retained %
```

The change in the undiscounted \& discounted cash flow is
proportional to the change in premium reserves retained factor.

Proof:

(i) We are given the following:

$$
U P_{1}=U P_{2}
$$

$$
U C 1=U C 2
$$

TCB1 $=$ TCB2
$L R R 1=L R R 2$

Now:

$$
\begin{aligned}
& \text { Undiscounted Total Cash Flow Change } \\
& =U T C F_{2}-U T C F_{1} \\
& =\left(\forall P_{2}{ }^{7}+I N T_{2}-I C B_{2}-\forall C_{2}\right)-\left(U P_{1}+\mid N T_{1}-T C B_{1}-U C_{1}\right)^{*} \\
& =\left|N T_{2}-\right| N T_{1} \\
& =r \cdot P R R_{2} \cdot \sum_{j}\left(W P_{j-1}-W P_{j-5}\right) \cdot U P_{2} \\
& +r=L R R_{2} \cdot \sum_{j}\left(N C_{j-1}-P C_{j-1}\right) \cdot \overrightarrow{U C_{2}} \\
& -r . P R R_{1} \cdot \sum_{j}\left(W P_{j-1}-W P_{j-5}\right) \cdot U P_{i} \\
& -r \cdot L R R_{3} \cdot \sum_{j}\left(N C_{j-1}-P C_{j-1}\right), U C_{1} \\
& =r \cdot\left(P R R_{2}-P R R_{1}\right) \cdot \sum\left(W P_{j-1}-W P_{i-5}\right) \cdot U P \\
& \text { Aレј }
\end{aligned}
$$

$$
\begin{aligned}
& \text { As } \quad \text { is constant } \\
& \sum_{A_{L L} j}(W P j-1-W P j-5) . U P \text { is constant }
\end{aligned}
$$

The change in undiscounted cash flow is proportional to the change in premium reserves retained factor. The gradient of change is constant and equal to

$$
r . \sum\left(W P_{j-1}-W P_{j-5}\right) . u p
$$

Au

OTC $F_{2}-D T C F_{1}=\sum_{j}^{E+j} U P_{2}\left(W P_{j}-W F_{j-1}\right)-\sum_{j}^{E+j} \cdot P R R_{2} .\left(W P_{j}-W P_{j-4}-W P_{j-1}+W P_{j-5}\right) \cdot U P_{2}$

$$
+D I N T_{2}-\sum_{j} T C B_{2}=\frac{t+j}{}\left(W P_{j}-W P_{j-1}\right)
$$

$-\underline{\sum} v^{t+j} \cup C_{2} \cdot\left(P C_{j}-\overrightarrow{C_{j-1}}\right)-\sum_{j}^{t+j} L R R_{2} \cdot\left(N C_{j}-N C_{j-1}\right) \cup C_{2}$
$-\sum_{j}^{k+j} \cup P_{T}\left(W P P_{j}-W P_{j-1}\right)^{2}+\sum_{j}^{E+i} \cdot P R R_{1 .}\left(W P_{j}-W P_{j-4}-W P_{j-1}+W P_{j-5}\right) U P_{1}$
$-D I N T_{1}+\sum_{j} T C B_{+}+{ }^{E+j}\left(W P_{j}-W P_{j-1}\right)$
$+\sum_{i}^{t+j} \forall C_{1} \cdot\left(P C_{j}-P C_{j-1}\right)+\sum_{j}^{t+j} L R R_{1} \cdot\left(N C_{j} \cdot N C_{j-1}\right) \cdot \overrightarrow{U C}$
$=-\left(P R R_{2}-P R R_{1}\right) \cdot \sum_{j} v^{t+j}\left(W P_{j}-W P_{j-1}+W P_{j-5}-W P_{j-4}\right) \cdot U P$

+ DINT - DINT $_{1}$
$=-\left(P R R_{2}-P R R_{1}\right) \cdot \sum_{j} v^{t+j} \cdot\left(W P_{j}-W P_{j-1}+W P_{j-5}-W P_{j-k}\right) \cup P$
$+r_{1}\left(P R R_{2}-P R R_{1}\right) \cdot \sum_{j} U^{t+j}\left(W P_{j-1}-W P_{j-5}\right) \cdot U P$
$+r \cdot\left(L R R_{2}-L R R_{1}\right) \cdot \sum_{j} v^{t+j} \cdot\left(N C_{j-1}-P C_{j-1}\right) \cdot \cup C$
$=\left(P R R_{2}-P R R_{1}\right) \cdot\left[r \cdot \sum v^{t+j} \cdot\left(W P_{j-1}-w P_{j-5}\right)\right.$
$\left.-\sum_{j} v^{k+j} \cdot\left(W P_{j}-W P_{j-1}+W P_{j-5}-W P_{j-4}\right)\right] \cdot u p$

Everything inside the square brackets is constant.
Therefore the changes in the discounted total cash flow is proportional to the change in premium reserves retained factor.

The gradient of change is constant and equal to:

$$
\left[r \cdot \sum_{A L j}^{t+j} \cdot\left(W P_{j-1}-W P_{j-5}\right)-\sum_{A_{L L j}} E^{t+j} \cdot\left(W P_{j}-W P_{j-1}+W P_{j-5}-W P_{j-4}\right)\right] \cdot U P
$$

