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CENTRAL DIFFERENCE FORMULAE OBTAINED BY 

MEANS OF OPERATOR EXPANSIONS 

BY J. G. L. MICHEL, A.I.A. 
of the Prudential Assurance Company, Ltd. 

1. INTRODUCTION AND SUMMARY 
INTERPOLATION and other formulae involving advancing differences are 
frequently developed, or at least conveniently reproduced from memory, 
from the familiar operational identities 

(1.1) 
where 

Although operator expansions have been used to develop formulae involving 
central differences (notably by Steffensen, Interpolation, § 18), operational 
methods are not generally used in the case of central differences and means of 

employing such methods of development are not widely known. In this note 
the fundamental identities 

(1.2) 
(1.3) 

are used to develop systematically and unify processes for expanding and 
synthesizing formulae involving central differences. Various algebraic artifices 
for manipulating the basic identities are discussed and the methods are 
illustrated by application to a wide variety of formulae. 

No attempt is made here to justify or prove the legitimacy of operational 
methods. It is assumed that any operator or operators may be divorced from 
their operand and manipulated as purely algebraic quantities (with certain 
restrictions on the commutability of inverse operators), and then may be 
reunited in their manipulated form to the operand to give a new operator 
expansion. In an Appendix all the expansions of the hyperbolic functions, 
sinh x, cosh x, etc., and their inverses which are used in this note are developed. 

2. BASIC IDENTITIES INVOLVING CENTRAL 
DIFFERENCE OPERATORS 

Lemma. Taylor’s theorem, 

where D represents the differential operator d/da, may be expressed in the 
condensed (operational) form 

(2.1) 
The right-hand term of (1.1) is derived from this representation. 

The central difference operators and µ are defined by 
With the aid of (2.1) we can derive from these definitions 

the following operational identity: 

[see (A 1.1)]. 

[References to formulae in the Appendix are prefaced by the letter ‘A’.] 

Richard Kwan
JIA 72  (1946)  0470-0480



Central Difference Formulae 471 
Detaching the operators from their operands, this may be expressed in the 
form: 

(2.2) 
and inversely [see (A r.6)] 

D (2.3) 
Similarly, from the definition of the operator µ, 

= [cosh ½D] ux [see (A 1.2)], 
leading to the operational identity 

(2.4) 
[since cosh ½ D from (A 1.3) and (2.2)]. 

It is from these basic identities that all the processes used will be developed. 

3. DIFFERENCE OPERATORS REFERRING TO 
INTERVALS OTHER THAN UNITY 

In §2 the tacit assumption was made that the difference table applied to 
intervals of unity in the argument, x. Where finite difference operators apply 
to tabular intervals, h, other than unity, the notation sn,un etc. will be used. 
The reader may confirm, either by development of fundamental expansions 
analogous to (1.1), (2.2), (2.3), (2.4) ab initio, or by replacing the argument x 
by the new argument y = hx, that the following rules enable any formula which 
has been developed for interval of differencing unity to be generalized to refer 
to interval of differencing h: 

Any formula involving differential and finite difference operators which has 
been developed for differencing interval unity may be generalized to refer to 
interval h by: 

(i) adding a subscript h to finite difference operators to signify that they 
refer to interval of differencing h, 

(ii) replacing D by (hD), 

(iii) replacing 

For example, (2.2), (2.3) and (2.4) become 
(3.1) 
(3.2) 
(3.3) 

4. NUMERICAL DATA AVAILABLE FROM 
THE DIFFERENCE TABLE 

Unlike advancing differences, central differences of all orders are not 
available for every tabular value of the argument. For values of the argument 
at which a function is tabulated, central differences of even order only are 
available; mean central differences of odd order may be obtained. 
Corresponding to values of the argument mid-way between tabular values, 
central differences of odd order are available; mean central differences of 
even order may be obtained. 



differences, that renders generalized operational methods of obtaining usable 
central difference formulae more complex than the corresponding methods for 
advancing or backwards difference formulae. 

472 Central Difference Formulae obtained by 
It is this peculiarity, imposed by the definition and notation of central 

5. PRINCIPLE OF METHODS EMPLOYED IN EXPANDING 
CENTRAL DIFFERENCE OPERATORS 

In every case the fundamental operator representing the requirement of the 
formula we wish to deal with will be expressed as a function of the operator D 
[generally by means of the operational form of Taylor’s theorem (2.1)]. Then, 
by means of the identities (2.2), (2.3) and (2.4), this function of D will be 
transformed to a function of representing operators which are usable in the 
sense of §4 when applied to an operand which exists in the form of tabular data. 
It is therefore expedient to examine methods of predetermining the nature of 
the -operator, and of manipulating it when necessary into a form which when 
expanded will be usable. 

Since sinh x (and therefore sinh-l x) is an odd function of x, it follows from 
(2.2) and (2.3) that the transformation of an odd or even function of D will be 
an odd or even function of and conversely. For, if 

[F(D) being an odd function of D], 
i.e. 
i.e. 
say (i.e. G( ) is an odd function of 
Similarly, if , an even function of D, 
its transformation , is an even function of 

6. METHOD OF INTRODUCING THE OPERATOR µ 
TO PRODUCE USABLE OPERATORS 

If the expression in D (or a part of it) which we obtain in our initial step in 
deriving our central difference formula is an odd function of D, it follows from 
the preceding paragraph that its transformation in which we proceed to obtain 
will be an odd function of . If the resulting operator is to be applied to an 
operand ux at a tabular value, x, of the argument, the resulting terms 
will not be of the form appearing in the difference table. 

Suppose is the operator (or part of an operator) which is an odd 
function of . Then, since cosh x is an even function of x, 

is an even function of D and . Also 

Hence 

It follows from §5 and the fact that that 
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i.e. the modified operator 

is also an odd function of , and when expanded and applied to ux has terms of 
the form which are usable. 

7. OTHER METHODS OF PRODUCING USABLE OPERATORS 
An even function of applied to an operand ux at tabular values of the argu- 

ment (or an odd function of applied to an operand ux+½ midway between two 
tabular values) is usable in the sense of §4. An odd function of applied to an 
operand at tabular values of the argument (or an even function at midway 
values) may be transformed into a usable operator by the artifice of §6. 

In general the operator in D (and therefore in ) will be neither an even nor 
an odd function. The even and odd terms of such an operator may be separated. 
Formally 

The term which is not of usable form may then be multiplied by 

as in §6. An alternative treatment used in (for example) the Gauss central 
difference formula, is to convert the operator F(D) into an operator of even 
order operating upon ux plus an operator of odd order operating upon ux+½ 
or ux-½. Formally 

whence 
The problem then is to determine the form of the functions G and H in order 
that this identity may hold. One method of so doing is illustrated in Example IV 
below. 

8. EXAMPLES 
Three groups of examples are given: (i) those resulting from the expansion 

of an even (or odd) function of D which can be expanded immediately as a 
usable series of operators of the form 2n (or of the form u 2n+1 using the 
artifice of §6); (ii) the central difference interpolation formulae where methods 
suggested in § 7 are used; (iii) summation and quadrature formulae, involving 
inverse powers of the operators. 

9. GROUP 1 
Example 1. The differential coefficients of a tabulated function 
We have, by (2.3), Dn [2 sinh-1 ½ ]n . (9.1) 

If n is even (say n = 2m), we can write [from (A 2.1)] 

(9.2) 
and for any particular value of 2m the right-hand side can be calculated by 
actual involution; e.g. if m = 2, 

(9.3) 



474 Central Difference Formulae obtained by 
which when attached to an operand, say u0, is to be interpreted as 

If n is odd (say n =2m+ 1), we can, following 6, write 

and perform the indicated algebraical multiplications. There is, however, 
another way of obtaining central difference expansions of odd order differential 
coefficients. Consider the differentiation of both sides of equation (9.1) with 
regard to : 

whence 

Applying this, for example, to (9.3), we get 

i.e. 
which, when applied to u0, gives the usable expansion 

Example II. Subtabulation—differences in subdivided intervals. Assume that 
we are given a table of ux at unit intervals of the argument x (whence the func- 
tions may be calculated), and that it is required to construct a 
table for intervals of 1/h. 

Since (see § 3), 
(9.4) 

Using expansion (A 3.1), replace n by 1/h and y by sinh-1½ (so that sinh y = ½ ). 
We then get 

(9.5) 

sion for even-order subtabular central differences; e.g. 
By raising both sides of this expansion to the power 2m, we get a usable expan- 

etc., 
are calculable therefrom. 

To obtain a usable expansion for odd-order differences apply again the device 
of differentiating with regard to the 2rth power of (9.4) to give 
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But 

and 

from (9.4), 

and 

Hence 

or (9.6) 

For example, putting h = IO, and raising (9.5) to the fourth power we get 

Applying (9.6) to this expansion, we obtain 

By means of such expansions we may obtain the following (unbracketed) 
differences : 

Argument Function 
X 

Differences 

The bracketed terms follow from the fundamental relation 

q341/2h = p1/h%30 + B%iuo, 

and with this start the ‘sub-table’ may be constructed by building up differences. 
Example l.lI. The summation operator [ml. A derivation of the expansion for 

the operator [m] on precisely the basis employed in this note has already been 
given by Aitken [J.I.A. Vol. LX (r929), p. 3391 and, earlier, by Henderson 
[Transactions of the Actuarial Society of America, Vol. IX (1906), p. 2111. 

The operational form is 

which may be expanded in terms of 6 by using (A 3.1) divided throughout by 
sinh y, writing y = 4D therein and using (2.2) in the right-hand side. 

IO. GROUP II 

Example IV. The derivation of the operational formula for one interpolation 
formula only-Stirling’s-will be examined in detail. The general form of the 
others, which may be derived by similar processes will be stated without proof. 

It is required to obtain a formula of the following nature: 
U, = [eDI. u. = [(even function of 6) + ,L (odd function of S)] . uo, 

i.e. to find two functions F and G such that 

(i) 
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In (i) replace D by -D, whence becomes – (cf. § 5), but µ, being an even 
function of D and , is unaltered. 

Solving (i) and (ii) as simultaneous equations in F and G gives 

(ii) 

whence is obtained the operational form of Stirling’s central difference inter- 
polation formula: 

Using (A 3.2) and (A 4.1), cosh xD and sinh xD/cosh+½D may be expanded in 
terms of sinh ½D = ½ to give 

When attached to the operand u0 the right-hand side of this expansion gives 
Stirling’s formula for ux. 

General form of the expressions for the other 
central difference interpolation formulae 

(a) Gauss ‘forwards’ formula: 

(b) Gauss ‘backwards’ formula: 

(c) Bessel’s formula (to be applied to the operand u½): 

(d) Everett’s formula: 

To expand the right-hand side of (d), express sinh D in the form 

sinh (½D + ½D) = 2 sinh ½D cosh ½D = cosh ½D. 

The operational form of Everett’s formula then becomes 

and the hyperbolic terms may be expanded to give a usable central difference 
formula by means of (A 4.1) and (A 4.2). 
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Interpretation of the inverse operators µ -1, D-1 
The indefinite integrals (finite and infinitesimal) µ -1 and D-1 leave 

undefined an arbitrary constant of integration. By operating upon each side 
of the following expansions with and D respectively, it may be confirmed 
that they are representations of the inverse operators in the sense that they 
are nullified by the direct operators: 

When, as in the following expansions, these operators are taken between definite 
limits, the arbitrary constant of integration vanishes, and we get 

Similarly, 
Example V. The summation and quadrature formulae. The summation 

formula is the central difference analogue of Lubbock’s formula. It will be 
developed by applying the artifice of differentiating with respect to an operator. 

First note that 

(11.1) 

Writing formula (9.5) for interval m in place of I/h to get 

we take the natural logarithm of both sides, 

i.e. (11.2) 

Operate upon the right- and left-hand sides of (11.2) with the right- and 
left-hand sides respectively of (11.1), noting that 

to get 

whence 
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Applying this operational identity to the operand ux, and taking the resulting 
expression between the limits a and b, we get 

Adding to each side ½ (ub + ua), there results 
(b-a)/m 

x=0 

(11.3) 

i.e. the practical central difference form of Lubbock’s formula. 
Whilst the central difference quadrature formula may be obtained opera- 

tionally ab initio by similar means to that employed in deriving (11.3), it may 
also be obtained directly from (11.3). Multiply both sides of (11.3) by m, and 
take the limit as m o. Since 

we get 

i.e. Laplace’s formula. 

12. CONCLUSION 
Although in general the methods used in this note are not original, an attempt 

has been made to unify and systematize methods of synthesizing central 
difference formulae by employing the identities of §2. 

APPENDIX 
Hyperbolic functions 

A 1. The hyperbolic sine and cosine are defined by 

(A 1.1) 

(A 1.2) 

From (A 1.1).and (A 1.2): 
squaring and subtracting, 

by direct differentiation, 
(A 1.3) 
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d (sinh x)/dx = cash x, (A 1.4) 
d(cosh x)/dx = sinh x. (A 1.5) 

If y = sinh x, z = cosh x, then x = sinh-l y = cash-1 z. Also, 

y+z=ex, 

whence x=loge(y+z). 

Since 

and 
the inverse functions may be written 

(A 1.6) 

(A 1.7) 

Also, 

therefore 

Similarly 

A 2. The expansion of sinh-ly in terms of y. From (A 1.8), 

(A 1.8) 

(A 1.9) 

Integrating both sides with respect to y between the limits o and y, 

(A2.1) 

since from (A 1.1) sinh-l 0 = 0. 

A 3. The expansions of sinh ny and cosh ny in terms of sinh y. Let sinh y = z, 
so that y = sinh-1z, and sinh ny = sinh n (sinh-l z) =f (z), say. Then f (0) = 0. 
Differentiating this expression twice with respect to z we get the differential 
equation 

[From the first differentiation, 

we get f1 (0) = n.] 

(i) 

Differentiating (i) m times (using Leibnitz’s theorem), and then putting 
z = o, we get the recurrence relation 

(ii) 

Relation (ii), together with the initial values of f(o) andf1(0), enable the SUC- 
cessive values of the coefficients in the Maclaurin expansion for f(z) to be 
obtained. It is seen that all values of the even derivatives of zero vanish. 
Putting 
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Now 

hence, since z = sinh y, f(z) = sinh ny, 

(A 3.1) 
If we initially put f(z) = cosh ny = cosh n (sinh-1 z), we get the same 

differential equation (i) for f (z), but with the initial values f (0) = 1, f’(0) = 0. 
We then get the same recurrence relation (ii), leading this time to zero dif- 
ferential coefficients of zero of odd order, with the following values for even 
orders : 

whence 

(A 3.2) 

A4. The expansions of (sinh ny)/(cosh y) and (cosh ny)/(cosh y) in terms of 
sinh y. Differentiating both sides of (A 3.1) and (A 3.2) respectively with 
respect to y, and then dividing throughout by cosh y, we get: 

sinh ny 
cosh y 

(A 4.1) 
cosh ny 
cosh y (A 4.2) 




