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Certificate in Derivatives: Mathematics and Basic Principles — April 2004 — Examiners’ Report

QUESTION 1
Syllabus: 5.1 and 5.2
Reading: Hull Ch 10

This question was simple bookwork, and was generally well answered. Some candidates |ost
marksin part (ii) for not writing out the derivative formula, or not using an arbitrage
argument.

(i)
The portfolio 7z = (¢, w) of stock and bond accumulates to
[gs rypetit s, =5
o {qﬁsz +ybeif §,, =,
This must be the same as the derivative payoffs, hence we require:
f(s) = ¢s; +ybe™
and f (s,) = ¢s, + ybe™ .
These two equations can be solved simultaneously to give

¢: f(sz)_ f(Sl)
S =S
and Wzle—rm( f(s)s, - f(sz))slj
b S$;—S

(if)
The current value of the portfoliois V, = ¢s+yb. [Some further algebraic manipulation can
be done here using the result in (i).]

This must be equal to the value of the derivative. Consider a market maker considering to
buy or sell the derivative for aprice P different from V,.

Anyone could sell or buy (respectively) the derivative from the market maker in arbitrary
quantity, and buy or sell (respectively) the portfolio 7 = (¢,w) at the sametime.

At the current time t, the market-maker’s counterparty would have a net cash flow surplus of
V, -P.

This surplus could be invested risk free and, since after the time interval At , the cash flows
from the portfolio exactly match the cash flows in respect of the derivative, the cash flow

surplus can accumulate to arisk free profit of (V, — P)e™ .

The only way thisrisk free profitiszeroisif V, = P.
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QUESTION 2
Syllabus: 4.2,4.3,7.1,7.2
Reading: HullCh8& 12

This question was also simple bookwork, and was averagely well answered. In part (ii),
several responses were too vague, along the lines of “American = European with extra
features, so must be worth more”. In part (iii), as with most questions involving graphs,
many candidates produced answers that were either too imprecise or showed little
knowledge. The examiners were seeking (a picture of reasonable quality showing) the
relationship between European and American put option values for a non-dividend paying

equity.

(i)

Put price P=Ke " N(-d,) — S,N(~d,)

where

S = current price of the stock, K = strike, r = risk free interest rate, T = time to exercisein
years

%}Hr +10)T
oNT

with N(..) being the cumulative Normal distribution and o the stock price volatility.

In(
and d, = ,d,=d, —oT

(if)
[Note: there are several ways of proving part (ii). What follows is only one example.]

As S/ K becomes smaller, i.e. for very low stock price compared with the strike price, In(S, /
K) becomes more negative, so—d; and —d, approach 1, hence the put value P ~ Ke'' — S..

HenceP~Ke' - § <K-Sforr>0
and so the put price islower than the intrinsic value.
[In fact thisistrue for all values of S just less than K and lower, as the graph below shows.]

The American option can never be lower than intrinsic value, because it can be exercised
immediately ...

... S0 the American option must be worth more than the European.
[Itis correct to state that, for very large S the prices of the two are almost indistinguishable.]
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(iii)
[The required graph is shown below for a particular example. Marks were given for the
relative positions of the lines which are important.]

American and European 1 year Put Options
Strike = 100, Risk-free Rate = 4%, Volatility = 12%

16

14 -

European Put
12

10
American Put

0 : — =~ o ‘
85 90 %5 100 105 110

—--—Actud Intrinsic = = = PV Intrinsic American Put European Put

[Note: astime to expiry decreases, the |eft-hand dotted line approaches the right-hand dotted
line. For r = 0, which also the case for margined options on futures, they co-incide.]
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QUESTION 3
Syllabus: 6.2
Reading: Hull Ch 11/B&R Ch 3

This question was mostly another simple bookwork guestion on Ito’s Lemma, which was well

answered. Part (ii) caused a surprising amount of trouble for some candidates. However, if

the reciprocal relationship of the two currencies was seen, the answer was easy to derive and
really just an extension of the ideas in part (i).

(i)

Ito’s Lemmafor afunction G(x, t) based on the geometric process givenis.

2
6 =| L1 xE 1162 L8 ot + x Zaw,
ot oX oX oX

(&) Putting G =InxintoIto
0G_,0G_1 d°G_ 1

= _ _ -

ot ox X ox2 X2

=> dG = (,uxl—%azxz izjdt + oxldV\/t
X X X

=> dG = (,u —%az)dt + odW,
which is also Brownian, athough normally rather than log-normally distributed.
(b) Putting G = X into Ito

2
= G _g G _, 9G_
ot OX Ox?

=> dG = (/,zx.2x+ %azxz.z)dt + oX.2x.dW,

2.

=> dG = (2u + o JGdt + 206GAW,

which is geometric Brownian like x.

(i)
If xisthe value of A interms of B, then G = 1/x isthe value of B in terms of A.
Putting G = 1/xinto Ito

oG oG 1 0°G 2
2!

= —= —_

ot " ox x> ox? X

=> dG = (— ,uxi2+%0'2X2 %]dt —ox—dw,
X X

t
X2

=> dG = (- u+ 0% JGdt — 6GAW,
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Putting dV’\'/t = —dW, still isaWiener process, so:
dG = (- u+ % JGdt + 6GdW,

so G is ageometric Brownian motion like x, but with growth ra — rg + o*.

[Note: The appearance of the extra term o is highlighted in Siegel ’s paradox. It reflects the
fact that the growth is still being measured with respect to currency B as the numeraire.
Transforming numeraire to currency A has the effect of reducing the growth by %, so it
becomesra — rg as expected.]
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QUESTION 4
Syllabus: 1.4, 7.4
Reading: Hull Ch 14

This question was familiar territory to most, and averagely well answered, but few
candidates obtained anywhere near full marks. The diagramsin part (ii), which could either
be reproduced from Hull Ch 14 or derived from the Black-Scholes formula, caused the most
trouble. Many knew only the Gamma relationships, and assumed that Vega was identical.
Candidates are strongly encouraged to practise drawing diagrams relating to option prices
and their sengitivities. Mostly these can be derived fromfirst principles easily enough.

(i)

Gamma s the sensitivity of portfolio deltato changes in the commodity price. (Deltaisthe
sensitivity of the portfolio value to changes in the commodity price.)

Vegaisthe sensitivity of the portfolio value to changes in the commodity price volatility.

A gamma hedge is where additional options are bought or sold which cancel out part of the
gamma sensitivity of the portfolio, e.g. short positions offsetting long positions.

[Note: the same appliesto a vega hedge.]

(ii)
[The diagrams given in this section are for a specific example. Total precision was not
required — what was needed was a clear idea of the relationships involved.]

Gamma & Vegavs Commodity Price- 1 year Call Option
Strike = 100, Risk-free Rate = 0%, Volatility = 12%

3.500 1.000

—+ 0.900
3.000

—+ 0.800

2.500 1 0.700

—+ 0.600
2.000 A
—+ 0.500

1.500 A
—+ 0.400

1.000 —+ 0.300

+ 0.200

0.500 -
+ 0.100

0.000 0.000

50 60 70 80 90 100 110 120 130 140 150

——Gamma (LHS) —-—-Vega (RHS) |

Gamma

The curve of gamma against commaodity price has a characteristic curve humped around the
strike price (like aNormal distribution).
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Gamma increases as time to maturity decreases, provided the option still has meaningful time
value. Hencethis effect is exacerbated for at-the-money options.

Gammavs Timeto expiry - Call Option
Commodity Price = 100, Strike =90 (ITM) 100 (ATM) and 110 (OTM), Risk-free Rate = 0%, Volatility = 12%

16.000

14.000 +

12.000

10.000

8.000 -

6.000 -

4.000 +

2.000 TR e e e s e s s s

0.000 =

[—ATM -—-0TM ----- IT™ ]

In- and out-of-the-money options have lower time value, so the deltavariesless. Hence the
gammais close to zero for these near expiry. However, at the extreme, an exactly at-the-
money option (i.e. commodity price = strike price) with only afew hours to run has almost
infinite gamma.

Vega
Like gamma, vega against commodity price has a characteristic curve humped around the
strike price.

Vegavs Timeto expiry - Call Option
Commodity Price = 100, Strike =90 (ITM) 100 (ATM) and 110 (OTM), Risk-free Rate = 0%, Volatility = 12%

0.600

0.500 -

0.400 -

0.300 -

0.200 -

0.100 -

0.000

0 0.2 0.4 0.6 0.8 1 12 1.4 1.6 18 2

[—ATM ---0OTM ---- IT™

V ega decreases as time to maturity decreases.
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L onger-dated options have more vega sensitivity (although this can be deceptive because
long-dated volatility tends to vary less than short-dated).

At-the-money options have the most vega sensitivity, asthat iswhere thetime vaueis
greatest.

(iii)
Hedging

Gamma and vega hedges are dynamic so will change over time and as the commodity price
changes— if not exactly matched, the hedge will need rebalancing.

Gamma hedge will not work as time to maturity decreases because short-dated gamma can
increase dramatically, so would need ever increasing amounts of longer-dated gamma.

Vega hedge will not work as time to maturity decreases because short-dated vegaisalot
lower, so would need very large amounts of short-dated vega to hedge long-dated vega.

Long-dated and short-dated volatilities move differently — the latter varies more over time.
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QUESTION 5
Syllabus: 2.1-2.3
Reading: Hull Ch 2

This question was well answered in general, especially parts (i) and to some extent (ii). Not
enough thought went into part (iii). For example, too many candidates merely stated “use
currency futures”, repeating what was given in the question, instead of defining which
contract to use and whether the company would buy or sell it.

(i)

Forward contracts are bipartite agreements, usually entered at zero initial cost ...
... with tailor-made size, dates and underlying asset(s)

Futures contracts are traded on an exchange ...

... with a specific standard size, set of dates and underlying asset(s)

Forward contracts settle at the first forward date ...

... replicating the economic effect of areal transaction

Futures contracts al so settle at the first forward date ...

... but according to a margined formula of difference

(if)

Let the variable Sbe the current price in pounds of 1 unit of the foreign currency (dollars);
i.e. the current exchange rate, expressed in pounds per dollar.

Let K be the forward price agreed to in the contract.

Let T bethe term of the forward contract: T ~ 9/12 of ayear.

Let ryk(r) be the continuously compounded risk free rate in pounds and let rygr) be the risk
freeratein dollars.

Let f; be the value of the forward contract at timet.

The two portfolios that enable usto price aforward contract on aforeign currency are:
A: Onelong forward contract plus an amount of cash equal to Ke ™™ and

B: Anamount Se s of the foreign currency (US dollars).

Both of these portfolios will become worth the same as one unit of the foreign currency (ie,
onedollar) at timeT.

For arbitrage freeness, they must be equally valuable at timet.
Hence:

ft + Ke u (T-1) _ %*rus(T*t)
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Forward contracts are entered into at zero cost, i.e. fi=0...

... which meansthat K = Sglux )T

(iii)

To hedge $ assets in pounds sterling (£), the company would need to buy sterling-dollar
futures (i.e. sell dollars, buy pounds). Dividethetota by the contract size to find how many
contracts.

Some problemsin using futures:

(a) variation margin needsto be paid in cash, could be large if £/$ rate moves alot
=> cashflow problems

(b) might not get enough liquidity when required, if positionislarge

(c) need torollover contracts at 3 month intervals, and dates probably won’t match
=> trading cost (not too great, though)

(d) futures basis moves around vs forward market — might enter/exit the contracts at
wrong basis and |ose money
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QUESTION 6
Syllabus: 8.3
Reading: Hull Ch 22

This was undoubtedly the hardest question for most. Half the candidates achieved less than
25% of the marks. Difficultieslay in failing to apply a simple concept (an option valuation
exercise) to an unfamiliar problem (a callable bond), although Hull does cover thisfully in
Chapter 22; also, in poor understanding of bonds, which is disappointing from a set of
actuarial students. Unbelievably, several candidates tried to value the bond at the risk-free
rate, rather than at its given yield. Note that the owner of a callable bond has sold an option.

(i)
(a) Duration isthe average maturity time of the present value of the bond’s cashflows.

(b) Forward price volatility is standard deviation of percentage changesin forward prices. It
isused in the formulafor an option valuation based on prices, the assumption being (in
Black’s forward price option model) that bond prices follow a Brownian motion. The
appropriate forward date will be the option expiry date.

(c) Asfor (b) but for yields, so the assumption is that bond yields follow a Brownian motion.

(if)
Duration is approximately equal to the sensitivity of priceto yield:
D~ —%% [This representation is modified duration.]

So dP/P~-Ddy
hence dP/P~-Dydy/y

Taking variances (and hence standard deviations) over a number of observations, as afirst
approximation the LHS gives the volatility of prices and the RHS gives D y times the
volatility of yields — this assumes D and y are constant, which for small variations they will
nearly be.

[N.B. Theytermisimportant — missing it out in the calculation below gives a huge
volatility!]

(iii)
The current price of the non-callable 5-year bond is:
5
P= {2 4, exp(—ky)} +100.exp(-5Y)
k=1
wherey = 4.70% is the ctsyield (not the risk-free rate!), hence P = 96.465.
Now we have to work out the forward bond price in the risk-free world.
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First, take off the discounted coupon due in one year’s time, worth 4 x exp(-0.03) = 3.882,
using the risk-free rate (not the bond yield!).

Hence forward bond price = (96.465 — 3.882) exp(0.03) = 92.583 x 1.03045 = 95.403.
The current duration is given as 4.41, so using this gives

fwd price vol =4.41 x 4.70 x fwd yld vol = 4.15%.
In fact, we should use the forward duration, i.e. the duration in one year’s time.

Thiswill be roughly 80% of the current duration (amortising over 5 years) — thisis not quite
accurate, but will be close enough. (We get 3.53% this way, against atrue value of 3.46%.)

Thisgivesfwd price vol = 3.53 x 4.70 x fwd yld vol = 3.32%.

[Thisisthe value used below, although use of the current duration was also accepted since it
was given in the question. If a candidate made a mistake in calculating the values above,
gives marks below according to the application of those calculated values.]

Now all we need is Black’s model for acall option, which is aslight modification of Black-
Scholes with forward price F = S

Using our values, F =95.403, X =100, 0=0.0332,t =1 andr = 0.03.

F/ )1
Then d, = In(A)ﬁaZt = -1.4009

20

d d =|n(l%<)_%0Zt = .1.4341

an
2 ow/f

The cumulative normals for these values are 0.0806 and 0.0758 respectively.

Hence the call option valueis:
C = exp(-rt)[F N(d,) — X N(d,)] = 0.106.
The callable bond priceis therefore smply(!) the bullet less the option value, i.e. 96.359.

(iv)
Asyiedsfal, both bondswill risein price.

However, the short option position embedded in the callable bond will also increase in price,
offsetting therise. The option exerts a convexity effect asit nearsits strike.

Hence the callable bond will rise in price more slowly than the bullet bond.

[Note: If the callable option were American, the callable bond would be capped at 100, since
if the price were over 100 the option would be exercised. In most cases, the option is
European or Bermudan, so there is one date (or a few dates) when this would apply. Outside
those periods, the option would exercise a drag effect as described. ]
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QUESTION 7
Syllabus: 5.3, 6.1 - 6.5
Reading: B&RCh2and 3

This question was on changes of measure in Brownian processes. It waslong to write out in
full, but ultimately involved little other than repeating bookwork from Baxter & Rennie.
Candidates often found themselves lost in the middle parts (ii) and (iii), but then recovered to
complete the dlightly more straightforward part (iv), which took the candidate through the
effect of changing measure on stochastic drift. Having seen the wide spectrum of answers
given to part (iii), the examiners will look to frame such questions more precisely in future,
but there still was little excuse for candidates listing features of the Radon-Nikodym
derivative, whereas the question had asked for what was meant by it.

(i)
() Thefiltration F of the process Sisthe history of the process S, i.e: F; is the path that the

stock price Shastaken up to timet, i.e., it isthe set of all previous stock prices of Sup to
(and including) timet.

(b) Two measures P and Q are said to be equivalent if they operate on the same space and
agree on what is possible (and on what isimpossible).

Formally, if A isany event in the sample space
P(A) >0 if and only if Q(A) > 0.
or

If A ispossible under P, theniit is possible under Q, and vice-versa. Also, if A is
impossible under P then it isimpossible under Q, and vice-versa.

(if)

[The joint likelihood function quantifies marginal probability distributions at any timet,
conditional on every history Fsfor all timess< t. Ina sense, it captures the likelihood of a
path.]

Consider an arbitrary point intime t; with O<t; <T. Let x; be apossible point which a
Brownian motion process could pass through at this point in time t; . Ignoring other points
through which the Brownian motion may have passed before time t; , we can use the
probability density function:

fP(i)(X) — %e%xz

to measure the likelihood that Brownian motion process W, at time t; passes through x; .

Next consider the arbitrary large set of pointsin time {t, =0,t;,t,,---,t, =T}, and the set of
paths which go through the set {x;, x,,---,x,} a times{t;,t,,---,t,} . Thejoint likelihood of
thisis

Page 14



Certificate in Derivatives: Mathematics and Basic Principles — April 2004 — Examiners’ Report

fo (X, %o, 700, X)) :Hin=1 e’ (x)

Writing Ax; =% — X4 and At; =t; —t,_;, and using the fact that Brownian motion increments
W(t;) —W(t;_;) are mutually independent, we can write down

n 1 (Axi )2 i
fo (g, x0) =] exp ———— | (which can be further re-arranged).

J2m 2AL,

|
[Integrating f2 over any given subset Ac R" gives the probability that the vector
(W, W, ... W, ) isin A. This measures the probability that the discrete points at times ty, -+, t,

along the paths that the continuous process W, can take, arein the set A]

(iii)
The Radon-Nikodym (RN) derivative is defined on a given path over agiven time interval
and it represents the relative likelihoods of that path under the two probability measures.

In the limit, as the mesh for the time interval becomes infinitesimally granular, the RN-
derivative measures the relative likelihood of the path under the two probability measures.
Therelative likelihood is measured in terms of the ratio of the two likelihood measures, or
equivalently, the amount by which the likelihood under the new measure Q has grown
relative to the old measure P.

Let o be any path of the Brownian Motion over the interval (0, T].

Let {t;,t,,---,t,} bean arbitrarily granular ordered mesh over the interval with t,, =T.

Let x; =W, (w) be the values that the Brownian motion process takes on path  at the meshed
time points.

fQ 04, X, %)

fFr’](Xl’XZ!"'Xn).

Symbolically, ‘;_S(w)znmn%

The set of paths agreeing with « on the mesh {t;,t,,---,t,}
A=W W, (@) =W, (@);i =1.2,++n}

gets smaller and smaller as the mesh getsincreasingly granular. Inthe limit, as the mesh gets
infinitesimally granular, the set consists of just one path.

The RN-derivative evaluated over agiven path over a given time period can be thought of as
the ratio of the probabilities of the path » being observed under the two probability measures
in the limit as the set of all possible paths that agree with the chosen path on which to
evaluate the RN-derivative becomes the singlepath set{ w }.

Alternative:

In other words, the RN-derivative evaluated over a given path over a given time period can
be thought of as the rate of increase in probability of observing the path » under the new
measure Q, compared with the old measure P, in the limit as the set of all possible paths that
agree with the chosen path » on which to evaluate the RN-derivative becomes the single path
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(iv)
Thefirst step involves writing re-writing dX, as
dX, =0, {dvvl + (u]dt) +vdt. {A}
O-I
Next set 7, {“t__vt) {B}
O-t

The third step involves checking that y, satisfies a growth condition
T
E,[exp(0.5 L yidt)] <. {C}

If thisisthe case, then the Cameron Martin Girsanov theorem tells us that there is an
alternative measure Q (equivalent to P), such that VT/t =W, + _E(ys -v,)/ods whichisa

Brownian motion under measure Q.
However if W, =W, + [(x, - v,)/o,ds, {D}
then
W, =W, — [ (4, - v,)/ o,ds {D}

from which it follows

dW, = dW, — ('u‘—_vt]dt (B}

Oy

and hence (substituting { E} into { A})

dX, = at(dvT/t - (det + (qut] L, dt = o, dW, + v,dt
O-t

Oy

which establishes the drift of the process X under Q is v,dt instead of x,dt .
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QUESTION 8
Syllabus: 6.5, 7.1.2
Reading: Hull Ch 12

What should have been a very straightforward application of a binomial tree process seemed
to elude several candidates, although this may have had more to do with time pressures at the
end of the examination.

(i)

Using u for up move and d for down move, d = 1/u

/Sou
S

Sd
E(S) = S,(pu+(1- p)d)

Var(s) = $,2(pu? + (1- p)d? - (pu+ (1- p)d)?)
= 5’ (p@- p)u? + p(t- p)d? - 2p(L- p))
= 5 (p- p)u-d)?)
sinceu.d=1.

Equating first and second moments [key argument — several candidates missed thig]:

Sie" = Sy(pu+(1- p)d) {A
and o°S,%t = ,%(p(L- p)(u-d)?) {B}
The solution to equation { A} is:
B ert _ d
P= u-d

Substituting into equation { B} gives:

o’t=—(e" —u)(e" —d) = (u+d)e" —(1+€e™)
Multiplying through by u gives:

u’e" —u(l+e™ +o’t)+e" =0

Thisisaquadratic in u which can be solved in the usua way.
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(if)
o=0.1andt=0.25, sou=exp(0.05) =1.051271,d =1/ u=0.951230
andsincer =0,p=(1-d)/ (u-d) =0.48750

t=0 t=025 t=05 t=0.75
116.183 Node A
110.517
105.127 105.127 NodeB
100 100
95.123 95.123 Node C
90.484

86.071 Node D

(iii)

Notate the paths by U for up and D for down, in order.

The averages for each successful path are:
UUU =%4(100 + 105.1271 + 110.5171 + 116.1834) = 107.957 @ Node A
UUD =%, (100 + 105.1271 + 110.5171 + 105.1271) = 105.193 @ Node B
UDU =%4(100 + 105.1271 + 100 + 105.1271) = 102.564 @ Node B
DUU =%, (100 + 95.1229 + 100 + 105.1271) = 100.063 @ Node B
UDD =% (100 + 105.1271 + 100 + 95.1229) = 100.063 @ Node C

with the remaining paths not exceeding 100 as an average. The payoff isthe average less the
strike of 100.

The probabilities of arriving at each node are:
Node A = p®=0.116
Node B = p*(1-p) = 0.122
Node C = p(1- p)*=0.128
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Hence the value of the Asian option
=(0.116 x 7.957) + (0.122 x [5.193 + 2.564 + .063]) + (0.128 x 0.063)
=1.885.

END OF REPORT
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