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1. MOTIVATION 

The prediction of outstanding claims amounts in non-life insurance is, by its 

very nature, highly speculative. Partially because of this and partially because of 

the variety of features suggested by various researchers for possible inclusion in 

the structure of the underlying prediction model, the past two decades have seen 

a proliferation of methodologies for making such predictions. Specific details of 

these developments are contained in a comprehensive and highly detailed survey 

conducted by Taylor (1986)(10) in which a taxonomy of methods is established. 

One feature common to all of these methods is the utilization of current and past 
records of claims amounts—invariably in the form of the familiar so-called run- 

off triangle or a variant thereof—to calibrate the proposed prediction model 
before use. Prudence dictates that diagnostic checks should then be made to 

establish whether or not the data are supportive of the structure imparted to the 
prediction model before use, a feature which apart from some notable exceptions 

including Zehnwirth (1985)(14) and Taylor (1983),(8) is not always emphasized in 
the literature. 

Our purpose is not to add to the existing plethora of methodologies but rather 
to return to the grass roots of the subject by exploring more fully the statistical 

setting for the basic chain-ladder and related techniques. Essentially a determi- 

nistic technique, see for example Hossack et al. (1983),(5) it was left to Kremer 

(1982)(6) to point out that the mathematical structure underpinning the chain- 

ladder technique is identical to that of the linear statistical model involving a log 

response variable regressing on two non-interactive convariables. Yet, judging 

by the lack of literature, there would not appear to have been a concerted effort to 

develop this connection. Perhaps the answer lies partly in the realization, in some 

quarters, that the model is heavily parameterized, a phenomenon known to lead 

to predictor instability. 

The aims therefore are: 

(i) To develop more fully the statistical analogue of the original actuarial 
chain-ladder technique. 

(ii) To investigate the magnitude and nature of predictor instability asso- 
ciated with the technique. 
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560 Chain Ladder and Interactive Modelling 

(iii) To suggest a method for improving predictor stability. 
(iv) To make the methodology readily available to practitioners so that they 

may make their own judgements in these matters. 

The GLIM software package, because of its user defined macro facility, is an 

invaluable tool in achieving these objectives. Indeed we note with interest that 

Taylor (1983)(8) and Taylor & Ashe (1983)(9) used the GLIM package to fit Taylor’s 

so called ‘invariant see-saw’ model to run-off data. 

We identify our philosophical approach to estimating claims whole-heartedly 

with the sentiments expressed by Taylor & Ashe (1983)(9) from which we quote 

the following passage: 

Our view is that claims analysis is a special case of data analysis; that therefore there are few 
preconceptions as to what should be done with the data; indeed, anything goes, if it leads to a model 
which exhibits acceptable adherence to the data and is plausible in the light of any collateral 
information. To us, faced with a problem of multivariate data analysis, regression analysis represents 
a most useful exploratory tool. 

We would view this application of GLIM to run-off data as the natural extension 

of other applications of generalized linear models in actuarial work reported by 

Haberman and Renshaw (1988).(4) 

2. CLAIMS DATA 

Claims run-off data are generated when delay is incurred in settling insurance 

claims. Typically the format for such data is that of a triangle (Figure 1.1) in 

which the rows (i) denote accident years and the columns (5) delay or 
development years. The settlement or payment year is k=i+j–1. The entries in 

the body of the triangle are the adjusted (non-cumulative) amounts 

Figure 1.1. 
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Cij=(claims amount) x (inflation factor) 

(exposure) 

The triangle is augmented each year with the addition of a new diagonal. Two 
noteworthy variations of the triangular format are induced by either truncation 

after a fixed period of delay or by the removal of data for the early settlement 

years. 

Additional information in the guise of numbers of claims settled per cell is 

required to implement Taylor’s (1983)(8) ‘invariant see-saw’ method. 

An obvious first step in any analysis is to plot the adjusted claims against 

accident year, against development year and against payment year. One might 

even be tempted to use a three-dimensional plot. Such displays can be very 

informative about the type of model structure that the data might support. 

The remit is essentially to predict likely claim amounts in the incomplete south- 
east region bounded by broken lines in Figure 1.1. A two stage modelling/ 
predicting process is envisaged. 

3. LOG-NORMAL MODELS 

Let 

Yij= log(Cij ) 

and consider the class of log-normal models defined by 

with 

and 

Here we have assumed that the normal responses Yij decompose (additively) 
into deterministic non-random components (means) mij and independent 

homoscedastic normally distributed random error components about a zero 
mean. It will be necessary to monitor these assumptions by displaying various 

residual plots on fitting specific model structures to the logarithms of the adjusted 
claims data. 

A number of specific model structures are of interest. These include: 

Case (I) (3.1) 

with accident and development years treated as non-interactive covariates. This 

structure is identical to that used in a two-way analysis of variance (ANOVA), but 

based on the incomplete data sketched in Figure 3.1(a). Indeed, our brief is to 

estimate the incomplete south-east triangular region. The structure is identical to 

that associated with the traditional actuarial chain-ladder technique. 

Case (II) 
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Figure 3.1. Typical run-off domains and prediction regions. 

with development and settlement years treated as non-interactive covariates. The 
structure is motivated by the traditional actuarial so-called separation method, 
see, for example, Hossack et al. (1983)(5); and was first treated statistically by 
Taylor (1979).(7) Depicting the various levels of k along the rows while still 
representing the levels ofj as columns distorts the basic data matrix into the form 
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sketched in Figure 3.1(b). This time our brief is the seemingly difficult one of 
predicting values in the lower protruding triangular region. 

Case (III) (3.2) 

with d=j–1 treated as a continuous regressor variable. A version of this 
structure is discussed by Dejong and Zehnwirth (1983)(2)in which parameters are 
estimated recursively using the Kalman filter. Practical implementation is 
possible using Zehnwirth’s (1985)(14) ICRFS purpose designed software package. 

The untransformed model structure is 

so that yi<0 ensures claims amounts ultimately decay. Referring to the data 
matrix sketched in Figure 3.1(c), prediction beyond the observed limit of d as well 
as in the south east triangular region is feasible. 

Case (IV) M: 

Here we have written d for j when j exceeds some fixed integer q. The model is 
clearly a mixture of Case I and Case III applied to separate parts of the data 
matrix. 

Each of the models discussed above has obvious submodels. We concentrate 
on Case I. 

4. MODEL FITTING 

Consider the two-way ANOVA model structure 

with an incomplete experimental design dictated by the pattern of adjusted claim 
amounts illustrated in Figure 4.1; obviously, g=0, w=0 for a run-off triangle, 
while j= 1, 2, . . ., l; i= 1,2, , . ., r in general. It is well known that whereas this 
parametric representation of the model structure involves a total of r+l+1 
parameters, it contains only r+l–1 so-called free parameters. Consequently two 
contraints must be imposed on the parameters before estimation can proceed. 
The GLIM system sets a1= 1 = 0 and computes maximum likelihood estimates for 
the parameters. As a direct consequence of the normal error structure this is 
equivalent to estimation by least squares. 

Define indicators ij for all cross-classified factor levels (i,j) according to 

ij= 1 if Cij>0, ij= 0 otherwise. 

Then 
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Figure 4.1. Typical claims data format. 

denote the total number of observations, the number of observations in row i and 
the number of observations in column j respectively. 

We choose µ, ai, µ, âi,ßj(i,j# 1) SO as to minimize 

Partial differentiation with respect to µ, âi, for each i ( # 1) and ßj for each j ( # 1) 
leads to the system of linear equations 

where 
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denote the grand total, row totals and column total of the transformed adjusted 
claims. The solution of this set of non-singular linear equations yield the required 
estimates. 

By way of illustration, the artificial data set 

j → 

i 1 
↓ 2 

3 

4 

Totals 

1 2 3 

2 4 6 
2 3 4 
4 2 

9 9 10 

Totals 

12 
9 
5 
2 

28 

(l = 3, ω = 1, r = 4, g= 0) 

gives rise to the system of linear equations 

28 
9 

10 

9 

5 

2 

9 3 2 3 2 1 

3 3 0 1 1 0 

2 = 0 2 1 0 0 
3 1 1 3 0 0 

2 1 0 0 2 0 

1 0 0 0 0 0 

which yield the solution 

The corresponding fitted and predicted values 

are 

2·917 3·583 5·500 
1·917 2·583 4·500 
2·167 2·833 4·50 
2·000 2·666 4·583 

Scrutiny of these fitted and predicted values reveals the true nature of the 
assumed non-interactive model structure which manifests itself in the constant 
differences between columns and between rows. 
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A noteworthy submodel is that involving development year effects only. The 
one-way ANOVA sub-structure is 

H: mij=µ+ßj 

where, again we define ß1=0 because of overparameterization. This time the 
incomplete nature of the data matrix (Figure 4.1) is irrelevant. The parameter 
estimates are determined by 

The solution is 

so that the fitted and predicted values are the column averages. Justification for 
using this simplified model is sought by examining the t-statistics associated with 
the parameters ai, examination of further residual plots and through a formal 
ANOVA F-test based on the statistic 

in which RM and RH denote the residual sums of squares or deviance under the 
full mode1 M and the submodel H respectively. 

Whereas it has been established by Kremer (1982)(6) that the model structure in 
use here is identical to that utilized in the standard actuarial chain-ladder 
technique as described, for example, in Hossack et al. (1983)(s), the current 
treatment of the model differs in two important respects-namely the ways in 
which the model parameters are estimated and the predicted values are 
constructed. 

5. PREDICtED VALUES 

The model is fitted on the log-response scale. On this scale 

(5.1) 

provides a point predictor for the empty (i,j)th cell in the south east triangular 
region. Since the mij are linear in the Yijs, they are distributed normally with 

(5.2) 
and 

(5.3) 



(Claims Reserving and GLIM) 567 

If, in keeping with common practice, the predictor is augmented by an 
independent additive error term, distributed as N(0, 2), then 2 has to be added 
to the RHS of (5.3). 

Reverting to the original (anti-log) scale, predictors ij are needed where 

Since the ijS are normally distributed, the ijS are log-normally distributed with 

and 

(5.4) 

(5.5) 

One method of computing predicted values and their standard errors, apparently 
favoured by Zehnwirth (1985)(14), is based on (5.4) and (5.5) in which E( ij) and 
V(mij) are replaced by their estimated values as dictated, in this instance by (5.2) 
and (5.3). It should be stressed, however, that Zehnwirth is working within a 
Bayesian framework and would presumably seek to justify the method of 
prediction within this framework. 

6. PREDICTED TOTALS AND THEIR STANDARD ERRORS 

Practitioners have a vested interest in 
(i) the predicted row totals 

where l and c(i) = l + 1 –i are the upper and lower limits of j; 
(ii) the predicted diagonal totals 

(iii) the overall predicted total 

together with their standard errors. 
Consequently, for the predicted row totals, it follows that 
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Making use of the Theorem 2.4 of Aitchison and Brown (1969)(1) it can be 
shown that 

(6.1) 

from which (5.5) is retrieved on settingj= k. Further, (5.1) implies that forj#k 

(6.2) 

This time (5.3) is retrieved on settingj=k. Also note the useful identity 

where we have assumed the augmented version of (5.3). 
Yet more general versions of (6.1) and (6.2), namely 

and 

catering for between row dependencies are needed to compute the variances of 
the predicted diagonal totals and the overall predicted total. Notice that (6.1) and 
(6.2) are retrieved on setting il = i2 = i (together with ji =j, j2 = k). 

7. PREDICTOR INSTABII.ITY 

First the comment that the adjusted claim amounts are generally characterized 
by significant differences between development years but only small differences 
across accident years. 

The extent of any instability exhibited by each predicted value depends directly 
on the number of parameters used to make the prediction, in this case just three 
which is not excessive, and more importantly on the extent to which the estimates 
of these parameters are sensitive to fluctuations in the data. Not surprisingly in 
view of the nature of the model structure and data format, simulation exercises 
confirm that predictions are sufficiently robust to data fluctuations in the heart of 
and in the north-west corner of the run-off triangle; and that stability deteriorates 
as data points further into the other two corners of the run-off triangle are varied. 
However, the instability in the north-east corner is generally not a serious 
problem since claims amounts in this region are relatively low in comparison with 
the remainder of the data triangle. The position is further improved if truncation 
has occurred. 



(Claims Reserving and GLIM) 569 

Consequently, it is essential to improve predictor stability for the more recent 
accident years. There are a number of possibilities such as the estimation of the 
ais by empirical Bayes, see Verrall (1988)(12) or by Kahnan filtering as proposed 
by Dejong and Zehnwirth (1983)(2) and applied to Case III (discussed in Section 
3). We note with particular interest in passing that were one to attempt to 
generate the ais as a first order autoregressive process within GLIM, the facility to 
handle non-diagonal weight matrices recently proposed by Green (1988)(3) is 
needed. 

Another possibility which we have been pursuing is a reduction in the total 
number of row parameters based on the multiple comparison t-criteria 

The objective is to partition the set of ais by varying the limit h. This would seem 
to work well, is objective, intuitively appealing, and induces the required degree 
of stability provided no new parameters are allocated to the more recent accident 
year. 

8. IMPLEMENTATION 

This is by user defined macros within GLIM. Essentially four primary macros 
are required: 

(i) to create related vectors, scalars and to output data plots; 
(ii) to do the model fitting and output graphical checks; 

(iii) to conduct the multiple comparison t-tests; 
(iv) to output further graphical checks; to compute and output the predicted 

claims amounts, their totals and standard errors. 

It is suggested that these macros could form the basis of a more extensive suite of 
macros to be offered to practitioners. It is noted with interest that one such 
practitioner, Taylor ( 1988), (11) strongly recommends the use of such regression 
methods. 

9. AN APPLICATION 

Consider the non-cumulative run-off triangle with exposures (Table 9.1) 
computed from the data given in Taylor and Ashe (1983)(9) and used by them to 
illustrate their ‘invariant see-saw’ method. Inflation effects are not discussed so 
we ignore these. The plot of adjusted claims against delay (Figure 9.1) is 
informative, hinting that a model of the type defined by (3.2) as well as that 
defined by (3.1) might well be appropriate. We concentrate on the latter because 
of its historical interest. The remaining adjusted claims plots are relatively 
uninformative and are consequently not reproduced here. 
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Table 9.1 Run-off claims data and exposures 

development 1 
year j 

2 3 4 5 6 7 8 9 10 

accident 1 357848 766940 

year 2 352118 884021 

(i) 3 290507 1001799 

4 310608 1108250 

5 443160 693190 

6 396132 937085 

7 440832 847631 

8 359480 1061648 

9 376686 986608 

10 344014 

610542 482940 527326 574398 146342 139950 227229 61948 

933894 1183289 445745 320996 527804 266172 425046 

926219 1016654 750816 146923 495992 260405 

776189 1562400 272482 352053 206286 

991983 769488 504851 470639 

847498 805037 705960 

1131398 1063269 

1443370 

EXPOSURES 

610 721 697 621 600 552 543 503 525 420 

Figure 9. I. 
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Residual plots for the two-way ANOVA Model defined by (3.1) (Figures 9.2(a)– 
(e)) are reasonably supportive of the model although the histogram is slightly 
skewed. Estimates for the model parameters and their standard errors are given 
in standard GLIM format (Table 9.2). Here the model parameters of (3.1) have 
been recoded according to 1 for µ, the general mean; DY _(j) for β j, the 
development year parameters and AY _(i) for α i, the accident year parameters. 
The system automatically sets α 1 = β 1 = 0, a feature utilized in the development of 
Section 4. 

Figure 9.2(a). 

Figure 9.2(b). 
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Figure 9.2(c). 

Figure 9.2(d). 
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Table 9.2 

estimate s.e. parameter 

1 6.106 0.1646 1 
2 0.9112 0.1607 DY_(2) 
3 0.9387 0.1681 DY_(3) 
4 0.9650 0.1761 DY_(4) 
5 0.3832 0.1857 DY_(5) 
6 -0.0004909 0.1978 DY_(6) 
7 -0.1181 0.2142 DY_(7) 
8 -0.4393 0.2387 DY_(8) 
9 -0.05351 0.2806 DY_(9) 

10 -1.393 0.3786 DY_(10) 
11 0.1938 0.1607 AY_(2) 
12 0.1489 0.1681 AY_(3) 
13 0.1533 0.1761 AY_(4) 
14 0.2988 0.1857 AY_(5) 
15 0.4117 0.1978 AY_(6) 
16 0.5084 0.2142 AY_(7) 
17 0.6731 0.2387 AY_(8) 
18 0.4952 0.2806 AY_(9) 
19 0.6018 0.3786 AY_(10) 

scale parameter taken as 0.1162 

573 

Figure 9.2(e) 

[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 
[o] 

[o] 
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Attempted model simplification by excluding accident year effects leads to an 
F-statistic value of 1.481 on 9,36 degrees of freedom with an observed 
significance level of approximately 20%. Whereas this is supportive of the 
simplification, two of the residual plots (Figures 9.3(a) and (b)) under the 
simplified one-way development year effects model become unacceptably 
distorted. The explanation for this is possibly to be found in the values of the 
parameter estimates (Table 9.2) under the full two-way ANOVA model. The t- 
statistics (obtained by dividing the estimates by their standard errors) indicate 
that the accident year parameters from year six onwards are all in fact significant; 
a feature which would appear to synchronize with the residual plots (Figures 
9.3a–b). Consequently, we retain the two-way ANOVA model for the time being. 
We also have a vested interest in investigating the extent of predictor instability 
for this model. The run-off claims data, their expected (fitted) values under this 
model, the predicted claims values and their standard errors are presented in 
Table 9.3 together with the predicted totals and their standard errors. 

We are involved in a two stage process in which the data are first utilized to 
calibrate/validate the proposed model before moving to the predictive second 
stage. Model validation is done through scrutiny of response and residual plots 
coupled with attempted model simplifications where appropriate. Given a 
satisfactory model, both the magnitude of the standard errors of the predicted 
values and the degree of stability exhibited by predicted values to fluctuations in 
the data are important aspects of performance with which to assess the 
effectiveness of this process. Clearly, if relatively minor fluctuations in the data 
induce excessive changes in the predicted values there is cause for concern, a 
phenomenon which is well known in the context of predictive regression 
modelling. 

The extent of any instability exhibited by each predicted value depends directly 
in the number of parameters used to make each prediction, in this case just three 
(and not directly on the total number of model parameters), together with the 
extent to which the estimates of these parameters are sensitive to fluctuations in 
the data. We concentrate on the latter source of possible instability since the 
number of parameters involved in making each prediction is low. Indeed an 
identical number of parameters (three) is involved in each prediction based on 
the model defined by (3.2) in which a much more rigid structure is imputed to 
development year effects. 

Suppose first that g=0, w=0 so that the data are triangular in shape. Not 
surprisingly in view of the nature of the model structure, simulation exercise 
reveals that predictor stability deteriorates as data points further into the apices 
of the run-off triangle are varied. This is illustrated by Figure 9.4(a) in which the 
arrows indicate the directions of decreasing predictor stability. However, the 
magnitude of predictor instability induced by changes in the data would not 
appear to be excessive in our experience except for changes in the last few data 
rows and columns. This is hardly surprising as so little data are yet available to 
stabilize the estimates of the corresponding row and column parameters. 
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Figure 9.3(b). 

575 

Figure 9.3(a). 
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Figure 9.4. Arrows indicating direction of decreasing predictor stability. 

Comparison of Tables 9.4a–b with Table 9.2 and Tables 9.5a–b with Table 9.3 
give an indication of the degree of instability involved. In the construction of 
Tables 9.4(a) and 9.5(a) the original claims amount C’32 is changed approxima- 
tely 10% from 1001799 to 901799 while Tables 9.4(b) and 9.5(b) are based on a 
substantial adjustment to the original claims amount C'28 from 266172 to 
166172. We leave the reader to assess for his or herself the magnitude and pattern 
of changes induced in the predicted values by these two representative changes in 
the claims data by comparing Tables 9.5a–b with Table 9.3. As a further guide 
changes to the penultimate row or column of the run-off triangle induce some 
changes up to the same order of magnitude in the corresponding row or column 

Table 9.4(a) 
[o] The parameter estimates are 
[o] 
[o] estimate s.e. parameter 
[o] 1 

[o] 2 

6.106 0.1644 1 

0.8995 0.1604 DY_(2) 
[o] 3 0.9395 0.1678 DY_(3) 

[o] 4 0.9663 0.1758 DY_(4) 
[o] 5 0.3852 0.1854 DY_(5) 
[o] 6 
[o] 7 -0.1145 0.2139 DY_(7) 

8 

-0.002226 0.1975 DY_(6) 

[o] -0.4345 0.2383 DY_(8) 
[o] 9 -0.05308 0.2802 DY_(9) 

[o] 10 -1.393 0.3780 DY_(10) 
[o] 11 0.1938 0.1604 AY_(2) 
[o] 12 0.1358 0.1678 AY_(3) 
[o] 13 0.1539 0.1758 AY_(4) 
[o] 14 0.3000 0.1854 AY_(5) 
[o] 15 0.4136 0.1975 AY_(6) 
[o] 16 0.5112 0.2139 AY_(7) 
[o] 17 0.6772 0.2383 AY_(8) 
[o] 18 0.5015 0.2802 AY_(9) 
[o] 19 0.6022 0.3780 AY_(10) 
[o] scale parameter taken as 0.1158 
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Table 9.4(b) 

[o] The parameter estimates are 
[o] 
[o] estimate s.e. 
[o] 1 6.123 0.1663 
[o] 2 0.9112 0.1623 
[o] 3 0.9387 0.1697 

[o] 4 0.9650 0.1779 
[o] 5 0.3832 0.1875 

[o] 6 -0.004909 0.1998 
[o] 7 -0.1181 0.2164 
[o] 8 -0.5963 0.2411 
[o] 9 -0.04369 0.2834 
[o] 10 -1.410 0.3823 
[o] 11 0.1415 0.1623 
[o] 12 0.1522 0.1697 
[o] 13 0.1370 0.1779 
[o] 14 0.2824 0.1875 
[o] 15 0.3953 0.1998 
[o] 16 0.4920 0.2164 
[o] 17 0.6568 0.2411 
[o] 18 0.4789 0.2834 
[o] 19 0.5854 0.3823 

parameter 
1 
DY_(2) 
DY_(3) 
DY_(4) 
DY_(5) 
DY_(6) 
DY_(7) 
DY_(8) 
DY_(9) 
DY_(10) 
AY_(2) 
AY_(3) 
AY_(4) 
AY_(5) 
AY_(6) 
AY_(7) 
AY_(8) 
AY_(9) 
AY_(10) 

[o] scale parameter taken as 0.1185 

of predicted values, with changes of a much lower order of magnitude elsewhere 
in the predicted values. Changes in the final row or column induce changes of a 
greater order of magnitude in that row or column of predicted values while 
leaving the remaining predicted values unchanged. We would strongly recom- 
mend that any practitioners should conduct their own simulation exercises to 

Figure 9.5. Partition of row parameters. 
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familiarize themselves with the nature and magnitude of such instability that 
exists. 

Predictor instability with increasing development year ceases to be an issue 
(see Figure 9.4(b)) either if w>0 or when using a model of the type defined by 
(3.2). In addition, as already stated in Section 7, instability in the north-east 
corner of the run-off triangle is generally not a serious problem since claims 
amounts in this region are relatively low in comparison with the remainder of the 
data matrix. One further noteworthy feature of the two-way ANOVA model when 
w > 0 is the invariance of predicted values to row permutations between the early 
accident years i, for which i < w+ 1 in the data matrix. 

One potent way of diminishing the degree of instability to satisfactory levels in 
the important south-west corner of the run-off triangle is by allocating the same 

Table 9.6 

[o] 
[o] 

[o] 
estimate s.e. parameter 

1 

2 

6.119 0.1520 1 
[o] 0.9024 0.1476 DY_(2) 
[o] 3 0.9324 01528 DY_(3) 

[o] 4 0.9363 0.1598 DY_(4) 
[o] 5 0.3522 0.1696 DY_(5) 
[o] 6 -0.01988 0.1838 DY_(6) 

[o] 7 -0.1330 0.1995 DY_(7) 
[o] 8 -0.4500 0.2202 DY_(8) 

[o] 9 -0.05353 0.2580 DY_(9) 
[o] 10 -1.406 0.3551 DY_(10) 
[o] 11 0.1682 0.1267 MAY_(2) 
[o] 12 0.3009 0.1746 MAY_(3) 
[o] 13 0.5102 0.1467 MAY_(4) 
[o] 

[o] 
scale parameter taken as 0.1030 

[o] 

Figure 9.6(a). 
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Figure 9.6(b). 

Figure 9.6(c). 
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Figure 9.6(d). 

Figure 9.6(e). 
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Figure 9.7. 

a i parameters to more than one accident year where appropriate. Indeed, this is 
vital if acceptable levels of stability are to be induced for the most recent accident 
years for which relatively little data are, as yet, available. We stress that this 
defect is also present in the traditional actuarial deterministic chain-ladder 
technique, giving rise to much concern about the apparant continuing esteem 
afforded to the technique. 

A way forward is to examine all contrasts 

between row parameters, Such contrasts are invariant of the somewhat arbitrary 
choice of the two parameter constraints ( α 1 = β 1 = 0) needed to estimate the a is. 

Application of the multicomparison t-criterion 

for h=·5, induces the partition in row parameters displayed in Figure 9.5 in 
which accident years are represented by numbered nodes; two nodes being linked 
if and only if the inequality is satisfied. 

This allocates separate row parameters to years 1 and 5 while linking years, 2,3 
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and 4 together as well as linking years 6 to 10 inclusive; making a total of just four 
row parameters. For sufficiently large h, all nodes are interlinked, while linkages 
are shed as h is reduced. 

The residual plots (Figures 9.6(a)–(e)), the parameter estimates (Table 9.6) and 
predicted values (Table 9.7) are presented for scrutiny. 

Verrall (1989)(13) has conducted a comparative study of estimates for the α is 
based on a variety of estimation methods for these data. A graphical comparison 
of least squares, empirical Bayes, Kalman filter and multi comparison estimators 
is presented in Figure 9.7. 

10. POSTSCRIPT 

Possible future developments for incorporating within GLIM include: 

(i) alternative methods of mapping back from the logarithmic modelling space; 
(ii) use of the other model structures discussed in Section 3 (partially 

developed); 
(iii) use of methods other than the multicomparison tests to induce predictor 

stability. 

We would like to acknowledge the financial support received from the 
Commercial Union Insurance Company together with the encouraging ongoing 
discussions held with Stavros Christofides and Peter Crane from that company. 
We are most interested to hear from any further practitioners interested in these 
highly practical developments. 
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