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CHAIN LADDER AND MAXIMUM LIKELIHOOD 

BY R. J. VERRALL, M.A., M.Sc., Ph.D. 
(of the City University, London) 

ABSTRACT 
This paper derives second moments of estimates of the parameters in the chain ladder model. Thus, 
the so-called link ratios, and proportions of ultimate claims for each development year arc 
considered. This enables confidence statements about the chain ladder parameters to be made with 
statistical rigour. The methods are illustrated using 6 sets of real data taken from the DTI returns. 
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1. INTRODUCTION 

IN this paper, the theory of maximum likelihood is utilised to examine the 
properties of the parameters of the chain ladder model. The exposition 
concentrates on the development factors, since the prediction of total outstand- 
ing claims for each year of business has been considered in a previous paper 
(Verrall (1989)). The present paper also considers the proportions of ultimate 
claims which are paid in each development year, being the parameters of a 
multiplicative model. The paper will consider first the models and then the 
estimation of the parameters in the models. Finally, the methods will be applied 
to some actual data taken from the DTI returns. 

The method uses the representation of the chain ladder technique formulated 
by Kremer (1982). A useful discussion of the use of Kremer’s formulation from a 
practitioner’s point of view is given by Christofides (1990). A fuller explanation 
of the relationship between the actuarial technique and its statistical treatment 
may also be found in that article. 

The present paper considers the second moments of the parameters used in the 
chain ladder technique. This has not been attempted with any statistical rigour 
elsewhere, and should prove useful in assessing the accuracy of the estimates. 

It is assumed in this paper that the incremental claims are positive. The 
methodology can be extended to cover negative values using the quasi-likelihood 
approach suggested by Wright (1990). 

2. THE MODELS 

The chain ladder technique is based on a model which relates the cumulative 
claims for each year of business recursively throughout the development. 
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490 Chain Ladder and Maximum Likelihood 

Suppose, without loss of generality, that the data consist of a triangle indexed by i 
(year of business) and j (development year): 

Cl,1 C1,2 . . . . . . . . . . . . . . . . C1,n 

C2,l C2,2 . . . . . . . . . C2,n 

Cn,1 

It is assumed that the data have been adjusted for exposure and inflation in the 
usual way (see, for example, Renshaw (1989)). The chain ladder technique is 
based on the following model: 

E(Cij) = λ jCi,j - 1. (1) 
We are not concerned with the chain ladder estimation method which is 

usually applied in conjunction with this model, the structure of the model being 
the more important part of the chain ladder technique. 

There are two alternative ways of expressing the chain ladder model, both of 
which use the incremental claims rather than the cumulative claims. Thus we 
define: 

and assume that Zij > 0, 
The first of the alternative representations of the chain ladder model is the 

multiplicative model, which is given by: 

E(Zij) = UiSj (2) 

where: 

In this model, Ui is the expected ultimate claims in year of business i, and S’ is 
the proportion of the expected ultimate claims which arrive in development year 
j. ‘Ultimate’ is used in the sense implied by the chain ladder technique, and does 
not include any claims beyond the latest development year to have been 
observed. 

By taking logs of the multiplicative model, the second alternative represen- 
tation of the chain ladder model is obtained, being the familiar two-way analysis 
of variance model: 

(3) 
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where: α 1 = ß1 = 0. 

The right hand side of equation (3) can be obtained from the right hand side of 
equation (2) by taking logs and reparameterising. Thus: 

The model is now in additive form, and we have to incorporate the restriction: 

The standard method for achieving this is to cast the restriction in a different 
form. Thus, a different restriction is used in order to obtain a more convenient 
interpretation of the parameters. This gives equation (3). The resulting estimates 
of claims are unchanged. It can easily be verified that the number of free 
parameters has not changed. 

Further details of the application of this model can be found in Renshaw 
(1989) and Renshaw & Verrall (1989). 

These three models, given by equations (1) to (3), are equivalent and are 
reparameterisations of the same structure. The parameters of the first two have 
physical interpretations, while the statistical analysis of the latter is the more 
straightforward. For this reason, the analysis is approached via the additive 
model, given by equation (3), and the results are then related back to the 
multiplicative and chain ladder models in order to obtain more information on 
the development factors: 

and the proportion of ultimate claims: 

The advantage of this approach is that more information can be elicited on these 
quantities. 

The following theorem shows that the chain ladder and multiplicative models 
are equivalent. The proof is due to Kremer (1982). 

Theorem 
Suppose that the claims are modelled by equations (1) and (2). Then the 

following relationships between the parameters hold: 

(4) 
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(5) 

(6) 
Notes 

The proof of this theorem is given in Kremer (1982). 
There is a parameter for each business year: this may not be obvious for the 

chain ladder model. 

The equivalence between the multiplicative and additive models was also 
proved by Kremer (using a slightly different restriction on the parameters of the 
additive model), and is given by the following theorem. 

Theorem 
Suppose that the claims are modelled by equations (2) and (3). Then the 

following relationships between the parameters hold: 

(7) 

where: ß1 = 0 by definition, 

and: (8) 

Proof 
This theorem was proved by Kremer, and the reader is referred to that paper for 
the details. A few points may help to clarify the relationship between the analysis 
of variance linear model and the chain ladder technique. It can be seen that: 

and that Sj, as given by equation (7), does measure the proportion of claims 
which emerge in delay year j. 

Equation (8) can be obtained simplistically by exponentiating equation (3) and 
summing over j. It thus represents claims relating to business year i. 

These two theorems are all that are needed to relate the three models, but for 
our purposes the relationship between the parameters of the chain ladder and 
additive models needs to be made explicit. We thus also need the following 
theorem. 



Theorem 
Chain Ladder and Maximum Likelihood 493 

Suppose that the claims are modelled by equations (1) and (3). Then the 
following relationships between the parameters hold: 

(9) 

and 

Proof 
The expected ultimate claims for each year of business are not the main subject 

of this paper, having been dealt with in detail in Verrall (1989). The proof of 
equation (10) is straightforward from equations (6) and (8). 

In order to show that equation (9) holds, it is first necessary to establish the 
following relationship between the parameters of the chain ladder and multipli- 
cative models: 

(11) 

(12) 

This can be proved by induction. Consider first λ n. From equation (5): 

Thus: 

and 

Now suppose that equation (11) holds for λ n, . . ., λ j + 1. From equation (5): 
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using the assumption of the induction. 

Thus: 

and 

which completes the proof of equation (11) by induction. 
Substituting for Sj from equation (7) into equations (11) and (12) gives: 

and 
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which completes the proof of the theorem. 

3. MAXIMUM LIKELIHOOD ESTIMATION 

The parameters of the additive model can be estimated by least squares, which 
is equivalent to maximum likelihood estimation if the errors are assumed to be 
independently, normally distributed. The variance-covariance matrix of the 
parameter estimates can be obtained from the Fisher information matrix by 
differentiating the log-likelihood a second time. Further details of the theory of 
maximum likelihood which is used in this section can be found in Cox & Hinkley 
(1974). 

Since maximum likelihood estimates are invariant under parameter transfor- 
mations, the maximum likelihood estimates of the development factors and the 
proportions of ultimate claims can be obtained by substituting the estimates of 
{ßj:j = 1,. . ., n; ß1 = 0} into equations (7) and (9). In addition to the parameter 
estimates, it is useful to have standard errors of the parameter estimates which 
can be obtained by likelihood theory. The particular advantage of using 
maximum likelihood estimation is that the second moments are relatively 
straightforward to obtain. Denoting the variance-covariance matrix of 
{ßj:j = 1,. . ., n;ß1= 0} by: 

V(ß) 
the variance- covariance matrix of { λ j: j= 2, . . ., n} and {Sj: j = 1, . . ., n; 

are given by: 

(13) 
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and (14) 

It is thus necessary to obtain the matrices of the first derivatives of the respective 
parameter vectors. 

The (j,k )th element of can be obtained from equation (9) and is given 

by: 

(15) 

Similarly, the (j,k )th element of 

given by: 

can be obtained from equation (7) and is 
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(16) 

Estimates of the variance–covariance matrices can be obtained by substituting 
estimates of the parameters into equations (13) and (14). 

A technical note is that the parameter ß1 (which is defined to be zero) has to be 
included in the matrix of partial derivatives in equation (14) since there are n 
parameters in the vector S. The variance-covariance matrix of the parameters of 
the additive model, which is obtained from a standard least squares analysis, has 
to be augmented to include an extra row and column, all of whose entries arc 
zero. This is not necessary for equation (13). 

4. EXAMPLE 

The method is applied to six sets of employers’ liability data which have been 
obtained from the DTI returns. The names of the companies to which the data 
apply have been suppressed, and it should be commented that this mathematical 
analysis is only one part of the process by which reserves are set. In particular, the 
DTI data are gross of reinsurance. The results here should, therefore, be regarded 
as a statistical analysis which would give further information to the claims 
reserver, who would use the other information available. 

We now consider the parameter estimates for each of the three models in turn. 
Beginning with the additive model, given by equation (3), the estimates of the 
column parameters {ßj:j = 2, . . ., n} and their standard errors are given in 
Table 1: 

Table 1. 

Company 
1 2 3 4 5 6 

1·796 0·121 1·748 
1·848 0·126 1·857 
1·669 0·133 1·654 
1·413 0·139 1·400 
0·994 0·147 1·200 
0·615 0·155 0·705 
0·415 0·164 0·339 
0·038 0·175 0·025 

–0·812 0·189 –0·407 
–0·915 0·212 – 1·821 
–2·513 0·264 – 1·492 

0·148 2·236 0·249 1·846 
0·155 2·080 0·261 2·260 
0·163 1·978 0·273 2·159 
0·171 1·725 0·287 1·986 
0·180 
0·190 
0·201 
0·215 
0·232 
0·260 
0·323 

1·535 0·303 1·535 
1·057 0·320 1·235 
0·667 0·338 0·644 

– 0·099 0·360 0·222 
– 0·300 0·390 0·047 
– 0·715 0·437 0·382 
– 1·708 0·543 –0·896 

0·248 1·941 0·201 
0·260 2·248 0·211 
0·272 2·204 0·221 
0·286 1·981 0·232 
0·302 1·514 0·245 
0·319 0·788 0·259 
0·337 0·227 
0·359 – 0·540 
0·388 – 0·993 
0·435 – 1·311 
0·541 – 3·206 

0·274 
0·291 
0·315 
0·353 – 
0·439 – 

2·010 0·082 
2·246 0·086 
2·129 0·091 
1·863 0·095 
1·48.5 0·100 
1·050 0·106 
0·782 0·112 
0·234 0·120 
0·155 0·129 
0·324 0145 
0·304 0·180 

Before going on to the parameters which have a physical interpretation, it 
should be noticed that it is already possible to see some differences between the 
companies. In particular, the standard errors of the parameters are larger for 
some companies (3 and 4) than for others (6). This will be mirrored in the 
parameter estimates and standard errors of the other models. 
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Next, consider the chain ladder model, given by equation (1). The estimates of 
the development factors { λ j:j= 2, . ., , n} and their standard errors are given in 
Table 2: 

1 

7·027 0·727 
1·904 0·101 
1·397 0·041 
1·220 0·022 
1·119 0·012 
1·073 0·008 
1·055 0·006 
1·036 0·005 
1·015 0·002 
1·013 0·002 
1·003 0·001 

2 

6·742 0·850 
1·950 0·130 
1·398 0·050 
1·221 0·027 
1·148 0·019 
1·079 0·010 
1·051 0·007 
1·035 0·006 
1·027 0·004 
1·005 0·001 
1·007 0·002 

3 

10·356 
1·773 
1·394 
1·219 
1·149 
1·080 
1·050 
1·022 
1·018 
1·012 
1·004 

Table 2. 

Company 

4 

2·327 7·332 1·569 
0·181 2·307 0·300 
0·084 1·512 0·109 
0·046 1·285 0·059 
0·032 1·141 0·030 
0·018 1·092 0020 
0·012 1·047 0·011 
0·006 1·029 0·008 
0 005 1·024 0·007 
0·004 1·032 0·011 
0·002 1·009 0·004 

5 

1·963 1·401 
2·189 0222 
1·520 0·090 
1·274 0·046 
1·135 0·023 
1·057 0·010 
1·031 0·006 
1·014 0·003 
1·009 0·002 
1·006 0·002 
1·001 0·000 

6 

8·466 0·616 
2·117 0·086 
1·469 0·033 
1·245 0·017 
1·135 0·009 
1·077 0·006 
1·055 0·004 
1·030 0003 
1·027 0·003 
1·016 0·002 
1·016 0003 

Finally, consider the multiplicative model. The estimates of the proportions of 
ultimate claims in each development year 

and their standard errors arc given in Table 3: 

Table 3. 

Company 

1 2 3 4 

0·005 0·021 0·005 
0·036 0·135 0·025 
0·029 0·204 0·032 
0026 0·184 0·028 
0·021 0·155 0·024 
0·019 0·099 0·017 
0·013 0·073 0·014 
0·010 0·040 0·009 
0·005 0·027 0·007 
0 005 0·022 0·006 
0004 0·031 0·011 
0·002 0·009 0·004 

0·032 0·003 0·037 
0·196 0·016 0·184 
0·206 0·015 0·205 
0·172 0·013 0·167 
0·133 0011 0·130 
0·088 0·008 0·106 
0·060 0·006 0·065 
0·049 0·005 0·045 
0·034 0·004 0·033 
0·014 0·002 0·021 
0·013 0·002 0·005 
0·003 0·001 0·007 

0·004 0·023 
0019 0·218 
0·019 0·186 
0·015 0·168 
0·013 0·131 
0·011 0·108 
0·007 0·067 
0·006 0·045 
0·005 0021 
0·004 0·017 
0·001 0·011 
0·002 0·004 

5 

0·023 
0·162 
0·220 
0·211 
0·169 
0·106 
0·051 
0·029 
0·014 
0·009 
0006 
0·001 

0·004 0·022 
0·023 0·162 
0·027 0205 
0025 0 182 
0·022 0·140 
0·015 0·096 
0·008 0·062 
0·005 0·047 
0·003 0·027 
0·002 0·025 
0·002 0·016 
0·000 0·016 

6 

0·002 
0·010 
0·011 
0·009 
0007 
0·006 
0·004 
0 003 
0·002 
0·002 
0·002 
0·002 

The run-off patterns of the companies can be compared using Tables 2 and 3. 
For example, 1 and 2 seem quite similar, and some of the companies have more 
run-off in later development years than others. The standard errors can also be 
compared, with the same conclusions as above. 

The standard errors of the parameters also affect the predictions of total 
outstanding claims for each of the companies and the predicted mean square 
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error of the predictions. For these quantities, unbiased estimation is used (see 
Verrall (1989)). 

Company 
1 
2 
3 
4 
5 
6 

Predicted total 
outstanding claims 

36,295,760 
37,638,112 
9,912,414 

21,619.344 
16,310,471 
54,559,568 

Table 4. 

Root mean square 95% upper hound on 
error of prediction total outstanding claims 

4,786,227 44,169,103 
6,565,736 
2,582,119 

48,438,748 
14,160,000 

5,019,421 29,876,292 
3,566,213 22,176,891 
4,550,077 62,044,445 

The ratio of the root mean square error to the predicted total outstanding 
claims mirrors the pattern of the standard errors of the parameters, with 3 the 
largest at 26·0% and 6 the smallest at 8·3%. These figures should give some 
indication of how the companies should make provision for the likely variation 
in total outstanding claims, based on the statistical information in the data 
(Table 4). 
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