

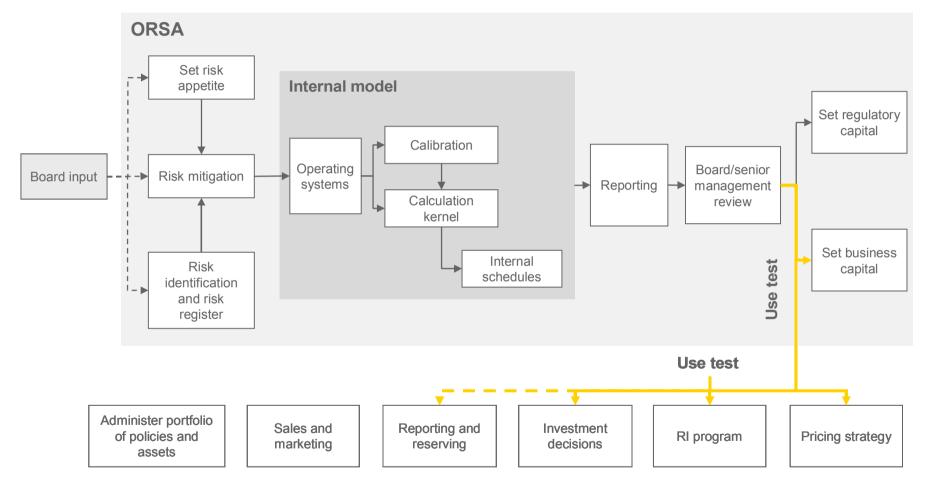
Changing your ICA model to a Solvency II Internal Model

How hard can it be!?

By Matthew Wheatley and Andrew Hancock Ernst and Young LLP

Contents

- Summary of internal model requirements
- Where are we now?
- Comparison of models to the requirements
- Converting an ICA model possible options
- Conversion Technical Issues
 - Calendar year volatilities and correlations
 - Risk Margin
 - Reporting and comparison to existing measures
- Conversion Non-Technical Issues


IMAP - Summary of requirements

Requirement	Summary of FSA DP08/4	CP 56			
Use Test	Lists possible uses including reinsurance, capital allocation, IM, MI, Strategy, Finance	Fundamental requirement, use of the model should result in pressure to improve it. 9 principles describing the use test			
Statistical Quality Standards	Need to select, fit and combine distributions, allowing for dependencies, mitigations and management actions. Use accurate and complete data at the appropriate resolution	Actuarial methods should be applicable, relevant, appropriate, up to date, transparent, detailed, parsimonious, robust and sensitive. Identify all assumptions and justify them Demonstrate data quality standards and implement policy			
Calibration standards	Choice of time period and risk measure should be appropriate but also produce SCR. Benchmark portfolios or assumptions may need to be run	Choice of time period and risk measure should be appropriate but also produce SCR. Benchmark portfolios or assumptions may need to be run			
Profit and Loss attribution	Model should be capable of predicting possible sources of P+L, and there should be a control cycle and back testing to ensure new experience is incorporated into the model	Model should be able to explain a large proportion of annual profit/loss.			
Validation	There should be a regular cycle of objective challenge by an independent function that has the necessary skills to perform such a review.	Validation encompasses all qualitative and quantitative aspects of the model, including expert judgment and documentation, and is laid out in a policy. Includes back- testing, sensitivity testing and comparison to extreme scenarios.			
Documentation	Needs to be detailed and complete so that a third party can understand the model, and should include any areas where model is weak. Should be updated regularly.	Documentation should include evidence that all levels of management understand the relevant aspects of the model.			
External models	Need to comply with internal model requirements	Use of external models shall be appropriate to the nature of the risks. Each model should be justified as well as documenting alternatives considered and why it was chosen. Policy for validating and reviewing model			

DP08/4 is the FSA discussion paper titled "Insurance Risk Management: The path to Solvency II

CP56 is CEIOPS consultation paper number 56 regarding IMAP

Internal Model – Context and Details

Where are we now?

Solvency II Internal Model EU Wide

UK Industry Current Status

Criteria	1. Innocent	2. Aware	3. Developing	4. Advanced	5. Market leading	
Valuation methodology	 Statutory minimum reserving only, using case estimates or mainframe systems Limited analysis of experience 	 Basic Non-life statistical tools Reserves monitored on key metrics 	 Non-life cashflow models Full range of standard actuarial techniques 	 Blend of tochastic reserving and standard actuarial echniques Estimate contain explicit risk margin with explanation 	 Full economic balance sheet, reported in controlled general ledger system (IFRS Phase II) Direct link with risk modelling 	
Statistical Quality Standards	 Not aware of key risks Regulatory minimum solvency tests performed only 	 Awareness of key risks Using a external model to measure risk, such as S&P, BCAR or Solvency II standard model 	 Awareness of key risks Analysis of own risk distributions and volatility Partial internal model used for selected risks Additional scenario tests 	 Full internal model for all key risk exposures Detailed scenario testing Se sitivity analysis of key assumptions Links between risk models 	 Consistent modeling of extra- and intra-group instruments Sophisticated aggregation techniques (e.g. copulas, driver modeling) 	
Control and validation	 None 	 Documentation of roles and responsibilities 	 Research environment, manual controls Some formal sign off Limited senior management review 	 Internal (independent) model validation departments. Use of checklist and work programs 	 SOX-like controls around internal model Independent model validation 	
Documentation	 Regulatory reporting only 	 Regulatory report Some ad-hoc documentation 	 Covers most technical aspects of model Includes most updates, changes and testing 	 All technical aspects All testing, validation Sign off assumptions throughout company 	 All model aspects Context of model, eg, risk appetite, risk register etc. ORSA 	
Use test	 Used for regulatory reporting only 	 Used for regulatory reporting and some cost benefit analysis eg,Rl spend 	 Used in capital management, capital allocation 	 Used in pricing and performance measurement 	 Key element of regular board- level MI, used to drive a wide range of strategic decisions 	

Comparing models to requirements

Model	Use Test	SQS General	SQS Time horizon	SQS Risk Margin	Calibration	P+L	Validation	Docum entation	External Models
Pure Stress and Scenario	×	×	×	×	×	×	?	×	×
Only Insurance Risk Stochastic	×	×	×	×	×	×	?	×	×
Stochastic Insurance, Market and Credit risk	?	\checkmark	×	×	?	?	?	×	×
Full stochastic with annual projections	?	\checkmark	?	×	?	?	?	×	×
Yrobably not			Possib	Possibly Probably		bably			
SQS refers to Statistical Quality Standards			6 The Actuarial Pro						

Converting an ICA model - Options

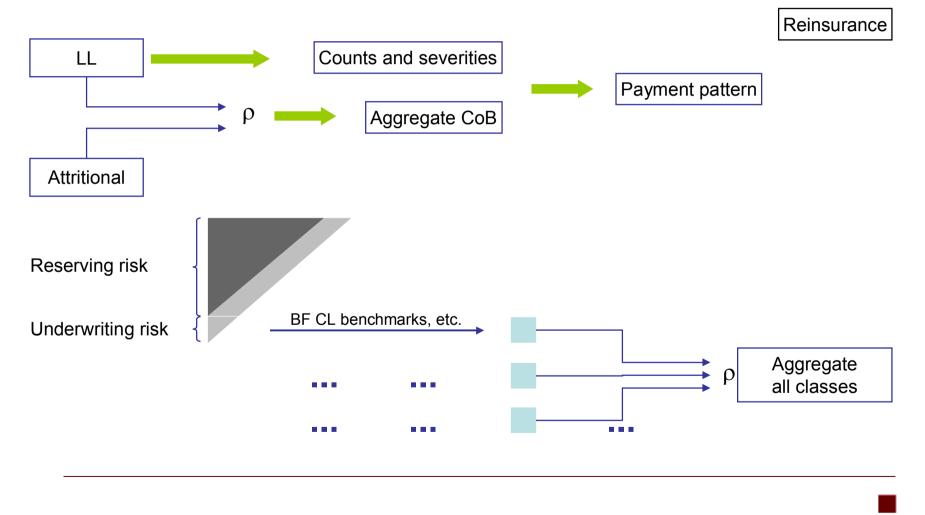
To move from an ICA model to the calculation kernel there are three possible options:-

- Rebuild from scratch
- Modify and improve existing kernel
- Kernel unchanged estimate and extract different results

The choice depends upon the current structure. Additionally there will be a significant amount of work around the kernel to satisfy the other requirements.

Conversion - Possible steps

- Reporting decide on uses and outputs of model
- Determine structure of model
- Practicalities (Data, Resources, Timelines etc)
- Cross reference to current model and capabilities
- Create/Update technical aspects of model
 - Calendar Year Volatilities
 - Risk Margin
- Validate and document model (plus plan future cycles)
- and then use it!.....


Conversion - Technical Issues

- Calendar year volatilities and correlations
- Risk margin
- Reporting
- Comparison to ICA and Standard Formula

One Year Volatilities

- Obviously different from "ultimate" versions
 - Drivers of risk/volatility
 - Data and modelling requirements
 - Relationships between risks (correlations)
- Need to model the movements within the year as well as the closing balance sheet.
- Eg, from an UW risk perspective:-
 - Paid claims within the year
 - OS claims within the year
 - IBNER reserve required at year end
 - Pure IBNR reserve required at year end

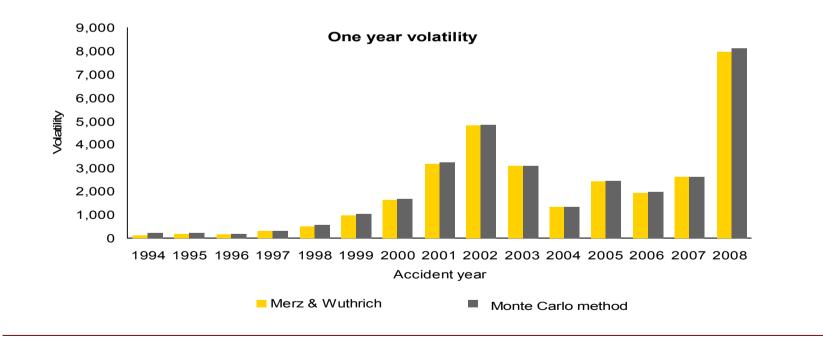
Calendar Year Volatilities - UW Risk

Calendar Year Volatilities - Reserve Risk

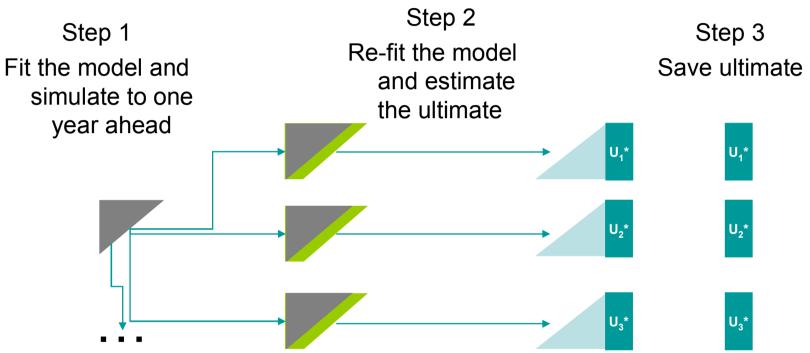
Reserve risk can be estimated using one of two main approaches:

- 1. Formulaic calculation of the Variance coupled with a distribution assumption
- 2. Monte-Carlo simulation using bootstrapping techniques

Reserve Risk - Analytical approach

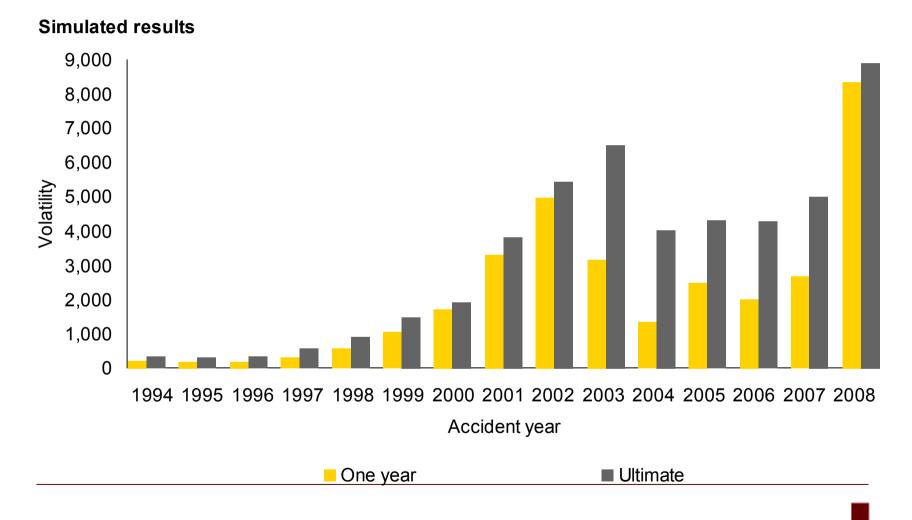

- Estimate the variance of the reserve
- Assume a distribution for the reserve eg, LogNormal
- Estimate the reserve risk as the 99.5th percentile deterioration

Analytical approach - Merz-Wuthrich formula as an example


- Assuming a Mack-Murphy claim model the variance was devised by Merz & Wuthrich, at ASTIN.
- Results are based on Murphy's model which assumes residuals are independent however this is not exactly the nonparametric Mack's model.
- However:-
 - The model assumes path dependent claims amounts, ie, the residual movement depends upon the current value.
 - The chain ladder is the optimal estimate, like in Mack's model
- The one year volatility formula for the non-parametric Mack model has not yet been found yet.

Analytical Approach - Example

 Determined the formula based on the ODP model as a test case, it does not assume path dependent claim amounts



Reserve Risk - Monte Carlo approach

- If U* is the random variable generated by the above simulation. The one year volatility refers to the distribution of the difference between U* and the currently estimated ultimate.
- The 99.5% le of that distribution is the required SCR (ignoring MVM)

Monte Carlo Example

Further Technical Issues with One Year Modelling

- Correlations
- Reinsurance
- Timings
- Other

Calendar Year Modelling - Correlations

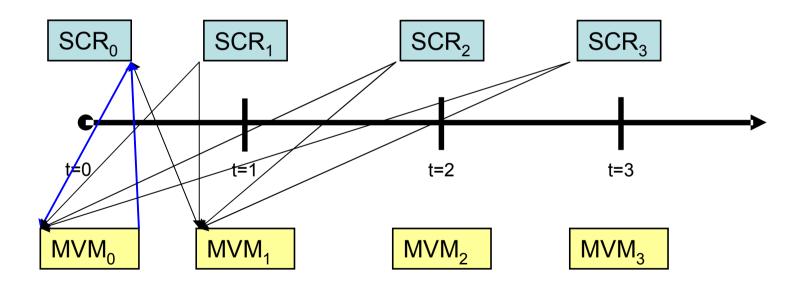
- Correlations will need to change as the relationships between risks have changed:-
- Reserve risk
 - Key drivers are now reserve bias, management actions and misestimation, suggests these may be similar across all classes rather than depending on type of business
- UW risk
 - Depends on length of tail, but pressure to meet plan may result in negative correlation!?
- Between Reserve and UW risk
 - This strongly depends on the length of tail and size of shock
- Still little data to use in any parameterisation

Calendar Year Modelling - Other Issues

- Reinsurance
 - Reserve risk approach depends upon materiality
 - UW risk calendar year gross losses have been estimated and can be put through RI programmes
- Credit risk includes reinsurers, brokers and others
- Catastrophes External models tend to produce calendar year results. These are currently "grossed up" to allow for a full future underwriting year.

Conversion - Technical Issues - Risk Margin

- Capital defined as the 99.5% potential deterioration in economic balance sheet in one year time
- MVM is the expected cost of all such future capital amounts


$$MVM_T = CoC \times \sum_{t=T}^{N-1} SCR_t$$

 $SCR_{t} = 99.5\% \left[MVM_{t+1} + E(C_{N}|C_{t+1}) - MVM_{t} - E(C_{N}|C_{t}) \right]$

 Here Ct is the cumulative loss at time t, T is current year, N is the final claim year and p%[X] indicates the p% percentile of the probability distribution of X

Risk Margin - Circularity

 SCR₀ depends on the movement in MVM and so depends on MVM₀, MVM₀ depends upon SCR₀

Risk Margin - QIS 4 Proxy

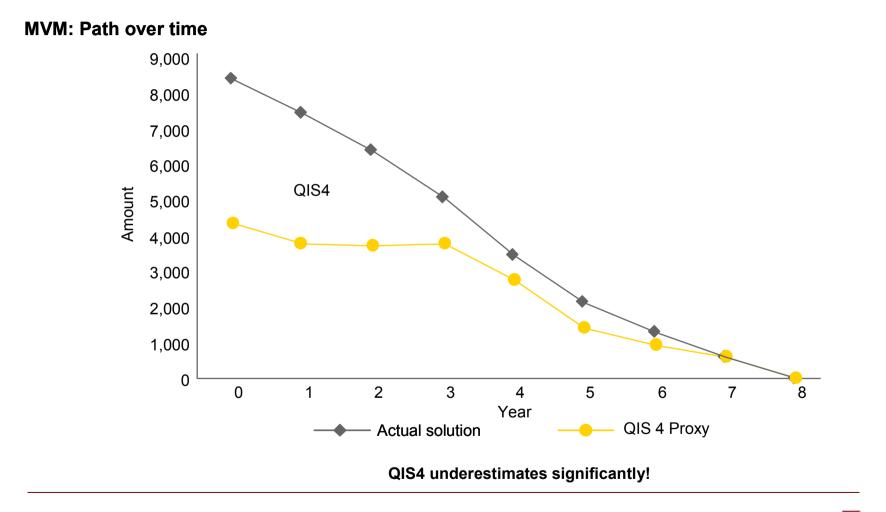
- Circularity can be an issue, the CRO forum paper and QIS 4 proxy assume the effect of the MVM on future SCR amounts is negligible
- The QIS4-suggested proxy is

$$MVM_{T} = CoC \times SCR_{T} \times \left| 1 + \sum_{t=T}^{N-1} \frac{R_{t+1}}{R_{T}} \right|$$

Where Rt are the time-t reserves as expected at current time T

 $R_t = E\left[C_N - C_t \middle| C_T\right]$

- This is equivalent to approximate:
- SCR_{T+1} \Box SCRT (R_{T+1}/R_T)
- SCR_{T+2} \square SCRT (R_{T+2}/R_T)
- ...
- SCR_{N-1} \Box SCRT (R_N/R_T)
- The implicit assumption is that the capital requirement decreases proportionally to the reserve


Risk Margin - Testing QIS 4 Proxy

Let us now check the QIS4 proxy using a toy LogNormal model

$$C_t = C_{t-1} LnN(\mu_t, \sigma_t^2)$$

- This model has the property that the mean and volatility are path dependent
- The capital requirement formulas are analytically tractable under this model
- We can fit this to the cashflows from a simulation of reserving risk to obtain the MVM trajectory over time and compare with QIS4 proxy

Risk Margin - Testing QIS 4 Proxy

The Actuarial Profession making financial sense of the future

Risk Margin - Testing other proxies MVM path over time 9,000 8,000 7,000 6,000 Amount 5,000 4,000 3,000 2,000 1,000 0 0 1 2 3 4 5 6 7 8 Year Actual solution Based on reserve delta QIS 4 SQRT of QIS 4 SQRT of reserve delta

The Actuarial Profession making financial sense of the future

Risk Margin - CP 42

- Proxy work has been discussed with CEIOPS and the FSA, before the CP was released.
- The CP gives more details on the nature of the reference entity.
- This essentially defines which risks should be included within the future SCR amounts.
- Future SCR's can be calculated by the internal model.
- If the model uses a proxy method then it will need to be justified and validated.

Conversion - Technical Issues - Reporting

Reporting from the model is critical:-

- Satisfying Use Test
- Comparison to other metrics (ICA, std. Formula)
- Validation processes
- Fundamentally governs structure and methodology of model

Conversion - Other Issues

- Documentation Documentation Documentation!
- ORSA
- Links to risk management
- External models
- Validation
- Education/understanding within firm

Any Questions?

Important Information

The information in this workshop is intended to provide only a general outline of the subjects covered. It should not be regarded as comprehensive or sufficient for making decisions, nor should it be used in place of professional advice.

Accordingly, Ernst & Young LLP accepts no responsibility for loss arising from any action taken or not taken by anyone using this workshop.

The information in this pack will have been supplemented by matters arising from any oral presentation by us, and should be considered in the light of this additional information.

If you require any further information or explanations, or specific advice, please contact us and we will be happy to discuss matters further.