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ON THE CHOICE OF BANDWIDTH FOR KERNEL GRADUATION 
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ABSTRACT 

This paper considers cross-validation as an objective and risk-based method for selecting the 
smoothing parameter in a non-parametric graduation. In addition, the relative merits of two kernel 
estimators are compared in the context of mortality graduation. Finally, it is well known in the 
statistical literature that the use of theoretically superior kernels is not as important as the choice of 
bandwidth. Our results support this conclusion, suggesting that the focus on such weights is 
misguided in the actuarial textbooks on moving weighted averages. 
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1. INTRODUCTION 

AN alternative approach to the theory of moving weighted average graduation 
(MWA) was described by Gavin, Haberman & Verrall (1993). This method relies 
on the use of kernel estimation techniques which were first used for graduation by 
Copas & Haberman (1983) and Ramlau-Hansen (1983). These papers describe 
two forms of estimators for the initial rate of mortality, qx, and also suggest 
various kernels which may be used. Copas & Haberman (1983) use the normal 
and Laplace kernels with an estimator that we denote by while Ramlau- 
Hansen (l983) discusses the optimality properties of the Nadaraya–Watson 
estimator, (Nadaraya, 1964; Watson, 1964). We consider the relative merits 
of both estimators. 

Both kernel estimators contain a bandwidth which governs the amount of 
smoothing that is applied in the graduation process. In a similar way to other 
non-parametric graduation methods, the amount of smoothing can be varied, 
over a continuous range, by the choice of bandwidth. The similarity with 
Whittaker–Henderson graduation is clear. This is often cited as an advantage 
over parametric techniques, in which the amount of smoothing can only be 
varied over a discrete range, by changing the number of parameters. While it is 
sometimes the case that the amount of smoothing that is appropriate can be 
decided by studying the resulting graduations, it is desirable to have an objective, 
data-dependent technique for choosing the bandwidth. In particular, we 
consider the use of cross-validation for choosing the bandwidth and hence the 
amount of smoothing. This method can be compared with the more traditional 
actuarial approach to this problem adopted by Bloomfield & Haberman (1987), 
of using tests of goodness of fit to determine the bandwidth. There is a 

119 

Richard Kwan
JIA  121  (1994)  119-134



120 On the Choice of Bandwidth for Kernel Graduation 

considerable body of work in the statistical literature on the choice of bandwidth 
for both density estimation (Silverman, 1986; Sheather & Jones, 1991; Hall, 
Sheather, Jones & Marron, 1991; Jones, Marron & Sheather, 1993) and kernel 
regression (Härdle, Hall & Marron, 1988; Hastie & Tibshirani, 1990; Scott, 
1992b; Hall & Johnstone, 1992). In the area of graduation, Brooks, Stone, Chan 
& Chan (1988) also use cross-validation, although it is in conjunction with 
Whittaker–Henderson graduation. 

Historically the MWA literature has made use of quite complicated weights to 
smooth mortality data based on desirable theoretical properties. These formulae 
can also be derived in the more general context of kernel functions. One such 
kernel is derived and compared with a standard kernel function. 

1.1 Background 
Kernel estimation methods are applied to a probability density function as 
follows. Suppose we wish to estimate the probability function for a random 
variable X, and we have observations {xi:i=1,2,...,n}. The kernel estimate of 
the density at x is estimated by: 

where Kb(x) ≡ K(x/b) is a kernel function which satisfies: 

and b is the bandwidth or smoothing parameter. 
The bandwidth governs the amount of smoothing which is applied. The larger 

the value of b is, the more smooth is the resulting estimate. In effect, a kernel 
density estimator is formed by placing a kernel function at each data point and 
then summing these functions to form the density estimate. This can be seen in 
Figure 1, which also shows how the density estimate becomes smoother as b 
increases, changing from a bimodal to a unimodal density. In this example a scale 
factor has been omitted from the kernel density and only five observations are 
used, for clarity. In practice, a larger sample would be required in order to 
calculate a kernel estimate. A more complete discussion of kernel density 
estimation is given in Silverman (1986) and Scott (1992b). 

Kernel estimation can also be used in a regression context. Suppose we wish to 
smooth a bivariate scatterplot where the data are {(xi, yi): i=1, . . ., n}. The 
Nadaraya–Watson estimator of the smooth curve is: 

(1) 

This estimator fits a constant to the data which is local to the point of interest, x. 
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Figure 1. Plot (a) shows five data points, indicated by arrows, ↑. A normal 
kernel function has been centred around each data point. The kernel estimate of 
the density is proportional to the sum of the kernel functions. Plot (b) shows the 
results for a larger bandwidth. The estimate of the density has changed from 

being bimodal to a unimodal density. 

The kernel function and, more importantly, the bandwidth are used to decide 
which observations are local. For example, Figure 2 shows the Nadaraya– 
Watson estimator for different bandwidths where Y is binary (survived/died) and 
we want to estimate the expected value of Y given X. The simulated data are 
denoted by line segments at Y=0 (survived) and Y=1 (died). As the bandwidth 
increases the curve becomes more smooth. The weights used to estimate a point 
on the curve, X=0·5, are superimposed at the bottom, for the case b=0·1. Hastie 
& Tibshirani (1990) offers an excellent introduction to non-parameteric 
smoothers. 

The paper is set out as follows; Section 2 outlines kernel graduation, Section 3 
refers to choosing a bandwidth, Section 4 gives some examples and in Section 5, 
some conclusions are drawn. 

2. KERNEL GRADUATION 

If we denote the random event of a life being alive or dead by E, where E=d 
indicates dead, then we require an estimate of qx=Pr(E=d  x). Here x is the age 
of the life and we require estimates for a range of values of x. The application of 
Bayes theorem results in three probability functions to be estimated, namely: 

qx=Pr(E=d  X=x)=Pr(X=x  E=d)Pr(E=d)/Pr(X=x). (2) 

Now Pr(X=x  E=d) and Pr(X=x) can be estimated using kernel functions and 
a simple estimate of Pr(E=d) can be used. Before defining these estimates we 
give some notation. 
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Figure 2. This figure shows a plot of a binary variable Y against X, for varying 
values of the bandwidth parameter, b. The line segments at zero (alive) and one 
(dead) represent the observed data. The Nadaraya–Watson estimator with a 
normal kernel and different values of the bandwidth, b, provides an estimate of 
the proportion of lives in the whole population who died at a specific X value, 
X=x. The curve becomes more smooth as b increases. The non-zero weights, 
denoted by •, used to estimate the curve at X=0·5 are superimposed at the 
bottom, for the case b=0·1. Using these weights, a constant is fitted to the data 

to obtain the estimate of the curve at X=0·5. 

2.1 The Data 
The estimates, are based on crude data for a set of ages, C={x1, x2, . . ., xn}. 
For each age, xi, we are given a measure of exposure, ei, and the corresponding 
number of deaths, di, where i=1, 2, . . ., n. The crude estimate, of the true 
mortality rate, qx, at the ith age is denoted by where For convenience, 
let qi ≡ qxi. The age of a life, which is regarded as a random variable, is denoted by 
X and its realised value by x. Note that x does not have to be one of the crude ages 
in the set C. If we assume that the observed lives are independent, then, for a 
given age, the number of deaths, di, is binomially distributed with index, ei, and 
probability, qi. This assumption is invalidated by any migration of lives between 
ages, during the period of exposure, and the presence of multiple policies for 
individual lives, in the case of insurance-based data. 

2.2 Kernel Estimators for Graduation 
We consider two possibilities for estimating qx by kernel methods, the Nadaraya– 
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Watson and Copas–Haberman estimators. Since xCH is, in a sense, more 
fundamental than we xNW give that first. The xCH estimator is obtained by using 
kernel estimates of the probability function Pr(X=x) and Pr(X=x\E=d) in (2). 
The simple estimate of: 

After some cancellation (Copas & Haberman, 1983; Bloomfield & Haberman, 
1987), this gives: 

using the notation in §2.1. A referee has pointed out that if we adopt a kernel- 
weighted likelihood approach by choosing the estimator , that minimises the 
local binomial log likelihood: 

then we get = xCH (Staniswalis, 1989). See Copas (1983) for a discussion of the 
Bernoulli case. 

If the binomiality inherent in xCH is ignored, then the di deaths out of an 
exposure of ei lives becomes a single observation di/ei, at each age xi. So the data 
are condensed to n equally spaced observations and our estimator becomes the 
Nadaraya-Watson estimator (Nadaraya, 1964; Watson, 1964). So equation (1) 
becomes: 

(3) 

This estimator minimises: 

and can be viewed as a continuous analogue to moving weighted average 
graduation (Gavin, Haberman & Verrall, 1993). 

In kernel hazard estimation the difference between xNW and xCH corresponds to 
the difference between Ramlau–Hansen’s estimator and the more recent local 
likelihood estimator of Hjort (1994). 

2.3 Some Statistical Properties 
Both xNW and xCH are intuitive and simple estimators that remove random 
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Figure 3. Plot (a) shows a rough outline of male adult mortality rates on a log 
scale. The curve is convex from about ages 17 to 95 and concave thereafter. The 
force of mortality is approximately linear from age 25 to age 95, on a log scale. 
A typical example of how exposure decreases with increasing age is shown 
in plot (b). The data are taken from duration 1 of The Female Assured Lives 

1975–78 (Continuous Mortality Investigation Bureau, 1983). 

fluctuations by smoothing the data. In doing so, there is the usual risk that bias 
may be induced in the resulting estimates. We now consider two features 
commonly found in mortality data that have an influence on the bias of each 
estimator. 

(1) Generally speaking, mortality rises exponentially. The exceptions are: the 
first year of life, when the force of mortality (hazard rate) drops sharply; 
males in their early twenties; and older ages (95+), where the mortality curve 
for qx may level off (though data are scanty in this region). The approximate 
shape of the mortality curve on a log scale from ages 20 to about 100 is shown 
in Figure 3(a). Note that away from the boundaries, the curve is linear on a 
log scale. This age range is typical of many insurance-based mortality 
datasets. 

(2) It is often the case with insurance data that the number of lives, exposed to 
the risk of dying at a given age, decreases with increasing age over the ages 25 
to 95. Figure 3(b) shows the amount of exposure from the duration 1, Female 
Assured Lives 1975–78 experience which reflects this feature. The exception 
is at the youngest ages, where the exposure is increasing with increasing age, 
presumably because less insurance is sold to those below twenty compared to 
those in their twenties. In any case, estimates in this region are likely to be 
influenced by the bias that arises near the boundary. 
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For population data, the number of lives exposed to the risk of dying 
depends on past fertility, migration and mortality levels. In some cases 
the sharp variation in exposure with age may be less apparent than in 
Figure 3(b), with the result that the bias in xCH is less serious. 

The bias in both the xNW and xCH estimators is well known. In order to define 
this, we view the observed ages as a random variable, X, with probability density, 
ƒ, say. In addition, denote derivatives with respect to x by q'. With this notation, 
the bias for both xNW and xCH is proportional to: 

(4) 

by a Taylor series expansion, where R is a remainder term consisting of higher 
order derivatives. So the bias inherent in the two estimators depends on the 
distribution of the data over the age range, ƒ, and on the curvature of the 
mortality function, x. There is also additional bias near the boundaries, but we 
are mainly concerned with the ages in the interior. 

Applying this formula to the mortality data described in §2.1, the bias for xNW 
becomes: 

(5) 

The remainder term, R, is small because of the locality of the kernel function and 
so is ignored. In the interior of the age range, if we have a crude mortality rate for 
every age, then the data are symmetric around x, so the coefficient of q'x is zero in 
(5). An alternative view is to say that the data are uniformly distributed across the 
age range, so ƒ' (x)=0 in, (4). This means that the bias in the Nadaraya–Watson 
estimator depends only on the curvature of the mortality curve. This is known as 
the fixed design case in the statistical literature. 

Mortality rates for ages 25 to about 80 are financially significant for insurance 
purposes. If the data extend a little above and below these limits, then this region 
can be regarded as being in the interior. Therefore the estimates for these ages will 
not be heavily influenced by boundary effects. For these ages, the mortality curve 
is approximately exponential in shape. So, if we transform the crude rates by 
taking logs, then the mortality curve approximates a straight line over that region 
which implies zero curvature, as shown in Figure 3(a). Therefore the Nadaraya– 
Watson estimator is expected to give an unbiased estimate of the true mortality 
rate for this region. Without transformation there is a positive bias. 

If the crude rates are not evenly spaced there may be considerable bias. This 
feature is shown in Figure 2. The kernel weights superimposed at the bottom of 
the graph show that the data used to estimate the curve at X=0·5 lie mainly to the 
left of 0·5, causing a negative bias in a generally increasing curve. 
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The bias in the estimator (Copas & Haberman, 1983) is: 

(6) 

If the data were symmetrically placed in the neighbourhood of x, then the bias 
for would be the same as for However this is not the case, as the number 
of lives exposed to the risk of dying tends to decrease with increasing age, as is 
shown in Figure 3(b). The distribution of the ages,ƒ, would have a similar shape. 
So, for the estimator, ƒ’ (x) < 0 in (4), for ages in the middle of the table. 
The asymmetry suggests that the coefficient of the term is negative, giving a 
negative bias for most ages. This is referred to as the random design case in the 
statistical literature. 

If the graduation is carried out on the original exponential scale, then the 
term is positive in both estimators, over the ages 25 to 95. So has a positive 
bias while has a negative bias from the coefficient of the term, offset to 
some extent by the positive bias of the coefficient of . Overall we might expect 
the estimator to lie below over this region. Recently Nielsen (1992) has 
considered transformations to reduce bias. 

Several methods have been proposed for dealing with the increased bias that 
can arise at the boundary. Rice (1984) and Jones (1993) advocate an extrapola- 
tion method that merges two different kernels with two different bandwidths to 
remove the term in the bias. Alternatively a reflection approach, due to Hall & 
Wehrly (1991), generates pseudo-data which effectively extend the boundaries so 
that the original data are now in the interior and so are not subject to boundary 
effects. Some kind of boundary correction is essential if the graduated rates are to 
extend across the entire age range. This complication is not considered further 
here, but Gavin, Haberman & Verrall (1995) have found the extrapolation 
method to be quite effective in an adaptive kernel model. Hoem & Linnemann 
(1988) provide a rigorous mathematical approach for dealing with the ends of the 
table, in the context of moving weighted averages, and it seems plausible that 
their theory could be incorporated within kernel graduation. More recently 
attention has focused on a method related to the Nadaraya-Watson estimator 
which fits higher order polynomials locally. This method automatically adjusts 
to allow for boundary effects and is discussed further in Section 5. In summary, 
we expect to perform better than in the centre of the age range. 

2.4 Choosing a Kernel 
A standard kernel in the statistical literature is the normal kernel, KN, defined as: 

(7) 

This kernel is used to graduate some mortality data in Section 4. 
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Some of the statistical literature has focused on allowing the kernel functions 
to take negative values as a possible bias reduction technique. If the curvature of 
the true curve is constant, then these higher-order kernels may offer a reduction 
in bias, but at a cost of increased variance (Hastie & Loader, 1993). Although 
negative weights have been used with MWA in the actuarial literature, kernels 
that take negative values are not popular in the statistical literature, partly 
because they are difficult to interpret. For example, if we minimise the asymptotic 
variance of the estimator subject to: 

and 

and K being bounded, then we get the kernel: 

(8) 

otherwise (9) 

(Silverman, 1986, § 3.6.2). In the context of moving, weighted averages, actuaries 
have historically given a lot of thought to the best theoretical weights to use in a 
moving weighted average, A traditional way of deciding if a set of graduated 
rates is smooth is to calculate second or third differences of the graduated rates 
and check if they are small and random, via a set of statistical tests. With this in 
mind, attention has focused on choosing weights that minimise the variance of 
the kth differences of the graduated rates relative to the variance of the kth 
differences of the crude rates (London, 1985, chapter 3; Benjamin & Pollard, 
1980, (13.16); Ramsay, 1993). Benjamin & Pollard (1980) refers to such weights 
as ‘optimal smoothing weights’. If we repeat this approach in the context of 
kernel estimation we get the kernels: 

(10) 

and (11) 

for k = 0 and k = 1 respectively. The shape of these kernels is shown in Figure 4. 
The kernel for the case k = 0 is formed by minimising the asymptotic variance of 
the graduated rates relative to the variance of the crude rates, subject to the 
conditions in equation (8). It is the same as equation (9), but, because it suffers 
from being discontinuous at ± b, we will not consider it further. The procedure 
for the case k = 1 is similar, but is applied to the first-differences of the graduated 
and crude rates. The resulting kernel is continuous with support over the interval 
(–b,b). 
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Figure 4. This figure shows a plot of the kernel functions given in equations (10) 
and (11) for b = 10. The case k = 0 is formed by minimising the asymptotic 
variance of the graduated rates relative to the variance of the crude rates. The 
case k = 1 is similar, but is applied to the first-differences of the graduated and 

crude rates. 

For consistency with Benjamin & Pollard (1980), we refer to the kernels in (10) 
and (11) as optimal smoothing kernels, K OSK, though this phrase is not standard. 
The bandwidth in the optimal smoothing kernel can be related to the range of a 
moving weighted average graduation. For example, Spencer’s 21-term formula 
can be approximated using the optimal smoothing kernel with k = 3 and a 
bandwidth of b = 10. Both London (1985) and Benjamin & Pollard (1980) discuss 
the case k = 3 for MWA, but the formulae become more awkward as k increases. 
Therefore we will not consider the cases where k > 1, but further details are 
available in Gavin, Haberman & Verrall (1993). 

The exponential growth inherent in mortality data over much of the age range 
results in a changing rate of curvature. This suggests that higher-order kernels 
and the moving average weights suggested by Benjamin & Pollard (1980, (13.16)) 
and London (1985, chapter 3) do not offer any savings in bias over simpler, 
positive kernels. Experiments with such kernels tend to support these argu- 
ments. In Section 4, we compare the two estimators, and ,and the two 
kernels, the normal and optimal smoothing kernel for the case k = 1. 



On the Choice of Bandwidth for Kernel Graduation 

3. CHOOSING A BANDWIDTH 
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A standard technique in actuarial science is to first choose a model that best fits 
the data and then test it for smoothness. A more modern statistical approach is to 
combine both of these steps by using a risk-based method to choose the 
bandwidth, simultaneously striking a balance between variance and bias. For 
non-parametric regression, this can be achieved through a suitable choice for the 
bandwidth parameter. We consider one method for achieving this, called cross- 
validation. This method can be compared with that due to Bloomfield & 
Haberman (1987), which fitted a curve to the data and then separately tested the 
graduated rates for smoothness using standard actuarial tests of fit. 

3.1 Cross- Validation 
This common technique has been examined in the statistical literature by Stone 
(1974) and more recently by Gregoire (1993). Brooks, Stone, Chan & Chan 
(1988) have considered cross-validation in the context of a Whittaker– 
Henderson graduation. It is an automatic and simple method for selecting a 
bandwidth that reflects the data, but which also considers smoothness. Given any 
estimator, of the true rate of mortality, qx, we choose the bandwidth which 
minimises the function CV(b) where: 

(12) 

depending on which estimator is being used. For a fixed bandwidth, is the 
estimate of the rate of mortality using all the crude rates except the one where 
i = j. Having calculated using this ‘leave one out’ approach, for i = 1, 
2, . . ., n, we then compare these values to the crude rates by calculating the 
average of the squared differences to get the cross-validation score, CV(b). 

Cross-validation says that we should choose the bandwidth which minimises 
CV(b). Theoretically, minimising CV(b) is approximately equivalent to minimis- 
ing the mean integrated squared error. The mean integrated squared error 
(MISE) of as an estimator of q is defined as: 

= Integrated squared bias + Integrated variance. 



130 On the Choice of Bandwidth for Kernel Graduation 

Thus it allows us to balance objectively bias and variance. We refer to the 
bandwidth that minimises (12) as bcv. It is found by using a grid search. 
Numerical instability may arise for bcv ≈ 0, but such graduations are not smooth 
and so are ignored. 

Cross-validation is just one data-driven method for selecting the smoothing 
parameter. Despite its simplicity and intuitive appeal it can produce variable 
results, and some evidence suggests it under-smooths the data (Hall & Johnstone, 
1992; Scott, 1992a; Jones, Marron & Sheather, 1993). 

4. AN EXAMPLE: THE FEMALE ASSURED LIVES 1975–78 

This section presents some results from graduating a large, standard mortality 
table using the estimators and the two kernel functions KN and KOSK 
and cross-validation. The chosen table is the Female Assured Lives 1975–78. 
This mortality table has a select period of two years, but the results for each 
duration were broadly similar, so only duration one is presented. The age range 
for this table is 20·5 to 74·5 and the total exposure is 459,068 policy years for 
which there were 334 recorded deaths. 

The cross-validation scores for a range of bandwidths are shown in Figure 
5(a), using KN. The results show a clear minimum for with bcv=4 and 
bcv=2·75 for The graduations for these bandwidths are shown in 5(b). 
From §2.3, the negative bias in relative to is clear, even though the 
graduations are carried out on the untransformed crude rates. Both estimators 
show a positive bias relative to the published tables, in the middle of the table. 
The published rates at durations zero and one are based on an adjustment to the 
duration two-plus rates (Continuous Mortality Investigation Bureau, 1983) and 
not the crude rates shown in Figure 5(b). The negative bias at old ages and the 
positive bias at young ages is attributed to the boundary effects. Some solutions 
to this problem are mentioned in §2.3. 

Figures 5(c) and 5(d) show the corresponding results for KOSK. The choice of 
bOSK is not as clear as for the normal kernel. A bandwidth of 12 is chosen for 
both and but this seems to be excessively large for practical purposes. 
From the comments at the end of Section 2, we might expect KOSK to show less 
bias, but at a cost of greater variability. The two graduations are in closer 
agreement, but the lack of smoothness is disappointing, especially as the kernel 
spans almost half the age range. The kernel for the case k = 3 gave smoother 
results, but the complicated formula was not considered very practical and so is 
not shown. This suggests that the attention paid in actuarial textbooks to 
deriving superior weights for moving weighed averages is misguided. 

For comparison, results were also produced using the method in Bloomfield & 
Haberman (1987) for choosing the bandwidth. This method has been used on 
standard mortality tables such as the Assured Lives 1967–70 Table. The method 
tests fidelity to the data by using three tests: the chi-squared test, the runs test and 
the serial-correlation test. The choice of tests of tit are subjective and rely on 
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Figure 5. The results from graduating duration one of the Female Assured 
Lives 1975–78 are shown. Plot (a) shows the cross-validation scores for a range 
of bandwidths, using the Normal kernel. Both curves produce a clear minimum, 
suggesting bcv=4 for and bcv=2·75 for . Note that tends to lie 
below for most of the ages. The graduated rates in plot(b) show clearly the 
negative bias in relative to . Plots (c) and (d) show the corresponding 
figures using KOSK instead of KN. Both the cross-validation scores and the 

graduations are more erratic. 

asymptotic arguments. In practice, some of the tests require a minimum of about 
50 crude rates in order to be valid, and overall more work is required in order to 
choose a bandwidth. However, both methods produce broadly similar choices 
for the best bandwidth, but cross-validation is clearly more intuitive and 
theoretically more sound. 

5. CONCLUSIONS 

Cross-validation provides an intuitive, data-driven, risk-based method for 
selecting the bandwidth and it is easy to implement. It simultaneously provides 
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an objective, smooth estimate that fits the data, and so has much to offer over the 
more traditional actuarial approach. 

Overall the estimator is more successful than the estimator, at least 
for mortality data. The main difference between the two estimators is that 

combines all of the data at each age into a single observation di/ei, so that this 
estimator is based on evenly spaced data. Although the estimator makes 
explicit use of the number of deaths and the amount of exposure at each age, the 
interval (x – 6, x) almost always contains more data than the interval (x, x+b) 
and this causes a systematic bias. However, for some population tables this bias 
may be small, for ages in the middle of the table. 

The optimal smoothing kernel is disappointing as it does not perform as well as 
the normal kernel. This suggests that the use of theoretical weights, as presented 
in the standard actuarial textbooks on MWA, do not produce superior results to 
much simpler weights. At least in the context of kernel graduation, the choice of 
bandwidth is dominant, so attention should focus on ways of choosing this 
parameter, such as cross-validation. In addition, kernel graduation offers a more 
flexible approach to graduation than MWA. 

As mentioned in Section 1, kernel regression fits a local constant to the data. 
The next logical step is to consider the closely related problem of fitting higher 
order functions locally, such as a straight line or a quadratic. This technique was 
popularised by Cleveland (1979). As before, the kernel function and the 
bandwidth decide which observations lie near the point we wish to estimate, but 
we now fit a line to these local rates using least squares. Higher order models 
allow the bias associated with the first and second derivatives of qx to be 
eliminated, but without a substantial increase in variance. In addition, automatic 
adjustment is made for the increased bias at the boundary. There has been 
renewed interest in the statistical literature in kernel-weighted local linear 
regression recently (Fan, 1992; Fan & Gijbels, 1992; Jones, Davies&Park, 1993). 
Hastie & Loader (1993) review the recent literature on this topic. For a more 
global view of the subject, Hastie & Tibshirani (1994) explore a class of 
generalised regression models, called varying-coefficient models, which includes 
local linear regression amongst others. 

The lower costs and greater speed of modern computing technology have 
popularised non-parametric modelling. This trend is likely to accelerate in the 
future. By carefully choosing appropriate models, the non-parametric approach 
allows the detailed structure of the data to be explored. It does not require the 
estimation of an unwieldy number of parameters, which can sometimes arise in 
parametric graduation. We are not advocating that a non-parametric model 
should always be used instead of a parametric one, but if the shape of the curve is 
not known in advance then this method can be used to interrogate the data, 
initially. It can, therefore, be viewed as an explanatory step towards the final model 
choice which may be parametric because of its inherent smoothness. Differences 
between the best parametric and non-parametric graduations will highlight the 
extent of the actuary’s desire for smoothness at a cost of lack of fit to the data. 
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