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Abstract Recent advances in pension product development seem to favour
alternatives to the risk free asset often used in the financial theory as a perfor-
mance standard for measuring the value generated by an investment or a refer-
ence point for determining the value of a financial instrument. To this end, in
this paper, we apply the simplest machine learning technique, namely, a fully
nonparametric smoother with the covariates and the smoothing parameter
chosen by cross-validation to forecast stock returns in excess of different bench-
marks, including the short-term interest rate, long-term interest rate, earnings-
by-price ratio, and the inflation. We find that, net-of-inflation, the combined
earnings-by-price and long-short rate spread form our best-performing two-
dimensional set of predictors for future annual stock returns. This is a crucial
conclusion for actuarial applications that aim to provide real-income forecasts
for pensioners.
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1 Introduction

One of the key messages of Merton (2014) is that pension forecasts must be
in real terms. Perhaps, the simplest way of accommodating this challenge is
to change the benchmark, i.e., the monetary unit everything is measured in
terms of, to inflation rather than the risk free interest rate often used. In
three recent pension product development papers from the sponsored project
by the Institute and Faculty of Actuaries (IFoA) “Minimizing longevity and
investment risk while optimizing future pension plans”, Donnelly et al. (2018)
and Gerrard et al. (2018a, 2018b) suggest changing the classical benchmark,
i.e., the risk free asset, to inflation.

The previous contributions did not consider the econometric challenges of
using different benchmarks. The purpose of the current research is to make the
first few investigations on suitable benchmark selection from an econometric
perspective. We achieve this by machine learning based on the cross-validated
time series approach of Nielsen and Sperlich (2003), Scholz et al. (2015) and
Scholz et al. (2016) to optimize the fully nonparametric statistical estimation
and forecasting of the risky asset returns in excess of four different benchmarks:
the risk free rate, the long-term interest rate, the earnings-by-price ratio, and
the inflation. Our method lets the data speak in themselves via training and
learning, while being intuitively informative so that we can identify the co-
variates driving the system.

The paper benefits by both a theoretical contribution, that is, a study of
the convergence properties of the local-linear smoother we use to solve the
regression problem, but also an important empirical contribution that follows
from the application. In particular, we assess the performance of the different
benchmarks in terms of forecasting next year’s excess returns given prominent
covariates from the literature, such as dividend-by-price ratio, earnings-by-
price ratio, short interest rate, long interest rate, the term spread, the inflation,
as well as this year’s lagged excess stock return. We apply single benchmarking,
where only the stock returns are adjusted according to the benchmark, or
full benchmarking with additionally transformed covariates using the same
benchmark. In summary, our investigations show that the latter approach
uncovers the predictability of earnings which, when combined with the long-
short spread, in real terms result in optimal forecasts with a predictive power
of at least 18%. This is important for long-term saving strategies, where one is
interest in real value, corroborating the change of the classical risk free asset
benchmark to inflation, as suggested in the abovementioned researches.

The remaining of this paper is organized as follows. In Section 2, we provide
our definition of machine learning and adapt to our context of long-term stock
return prediction. In Section 3, we present our underlying financial model, the
adopted local-linear smoother and its theoretical properties. In Section 4, we
present our validation criterion for the model selection. We then provide in
Section 5 a description of our dataset and exhibit our empirical findings from
different validated scenarios: we study in Section 5.2 a single benchmarking
approach with the dependent variable measured on the original nominal scale
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and extend in Section 5.3 to the case of both the independent and dependent
variables adjusted according to the benchmark (full benchmarking approach).
Section 5.4 summarizes the key points of our analysis and Section 6 concludes
the paper.

2 Machine learning and prediction of long-term stock returns

We define machine learning as a way of working that involves the following
key processes. First, the problem, the audience and the potential client must
be articulated. Second, machine learners must have domain knowledge. This is
what distinguishes them from applied statisticians. Machine learners not only
know the data very well, but, in fact, more than that. For example, if it is
a business question that needs to be solved, then the machine learner knows
the business from experience; if it is a medical question, then the machine
learner is someone who has worked closely with the relevant medical doctors
and other health personnel for long before conducting the analysis. Therefore,
the machine learner is in a position to ask for extra data or even, perhaps,
manipulate the data having a deep insight knowledge of the business, med-
ical, or any other question. Third, new techniques must be qualified against
earlier ones via validation, which should normally be the final selection cri-
terion. Finally, prior knowledge has to be channeled to the statistical model
used for validation, which then has to be conducted consistently with correct
underlying statistical principles.

Our study follows the aforementioned key processes closely. More specifi-
cally, our audience is the entire community of pension savers wishing for more
meaningful and better communicated pension products. The IFoA, that is,
the biggest actuarial organization with 33,000 members globally, is our client
and sponsor of the work. Our domain knowledge on how to conduct machine
learning on yearly stock data derives from more than 20 years of practical
and academic work in the area of pensions. Also, we adhere to the principle
of outcome selection via validation; this is our only criterion, besides common
sense, when selecting our preferred models for forecasting stock returns un-
der different benchmarks. Our domain knowledge of the pension industry and
the theory of pension research have given us the insight to consider different
benchmarks than just the short interest rate benchmark. In fact, the inflation
benchmark might fit better in what our audience and client look for as the
goal of investing is to increase wealth, or purchasing power. In addition, in-
vestors aim to anticipate the factors that impact portfolio performance and
make decisions based on their expectations; inflation is one of those factors
that affects a portfolio. However, inflation’s varying impact on stocks confuses
the decision to trade positions already held or to take new positions and, thus,
taking out inflation could give a clearer picture.

In this paper, we apply the simplest machine learning technique, namely, a
fully nonparametric smoother with the covariates and the smoothing param-
eter chosen by cross-validation. The result is a full-blown machine learning
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algorithm which lets the data speak in themselves via training and learning,
while being intuitively informative so that we can identify the covariates driv-
ing the system.

3 The underlying financial model

In this section, we focus on nonlinear relationships between stock returns in
excess of a reference rate or benchmark, Y , and a set of explanatory variables,
X. We aim to investigate different benchmark models and their predictability.

We consider a battery of benchmarks including the short-term interest
rate, the long-term interest rate, the earnings-by-price ratio, and the inflation.
More specifically, we investigate stock returns St = (Pt +Dt)/Pt−1, where Dt

denotes the (nominal) dividends paid during year t and Pt the (nominal) stock

price at the end of year t, in excess (log-scale) of a given benchmark B
(A)
t−1:

Y
(A)
t = ln

St

B
(A)
t−1

,

where A ∈ {R,L,E,C} with, respectively,

B
(R)
t = 1 +

Rt
100

, B
(L)
t = 1 +

Lt
100

, B
(E)
t = 1 +

Et
Pt
, B

(C)
t =

CPIt
CPIt−1

,

Rt is the short-term interest rate, Lt the long-term interest rate, Et the earn-
ings accruing to the index in year t, and CPIt the consumer price index for
year t. The predictive nonparametric regression model is

Y
(A)
t = m(Xt−1) + ξt, (1)

where
m(x) = E(Y (A)|X = x), x ∈ Rq, (2)

is an unknown smooth function and ξt is a martingale difference process, i.e.,
serially uncorrelated zero-mean random error terms, given the past, of an
unknown conditionally heteroscedastic form σ(x).

Our aim is to forecast the excess stock returns Y
(A)
t using popular lagged

predictive variables Xt−1 including the: i) dividend-by-price ratio dt−1 =
Dt−1/Pt−1; ii) earnings-by-price ratio et−1 = Et−1/Pt−1; iii) short-term inter-
est rate rt−1 = Rt−1/100; iv) long-term interest rate lt−1 = Lt−1/100; v) infla-
tion πt−1 = (CPIt−1 −CPIt−2)/CPIt−2; vi) term spread st−1 = lt−1 − rt−1;

and vii) excess stock return Y
(A)
t−1 . Other popular explanatory variables could

be the consumption, wealth, income ratio (cay), or the book-to-market ra-
tio (b/m), which have been used in predictive regressions, as, for example,
in Welch and Goyal (2008). Currently, we consider only the aforementioned
variables due to data restrictions (see Section 5.1).

In the next section, we address the regression problem of estimating the
conditional mean function (2). We present consistency results and asymptotic
normality for the local-linear (LL) smoother which we then implement in Sec-
tion 5.
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3.1 The local-linear smoother

Consider a sample of real random variables {(Xt, Yt), t = 1, . . . , n} which are
strictly stationary and weakly dependent. To measure the strength of depen-
dence in the time series, we limit ourselves to the strong- or α-mixing1 defined,
for example, in Doukhan (1994), where

ατ = sup
t∈N

sup
A∈F∞t+τ ,B∈Ft−∞

|P (A ∩B)− P (A)P (B)| ,

F ji denotes the σ-algebra generated by {Xk, i ≤ k ≤ j}. In addition, ατ
approaches zero as τ → ∞. Note that weakly dependent data rule out, for
example, processes with long-range dependence and nonstationary processes
with unit-roots. We further assume that the sequence {(Xt, Yt), t = 1, . . . , n}
is algebraic α-mixing, i.e., α = O(τ−(1+ε)) for some ε > 0.

Consider now the prediction problem (1)–(2). A common estimator for
m(x) is the Nadaraya–Watson (NW) estimator (local-constant kernel method)
given by

m̂NW (x) =
p̂(x)

f̂(x)
, (3)

where the probability density function of Xt, f(x), is estimated for a given
fixed value of x = (x1, . . . , xq)

′ ∈ Rq by

f̂(x) =
1

n

n∑
t=1

Kh(Xt − x)

and

p̂(x) =
1

n

n∑
t=1

YtKh(Xt − x).

Kh denotes some kernel function, for example, the product kernel

Kh(Xt − x) =

q∏
s=1

1

hs
k

(
Xts − xs

hs

)
,

which depends on a set of bandwidths (h1, . . . , hq) and higher-order ker-
nels k (the order ν > 0 of the kernel is defined as the order of the first
nonzero moment), i.e., univariate symmetric functions satisfying

∫
k(u)du = 1,∫

ulk(u)du = 0 (l = 1, . . . , ν − 1), and
∫
uνk(u)du =: κν > 0. Xts denotes the

sth component of Xt (s = 1, . . . , q).
Under the standard assumptions of serial dependence with a required rate α

as stated above, bounded density f(x), controlled tail behaviour of conditional
expectations, hs → 0 (s = 1, . . . , q) and nHq = nh1 . . . hq → ∞ as n → ∞,
Li and Racine (2007), for example, show the following result of pointwise
convergence.

1 First proofs of consistency and asymptotic normality for nonparametric regression were
introduced in the statistical literature in a seminal paper on kernel estimation with strong
mixing data by Robinson (1983).



6 Ioannis Kyriakou et al.

Theorem 1 Under the given assumptions,

|m̂NW (x)−m(x)| = Op

(
q∑
s=1

h2s +
1√
nHq

)
.

Several generalizations of Theorem 1 have been proposed in the literature.
For example, Hansen (2006) proves the uniform and almost sure convergence of
the NW estimator, while Scholz et al. (2016) show the quasi-complete conver-
gence of the estimator in the case of generated regressors and weakly dependent
data. Li and Racine (2007) further show the asymptotic normality of the esti-
mator by calculating the bias termBs(x) = κ2

2 (f(x)mss(x) + 2fs(x)ms(x)) /f(x),
where subscripts s and ss denote, respectively, first and second order deriva-
tives, and κ2 =

∫
u2k(u)du.

Theorem 2 Under the given assumptions,

√
nHq

(
m̂NW (x)−m(x)−

q∑
s=1

h2sBs(x)

)
d→ N

(
0,
κqσ2(x)

f(x)

)
,

where κ =
∫
k2(u)du.

The extension to the LL estimator m̂LL(x) is almost straightforward. For
notational convenience, we focus on the case q = 1. Then, upon defining

sj(x) =

n∑
t=1

Kh(Xt − x)(Xt − x)j ,

tj(x) =

n∑
t=1

YtKh(Xt − x)(Xt − x)j

for j = 0, 1, 2, we get

m̂LL(x) :=
t0(x)s2(x)− t1(x)s1(x)

s0(x)s2(x)− s21(x)
=

∑n
t=1 YtCh(Xt − x)∑n
t=1 Ch(Xt − x)

(4)

with the kernel function

Ch(Xt − x) =
1

nh

∑
s6=t

Kh(Xt − x)(Xs −Xt)Kh(Xs − x)(Xs − x)

representing a discretized version of C(u) :=
∫
K(u)(v−u)K(v)vdv. Note that

(4) is of the same form as (3) and that the kernel C has similar properties to
K. Applying Theorem 1 yields the pointwise convergence result for the LL
estimator.

Theorem 3 Under the given assumptions,

|m̂LL(x)−m(x)| = Op

(
h2 +

1√
nh

)
.
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For a multivariate extension and asymptotic normality, refer, for example,
to Masry (1996).

As many time series exhibit a nonstationary behaviour, the focus of the
statistical literature is broadened in recent years to the so-called locally sta-
tionary processes (Dahlhaus, 1997). Processes are locally stationary whenever
it is possible to approximate the behaviour of the process over short periods
of time in a stationary way. For example, Vogt (2012) studies nonparamet-
ric models allowing for locally stationary regressors and a regression function
that changes over time. He develops asymptotic theory for the NW estimator
which has rescaled time as one covariate. Vogt (2012) states that his conver-
gence result is not valid in a forecasting context. However, Cheng et al. (2018)
provide predictive models and estimation theory for the local-constant case
and locally stationary regressors. They apply their methods to monthly stock
market data and find improved predictability of their models compared to tra-
ditional linear predictive regression models. We do not apply a similar strategy
to our annual data because i) using an additional regressor for rescaled time
increases the dimensionality of our problem and it is not clear whether this is
beneficial in our scarce data environment (curse of dimensionality); (ii) most
of our regressors do not seem to be highly persistent on an annual basis.

4 The principle of validation: model selection and the choice of
smoothing parameter

As we use a nonparametric technique, we require an adequate measure of
predictive power. Classical in-sample measures, such as the R2 or adjusted
R2, are not appropriate. For example, R2 favours the most complex model
and is often inconsistent (see Valkanov, 2003), whereas standard penalization
for complexity via a degree-of-freedom adjustment becomes meaningless in
nonparametrics as it is unclear what the degrees of freedom are in this setting.
Moreover, in prediction, we are not interested in how well a model explains
the variation inside the sample but, instead, in its out-of-sample performance;
hence, we aim to estimate the prediction error directly.

For the purpose of model as well as bandwidth selection, we use a general-
ized version of the validated R2, the R2

V , introduced by Nielsen and Sperlich
(2003) based on a leave-k-out cross-validation. This method of finding the
smoothing parameter has shown to be suitable also in a time series context.
Our validation criterion is defined as

R2
V = 1−

∑
t

(Y
(A)
t − m̂−t)2∑

t
(Y

(A)
t − Ȳ (A)

−t )2
, (5)

where leave-k-out estimators are used: m̂−t for the nonparametric function m

and Ȳ
(A)
−t for the unconditional mean of Y

(A)
t . Both are computed by removing

k observations around the tth time point. Here, we use k = 1, that is, the
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classical leave-one-out estimator. Nevertheless, it is well-known that cross-
validation often requires omitting more than one data point and, possibly,
additional correction when the omitted fraction of data is considerable (see,
for example, Burman et al., 1994).

R2
V measures the predictive power of a given model compared to the cross-

validated historical mean; positive R2
V implies that the predictor-based regres-

sion model (1) outperforms the historical average excess stock return. More-
over, cross-validation not only punishes instances of overfitting, but also allows
finding the optimal (predictive) bandwidth for non- and semi-parametric es-
timators (see Györfi et al., 1990); more recently, Bandi et al. (2016) have
also studied optimality of the cross-validated bandwidth under stationary or
nonstationary behaviour. Hence, in general, R2

V can be used for both model
selection and optimal bandwidth choice.

5 Predicting excess returns based on different benchmarks

5.1 Data

In this paper, we take the long-term actuarial view and base our predictions on
annual US data provided by Robert Shiller. This dataset, which is made avail-
able from http://www.econ.yale.edu/~shiller/data.htm, includes, among
other variables, long-term changes of the Standard and Poor’s (S&P) Compos-
ite Stock Price Index, bond price changes, consumer price index changes, and
interest rate data from 1872 to 2015. This is an updated and revised version of
Shiller (1989, Chapter 26), which provides a detailed description of the data.
Various long-term studies use the same dataset, such as Chen et al. (2012),
Elliott et al. (2013) and Favero et al. (2011).

Including structural changes in the modelling process is important, hence
the length of this period allows for this. For example, Harvey et al. (2018)
investigate the stability of predictive regression models and develop a real-
time monitoring procedure for the emergence of predictive regimes. Rapach
and Wohar (2004) find significant evidence of structural breaks in seven out
of eight predictive regressions of S&P 500 returns, and three out of eight in
CRSP (Center for Research in Security Prices) equal-weighted returns. Pe-
saran and Timmermann (2002) find that a linear predictive model that in-
corporates structural breaks improves the out-of-sample statistical forecasting
power. In addition, from a statistical perspective, as we apply a fully non-
parametric method, more observations are required than a linear regression to
produce consistent estimates but also to have more information that will help
us understand better the underlying data generating process.

Clearly, there are not many historical years in our records and data sparsity
is an important issue in our approach. It could be argued that using monthly,
weekly, or even daily data to the extent these are available would be preferred.
However, it cannot be overlooked that prediction can be very different for
yearly, monthly, weekly and daily data and that a good model for monthly

http://www.econ.yale.edu/~shiller/data.htm
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data might not be for yearly data, and vice versa. We take the long-term view
using yearly data and predict at a one-year horizon as we are interested in
actuarial models of long-term savings and potential econometric improvements
to such models (see, for example, Guillén et al., 2013a, 2013b, Owadally et al.,
2013, Bikker et al., 2012, Guillén et al., 2014, or Gerrard et al., 2014). For
this, the methodology we adopt for validating our sparse long-term yearly
data originates from the actuarial literature (see Nielsen and Sperlich, 2003).

5.2 Single benchmarking approach

In this section, we consider a single benchmarking approach where only the
dependent variable is adjusted according to some benchmark, as shown in (1),
while the independent variable(s) is (are) measured on the original nominal
scale. The model (1) is estimated with a local-linear kernel smoother using the
quartic kernel and the optimal bandwidth chosen by cross-validation, i.e., by
maximizing the R2

V given by (5). Moreover, it should be kept in mind that the
nonparametric method can estimate linear functions without any bias, given
that we apply a local-linear smoother. Thus, the linear model is automatically
embedded in our approach.

We study the empirical findings of R2
V values based on different validated

scenarios shown in Table 1. Overall, we find that the term spread s is in itself
the most important predictor under the different benchmarks. This remains
quite the case also when combined with additional information. Inflation is
another predictor that performs well when used concurrently as a benchmark.
Hence, these are aspects where we especially focus our spotlight on in our
discussion.

More specifically, if we constrain prediction to using only one-dimensional
covariates, then the term spread s is the best predictor under the short interest
benchmark B(R) with R2

V = 13.2%, but also does quite well under the inflation
benchmark B(C) with R2

V = 9.9%. Imposing an additional covariate to s has,
in general, a decreasing effect on R2

V however not substantial. Under B(R),
R2
V remains in the majority of the combinations within the range 12.0–13.2%.

Under other benchmarks, for example, B(L), s yields R2
V in the range 7.6–8.8%;

under B(E), R2
V lies in the range 6.4–8.7%. The two-dimensional covariates

(Y (R), s), (Y (L), s) and (Y (E), s) result in lower predictive power than the
previous ranges under B(R), B(L) and B(E) with, respectively, R2

V values 9%,
4.4% and 5.1%; while still below the best-performing ranges, (π, s) is found
slightly better under B(R), B(L) and B(E) with, respectively, R2

V values 10.3%,
5.8% and 5.7%. It is worth noting that the occasional reduction in predictive
power in the two-dimensional compared to the one-dimensional case is not
particularly surprising as we use a fully nonparametric smoother that requires
more observations than a linear regression to produce consistent estimates
when fitting higher-dimensional models, so that our cross-validated R2

V might
rank one-dimensional better than two-dimensional models. (Note that this is
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Table 1 Predictive power for dependent variable Y
(A)
t : the single benchmarking approach.

The prediction problem is defined in (1). The predictive power (%) is measured by R2
V as

defined in (5). The benchmarks B(A) considered are based on the short-term interest rate
(A ≡ R), long-term interest rate (A ≡ L), earnings-by-price ratio (A ≡ E), and consumer
price index (A ≡ C). The predictive variables used are Xt−1, given by the dividend-by-price
ratio dt−1, earnings-by-price ratio et−1, short-term interest rate rt−1, long-term interest rate

lt−1, inflation πt−1, term spread st−1, excess stock return Y
(A)
t−1 , or the possible different

pairwise combinations as indicated.

Benchmark B(A) Explanatory variable(s) Xt−1

Y (A) d e r l π s
Short-term rate -1.5 -1.0 -0.3 4.0 -0.1 -1.4 13.2
Long-term rate -1.8 -0.7 0.0 2.1 -0.1 -1.4 8.8
Earnings-by-price -1.7 -1.4 -1.5 -0.1 -0.9 -1.2 8.7
Inflation -1.3 -0.2 -1.5 1.1 -0.8 10.5 9.9

(Y (A), d) (Y (A), e) (Y (A), r) (Y (A), l) (Y (A), π) (Y (A), s)
Short-term rate -2.3 -2.0 1.9 -2.3 -2.8 9.0
Long-term rate -2.2 -1.8 0.0 -2.5 -3.0 4.4
Earnings-by-price -3.5 -3.7 -2.0 -2.8 -2.8 5.1
Inflation -1.2 -3.2 -0.6 -2.5 10.2 6.9

(d, e) (d, r) (d, l) (d, π) (d, s)
Short-term rate -2.7 3.0 -1.7 -2.4 12.0
Long-term rate -2.3 1.4 -1.4 -2.2 7.6
Earnings-by-price -3.8 -1.6 -2.3 -2.6 6.6
Inflation -2.0 0.9 -1.2 9.7 9.7

(e, r) (e, l) (e, π) (e, s)
Short-term rate 5.4 -0.8 -1.1 13.0
Long-term rate 3.7 -0.3 -0.7 8.6
Earnings-by-price -1.5 -2.4 -2.7 6.4
Inflation 0.0 -2.5 11.5 8.1

(r, l) (r, π) (r, s)
Short-term rate 10.4 2.5 12.2
Long-term rate 5.9 0.5 7.8
Earnings-by-price 6.6 -1.6 8.2
Inflation 6.6 9.7 8.8

(l, π) (l, s)
Short-term rate -2.0 12.5
Long-term rate -2.1 8.1
Earnings-by-price -1.9 8.1
Inflation 10.1 9.3

(π, s)
Short-term rate 10.3
Long-term rate 5.8
Earnings-by-price 5.7
Inflation 16.1

not the case for a linear model estimated with OLS based on the usual R2

measure which would always choose the most complex model.)

Remarkable is the case of predictor π, either in itself or combined with
covariates Y (C), d, e, r, l, under the inflation benchmark B(C) leading to R2

V

in the range 9.7–11.5%. In addition, when put together with the term spread,
the resulting combination (π, s) under B(C) is the clear winner reaching an
astonishing R2

V = 16.1%. Given that the inflation benchmark might be the
most important one for many pension product applications, this high predic-
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tive power is very promising. Under the B(R), B(L) and B(E) benchmarks,
the performance of covariate π deteriorates and, in fact, the historical average
excess return in these cases surpasses the predictor-based regression model, as
implied by negative R2

V , unless it is combined with covariate r or s.
Finally, other covariates in themselves or combined also lead to negative

R2
V values; such predictor examples include Y, d, e, l and their pairwise com-

binations under any benchmark. On the contrary, the short-term rate r indi-
vidually or combined with other covariates boosts, with a few exceptions, the
predictive power of our nonparametric regression model.

5.3 Full benchmarking approach

The second step now is to analyze whether an adequate transformation of
the explanatory variables can further improve predictions. Recall that fully
nonparametric models suffer in several aspects by the curse of dimensional-
ity, in particular, as in our framework, where we confront sparsely distributed
annual observations in higher dimensions. In statistics, it is well-known that
importing more structure in the estimation process can help reduce or circum-
vent such problems. For example, Nielsen and Sperlich (2003) investigate an
additive functional structure in the context of predictability of excess stock
returns (as proposed in the statistical literature by Stone, 1985). Their results
indicate a more complex structure than additivity, as the fully nonparametric
models always do better in terms of validated R2 than the additive counter-
parts. Scholz et al. (2015) propose a semiparametric bias reduction method for
the purpose of importing more structure based on a multiplicative correction
with a parametric pilot estimate. Alternatively, Scholz et al. (2016) make use
of economic theory saying that the price of a stock is driven by fundamentals
and investors should focus on forward earnings and profitability. They include
information on the same years’ – instead of last years’ – explanatories and
improve predictions.

Here, we propose an extension of the study in Section 5.2 using economic
structure in the sense that we consider adjusting both the independent and
dependent variables according to the same benchmark. For example, in the full
benchmarking approach with an inflation benchmark, both excess returns and
covariates are expressed in terms of inflation. In pension research, it is sensible
to employ such a model with all returns and covariates net-of-inflation. This,
in turn, provides a simple scaling when working on long-term forecasts in real
terms.

In general, in our full benchmarking approach, the prediction problem is
reformulated as

Y
(A)
t = m(X

(A)
t−1) + ξt, (6)

where we use transformed predictive variables

X
(A)
t−1 =

{ 1+Xt−1

B
(A)
t−1

, X ∈ {d, e, r, l, π, s}

Y
(A)
t−1

, A ∈ {R,L,E,C}. (7)
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Table 2 Predictive power for dependent variable Y
(A)
t : the full benchmarking approach.

The prediction problem is defined in (6). The predictive power (%) is measured by R2
V

as defined in (5). The benchmarks B(A) considered are based on the short-term interest
rate (A ≡ R), long-term interest rate (A ≡ L), earnings-by-price ratio (A ≡ E), and

consumer price index (A ≡ C). The predictive variables used are transformed X
(A)
t−1 using

the indicated benchmark B
(A)
t−1 as shown in (7). Xt−1 are given by the dividend-by-price

ratio dt−1, earnings-by-price ratio et−1, short-term interest rate rt−1, long-term interest
rate lt−1, inflation πt−1, term spread st−1, or the possible different pairwise combinations
as indicated. “–” are not applicable cases of matched covariate with benchmark.

Benchmark B(A) Explanatory variable(s) X
(A)
t−1

Y (A) d(A) e(A) r(A) l(A) π(A) s(A)

Short-term rate -1.5 4.2 7.0 – 13.2 -1.2 13.2
Long-term rate -1.8 -0.2 1.0 8.9 – -1.5 8.9
Earnings-by-price -1.7 -2.3 – 0.3 -1.2 0.0 8.7
Inflation -1.3 10.7 13.3 6.6 10.8 – 8.9

(Y (A), d(A)) (Y (A), e(A)) (Y (A), r(A)) (Y (A), l(A)) (Y (A), π(A)) (Y (A), s(A))
Short-term rate 2.7 5.0 – 8.7 -2.7 8.7
Long-term rate -1.9 -0.8 4.3 – -3.1 4.3
Earnings-by-price -4.1 – -1.7 -3.2 -2.5 5.0
Inflation 11.2 12.3 5.8 10.1 – 6.0

(d(A), e(A)) (d(A), r(A)) (d(A), l(A)) (d(A), π(A)) (d(A), s(A))
Short-term rate 4.1 – 11.5 2.6 11.5
Long-term rate -1.2 7.0 – -1.8 7.0
Earnings-by-price – -2.8 -3.7 -3.2 4.9
Inflation 11.2 9.8 10.3 – 16.2

(e(A), r(A)) (e(A), l(A)) (e(A), π(A)) (e(A), s(A))
Short-term rate – 12.9 5.2 12.9
Long-term rate 8.4 – -0.1 8.4
Earnings-by-price – – – –
Inflation 12.4 12.0 – 18.7

(r(A), l(A)) (r(A), π(A)) (r(A), s(A))
Short-term rate – – –
Long-term rate – 5.7 –
Earnings-by-price 4.9 -1.6 6.5
Inflation 15.1 – 16.9

(l(A), π(A)) (l(A), s(A))
Short-term rate 10.2 –
Long-term rate – –
Earnings-by-price -2.4 6.3
Inflation – 16.7

(π(A), s(A))
Short-term rate 10.2
Long-term rate 5.7
Earnings-by-price 5.6
Inflation –

This model can be interpreted as a way of reducing dimensionality of the

estimation procedure as X
(A)
t−1 encompasses an additional predictive variable.

Results of this empirical study are presented in Table 2. We find that, in
the majority of the cases, the full outruns the single benchmarking approach
presented in Table 1 in terms of R2

V . In addition, by full benchmarking, several
cases of inability of the predictor-based regression model to beat the historical
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average excess return are now surmounted with R2
V becoming positive. The

term spread s retains its superior predictability with perceptible improvement
brought in two-dimensional settings when paired with the dividend-by-price
ratio d, the earnings-by-price ratio e, the short rate r, or the long rate l un-
der the B(C) benchmark, reaching up to a notable R2

V = 18.7% when using
specifically predictors (e(C), s(C)). Otherwise, as in the single benchmarking
approach, we experience similarly some decrease in predictability when adding
covariates to s, with (Y (R), s(R)), (Y (L), s(L)) and (Y (E), s(E)), although re-
sulting in positive R2

V , still performing worse under B(R), B(L) and B(E).
A few more interesting comments relating to benchmarks B(R), B(L) and

B(E) are in order. We find that under B(R) and B(L), s(R) and s(L) have, re-
spectively, the same predictive power as l(R) and r(L), either in themselves or
when combined with a common covariate such as Y, d, e, and this is consider-
ably improved from the single benchmarking approach: for example, changing
from predictor l under B(R) to l(R) increases R2

V from -0.1% to 13.2% or from
predictor r under B(L) to r(L) increases R2

V from 2.1% to 8.9%. Nevertheless,
the highest predictability power for these benchmarks is close to that from
the single approach originating from s under B(R) and B(L); similar remark
applies in the B(E) benchmark where s(E) is the best predictor achieving at
most the same level of predictability as s under B(E) in the single approach.

We turn now attention to B(C). Here, remarkable in the full approach is the
contribution of the earnings-by-price ratio e(C) whose predictability, contrary
to that of e under B(C) in the single approach, is now put on show. We find
that e(C), (Y (C), e(C)), (e(C), s(C)) result in R2

V of 13.3%, 12.3% and 18.7%
against maximum R2

V of 9.9%, 6.9% and 8.1% from individual s, (Y (C), s),
(e, s) under B(C) in Table 1. Notable contributions from other covariates are
those of (d(C), s(C)), (r(C), s(C)) and (l(C), s(C)) with R2

V of 16.2%, 16.9%
and 16.7% against maximum R2

V of 9.7%, 8.8% and 9.3% from (d, s), (r, s),
(l, s) under B(C) in Table 1. Overall, using earnings-by-price as an individual
predictor and two-dimensional predictors that include the term spread capture
the best predictive performances; the winning pair is earnings-by-price ratio
and term spread.

5.4 Synopsis and further discussion

In summary, our study indicates that with single benchmarking, the spread in
nominal terms has a significantly higher predictability than the earnings-by-
price or even the earnings-by-price together with the spread. This is consistent
with Kothari et al. (2006) who state that lagged earnings exhibit no predictive
power for future annual returns. Besides, evidence, for example, from Resnick
and Shoesmith (2002) suggests that the value of the yield spread holds impor-
tant information about the probability of a bear stock market.

Our full benchmarking analysis complements the original conclusion of
Kothari et al. (2006) by showing that, net-of-inflation, i.e., in real terms, the
earnings-by-price beats the spread, with their combination performing best.
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This is an important observation as benchmarking fits well in building mod-
els net-of-inflation, as discussed in Donnelly et al. (2018) and Gerrard et al.
(2018a, 2018b), while at the same time expanding to double benchmarking
endows earnings with predictive power. This is a crucial implication for pen-
sion research or other long-term saving strategies, where one should look at
real value and implement double benchmarking including both spread and
earnings.

In addition, as part of their comprehensive analysis of a long literature
including articles based on different techniques, variables, and time periods,
and sometimes contradicting results, Welch and Goyal (2008) find that pre-
dictive linear regressions using prominent variables, including our choices, do
result in poor predictability, in-sample and out-of-sample. Nevertheless, follow-
ing their recommendation, we explore the possibility of an alternative model
approach, here, a simple nonparametric regression model and different bench-
marks. Contrary to them, our method with double benchmarking leads, as
highlighted earlier, to favourable predictive results implying that nonlinear
and/or nonparametric models are necessary in order to represent the com-
plicated relationship between earnings, prices, the yield curve and the stock
returns.

6 Conclusion

In this communication, we define machine learning as a working framework
comprising the following summarized key ingredients: articulation, domain
knowledge, final selection by validation, conduct of validation consistently
with underlying statistical principles and properly channeled prior knowledge.
We then apply to forecasting stock returns in excess of different benchmarks,
including the inflation, long interest rate and earnings-by-price ratio to sup-
plement the short interest rate which is by far the most commonly used in
finance. Indeed, this paper expresses an interest in going beyond this as differ-
ent benchmarks might be important, for example, when modelling returns in
real terms (inflation benchmark) or modelling returns in excess of long-term
interest rate.

We use predictors such as the dividend-by-price ratio, earnings-by-price
ratio, short interest rate, long interest rate, the term spread, the inflation,
as well as the lagged excess stock return. We also investigate the option of
full benchmarking, meaning that, not only returns are benchmarked, but also
the covariates used to predict them. The full benchmarking approach can
also be seen as an example of a dimension reduction technique, where more
information is included in the nonparametric prediction without extra cost in
the form of increasing problem dimensionality. The summarizing conclusion of
our analysis is that, in real terms, the combination of earnings-by-price and
long-short rate spread within our nonparametric model setting has the best
predictive outcome, which is important for long-term saving strategies.
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