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Abstract

The variability of chain ladder reserve estimates is quantified without assuming any
specific claims amount distribution function. This is done by establishing a formula
for the so-called standard error which is an estimate for the standard deviation of the
outstanding claims reserve. The information necessary for this purpose is extracted
only from the usual chain ladder formulae. With the standard error as a tool it is
shown how a confidence interval for the outstanding claims reserve and for the
ultimate claims amount can be constructed. Moreover, the analysis of the information
extracted and of its implications shows when it may be appropriate to apply the chain
ladder method and when it may not be.

Note

The original version of this paper was submitted to the prize paper competition
"Variability of Loss Reserves" held by the Casualty Actuarial Society and was
awarded a joint second prize. The present text differs from that paper in a few changes
to the text and a changed and more thorough test procedure in Appendix H. This paper
is included in the Claims Reserving Manual with the specific permission of the
Casualty Actuarial Society, which otherwise retains ownership and all rights to
continue to publish and disseminate this paper anywhere.
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MEASURING THE VARIABILITY OF CHAIN LADDER RESERVE ESTIMATES

1. Introduction and Overview

The chain ladder method is probably the most popular method for estimating
outstanding claims reserves. The main reason for this is its simplicity and the fact that
it is distribution-free, that is, it seems to be based on almost no assumptions. In this
paper, it will be seen that this impression is wrong and that the chain ladder algorithm
has far-reaching implications. These implications also allow it to measure the
variability of chain ladder reserve estimates. With the help of this measure it is
possible to construct a confidence interval for the estimated ultimate claims amount
and for the estimated reserves.

Such a confidence interval is of great interest for the practitioner because the
estimated ultimate claims amount can never be an exact forecast of the true ultimate
claims amount and therefore a confidence interval is of much greater information
value. A confidence interval also allows one to consider business strategy in
conjunction with the claims reserving process, using specific confidence probabilities.
Moreover, there are many other claims reserving procedures and the results of all
these procedures can vary widely. With the help of a confidence interval it can be seen
whether the difference between the results of the chain ladder method and any other
method is significant or not.

The structure of the paper is as follows. In section 2 a first basic assumption
underlying the chain ladder method is derived from the formula used to estimate the
ultimate claims amount. In section 3, the comparison of the age-to-age factor formula
used by the chain ladder method with other possibilities leads to a second underlying
assumption regarding the variance of the claims amounts. Using both of these derived
assumptions and a third assumption on the independence of the accident years, it is
possible to calculate the so-called standard error of the estimated ultimate claims
amount. This is done in section 4, where it is also shown that this standard error is the
appropriate measure of variability for the construction of a confidence interval.
Section 5 illustrates how any given run-off triangle can be checked using some plots
to ascertain whether the assumptions mentioned can be considered to be met. If these
plots show that the assumptions do not seem to be met, the chain ladder method
should not be applied without adaptation. In section 6 the formulae and two statistical
tests (set out in Appendices G and H) are applied to a numerical example. For the sake
of comparison, the reserves and standard errors according to a well-known claims
reserving software package are also quoted. Complete and detailed proofs of all
results and formulae are given in the Appendices A-F.

The proofs are quite long and take up about one fifth of the paper. However, the
resulting formula for the standard error is very simple and can be applied directly after
reading the basic notations in the first two paragraphs of section 2. In the numerical
example, too, the formula for the standard error could be applied immediately to the
run-off triangle. Instead, an analysis of whether the chain ladder assumptions are met
in this particular case is made first. Because this analysis comprises many tables and
plots, the example takes up another two fifths of the paper (including the tests in
Appendices G and H).
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2. Notation and First Analysis of the Chain Ladder Method

Let Cik denote the accumulated total claims amount of accident year i, 1 i I, either
paid or incurred up to development year k, 1 k I. The values of Cik for
i + k I + 1 are known to us (run-off triangle) and we want to estimate the values of
Cik for i + k > I + 1, in particular the ultimate claims amount CiI of each accident
year i = 2, …, I. Then

is the outstanding claims reserve of accident year i as Ci,I+1-i has already been paid or
incurred up to now.

The chain ladder method consists of estimating the ultimate claims amounts CiI by

(1)

where

(2)

are the so-called age-to-age factors.

This manner of projecting the known claims amount Ci, I +1_i to the ultimate claims
amount CiI uses for all accident years i I + 1 - k the same factor fk for the increase
of the claims amount from development year k to development year k+1, although the
observed individual development factors Ci, k+1 /Cik of the accident years i I - k are

usually different from one another and from fk. This means that each increase from
Cik to Ci,k+1 is considered a random disturbance of an expected increase from Cik to
Cikfk where fk is an unknown 'true' factor of increase which is the same for all
accident years and which is estimated from the available data by fk.

Consequently, if we imagine to be at the end of development year k we have to
consider Ci, k+1,…, CiI as random variables whereas the realizations of Ci1,..., Cik are
known to us and are therefore no longer random variables but scalars. This means that
for the purposes of analysis every Cik can be a random variable or a scalar, depending
on the development year at the end of which we imagine to be but independently of
whether Cik belongs to the known part i + k I + 1 of the run-off triangle or not.
When taking expected values or variances we therefore must always also state the
development year at the end of which we imagine to be. This will be done by
explicitly indicating those variables Cik whose values are assumed to be known. If
nothing is indicated all Cik are assumed to be unknown.
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What we said above regarding the increase from Cik to Ci, k+1 can now be formulated
in stochastic terms as follows. The chain ladder method assumes the existence of
accident-year-independent factors f l ,…, fI-1 such that, given the development
Ci1,…, Ci k , the realization of Ci, k+1 is 'close' to Cikfk, the latter being the expected
value of Ci, k+1 in its mathematical meaning, that is

(3)

Here to the right of the ' | ' those Cik are listed which are assumed to be known.
Mathematically speaking, (3) is a conditional expected value which is just the exact
mathematical formulation of the fact that we already know Ci1,…, Ci k , but do not
know Ci, k+1. The same notation is also used for variances since they are specific

expectations. The reader who is not familiar with conditional expectations should not
refrain from further reading because this terminology is easily understandable and the
usual rules for the calculation with expected values also apply to conditional expected
values. Any special rule will be indicated wherever it is used.

We want to point out again that the equations (3) constitute an assumption which is
not imposed by us but rather implicitly underlies the chain ladder method. This is
based on two aspects of the basic chain ladder equation (1). One is the fact that (1)
uses the same age-to-age factor fk for different accident years i = I + 1 - k,…, I.
Therefore equations (3) also postulate age-to-age parameters fk which are the same
for all accident years. The other is the fact that (1) uses only the most recent observed
value Ci, I+1-i as basis for the projection to ultimate ignoring on the one hand all
amounts Ci1,…, Ci, I-1 observed earlier and on the other hand the fact that Ci, I+1-i

could substantially deviate from its expected value.

Note that it would easily be possible to also project to ultimate the amounts
Ci1,…, Ci, I-i of the earlier development years with the help of the age-to-age factors

f1,…, fI-1 and to combine all these projected amounts together with

Ci, I+1-ifI+1-i ·…· fI-1 into a common estimator for CiI. Moreover, it would also easily be

possible to use the values Cj, I+1-i of the earlier accident years j < i as additional

estimators for E(Ci,I+1_i) by translating them into accident year i with the help of a

measure of volume for each accident year.

These possibilities are all ignored by the chain ladder method which uses Ci,I+1-i as

the only basis for the projection to ultimate. This means that the chain ladder method
implicitly must use an assumption which states that the information contained in
Ci,I+1-i cannot be augmented by additionally using Ci1,…, Ci,I-i or

C1,I+1-i ,…, Ci-1,I+1-i . T h i s very well reflected by the equations (3) which state that,

given Ci1,…, Cik, the expected value of Ci,k+1 only depends on Ci k.
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Having now formulated this first assumption underlying the chain ladder method we
want to emphasize that this is a rather strong assumption which has important
consequences and which cannot be taken as met for every run-off triangle. Thus the
widespread impression that the chain ladder method would work with almost no
assumptions is not justified. In section 5 we will elaborate on the linearity constraint
contained in assumption (3). But here we want to point out another consequence of
formula (3). We can rewrite (3) in the form

because Cik is a scalar under the condition that we know Ci1,…, Cik. This form of (3)
shows that the expected value of the individual development factor Ci,k+1 / Cik equals
fk irrespective of the prior development Cij,…,Cik and especially of the foregoing
development factor Cik / Ci, k-1.

As is shown in Appendix G, this implies that subsequent development factors
Cik / Ci, k-1 and Ci,k+1 / Cik are uncorrelated. This means that after a rather high value
of Cik / Ci, k-1 the expected size of the next development factor Ci,k+1 / Cik is the same
as after a rather low value of Clk / Ci,k-1.

We therefore should not apply the chain ladder method to a business where we usually
observe a rather small increase Ci,k+1 / Cik if Cik / Cik-1 is higher than in most other
accident years, and vice versa. Appendix G also contains a test procedure to check this
for a given run-off triangle.
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3. Analysis of the Age-to-Age Factor Formula: the Key to Measuring the
Variability

Because of the randomness of all realizations Cik we can not infer the true values of
the increase factors f1,…, fI-1 from the data. They only can be estimated and the
chain ladder method calculates estimators fl,…, fI-1 according to formula (2). Among
the properties which a good estimator should have, one prominent property is that the
estimator should be unbiased, that is its expected value E(fk) (under the assumption
that the whole run-off triangle is not yet known) is equal to the true value fK, in other

words E(fk) = fk. Indeed, this is the case here as is shown in Appendix A under the
additional assumption that

(4) the variables {Ci1,…, CiI} and {Cj1,…, CjI} of different accident years i j are
independent

Because the chain ladder method neither in (1) nor in (2) takes into account any
dependency between the accident years we can conclude that the independence of the
accident years is also an implicit assumption of the chain ladder method. We will
therefore assume (4) for all further calculations. Assumption (4), too, cannot be taken
as being met for every run-off triangle because certain calendar year effects (such as a
major change in claims handling or in case reserving or greater changes in the
inflation rate) can affect several accident years in the same way and can thus distort
the independence. How such a situation can be recognized is shown in Appendix H.

A closer look at formula (2) reveals that

is a weighted average of the observed individual development factors Cj, k+1 / Cjk, for
1 j I - k, where the weights are proportional to Cjk. Like fk every individual
development factor Cj,k+1 /Cj k , 1 j I - k, is also an unbiased estimator of fk
because

(a)

(b)

(c)

(d)

Here equality (a) holds due to the iterative rule E(X) = E(E(X|Y)) for expectations, (b)
holds because, given Cj1 to Cjk, Cjk is a scalar, (c) holds due to assumption (3) and
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(d) holds because fk is a scalar. (When applying expectations iteratively, e.g.
E(E(X|Y)), one first takes the conditional expectation E(X|Y) assuming Y being
known and then averages over all possible realizations of Y.)

Therefore the question arises as to why the chain ladder method uses just fk as
estimator for fk and not the simple average

of the observed development factors which also would be an unbiased estimator as is
the case with any weighted average

of the observed development factors. (Here, wjk must be a scalar if Cj1,…, Cjk are
known.)

Here we recall one of the principles of the theory of point estimation which states that
among several unbiased estimators preference should be given to the one with the
smallest variance, a principle which is easy to understand. We therefore should choose
the weights wjk in such a way that the variance of gk is minimal. In Appendix B it is
shown that this is the case if and only if (for fixed k and all j)

wjk is inversely proportional to Van

The fact that the chain ladder estimator fk uses weights which are proportional to Cjk

therefore means that Cjk is assumed to be inversely proportional to

, or stated the other way around, that

with a proportionality constant ak
2 which may depend on k but not on j and which

must be non-negative because variances are always non-negative.

Since here Cjk is a scalar and because generally Var(X/c) = Var(X) / c2 for any
scalar c, we can state the above proportionality condition also in the form

with unknown proportionality constants
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As with assumptions (3) and (4), assumption (5) also has to be considered a basic
condition implicitly underlying the chain ladder method. Again, condition (5) cannot a
priori be assumed to be met for every run-off triangle. In section 5 we will show how
to check a given triangle to see whether (5) can be considered met or not. But before
doing so we turn to the most important consequence of (5): together with (3) and (4) it
enables us to quantify the uncertainty in the estimation of CiI by CiI .
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4. Quantifying the Variability of the Ultimate Claims Amount

The aim of the chain ladder method and of every claims reserving method is the
estimation of the ultimate claims amount CiI for the accident years i = 2,…, I. The
chain ladder method does this by formula (1), that is

This formula yields only a point estimate for CiI which will normally turn out to be
more or less wrong, that is there is only a very small probability for CiI being equal to
Ci I . This probability is even zero if CiI is considered to be a continuous variable. We
therefore want to know in addition if the estimator CiI is at least on average equal to
the mean of CiI and how large on average the error is. Precisely speaking we first
would like to have the expected values E(CiI) and E(CiI), 2?i I, being equal. In
Appendix C it is shown that this is indeed the case as a consequence of assumptions
(3) and (4).

The second thing we want to know is the average distance between the forecast CiI

and the future realization CiI. In Mathematical Statistics it is common to measure
such distances by the square of the ordinary Euclidean distance ('quadratic loss
function'). This means that one is interested in the size of the so-called mean squared
error

where D = {Cik |i + k I +1} is the set of all data observed so far. It is important to
realize that we have to calculate the mean squared error on the condition of knowing
all data observed so far because we want to know the error due to future randomness

only. If we calculated the unconditional error E(CiI - Ci I)
2 , which due to the iterative

rule for expectations is equal to the mean value E(E((CiI - C i I )
2 |D)) of the

conditional mse over all possible data sets D, we also would include all deviations
from the data observed so far which obviously makes no sense if we want to establish
a confidence interval for CiI on the basis of the given particular run-off triangle D.

The mean squared error is exactly the same concept which also underlies the notion of
the variance

of any random variable X. Var(X) measures the average distance of X from its mean
value E(X).
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Due to the general rule E(X - c)2 = Var(X) + (E(X) - c)2 for any scalar c we have

because C11 is a scalar under the condition that all data D are known. This equation

shows that the mse is the sum of the pure future random error Var(Cil | D) and of the
estimation error which is measured by the squared deviation of the estimate Cil from

its target E(Cil | D). On the other hand, the mse does not take into account any future
changes in the underlying model, that is future deviations from the assumptions (3),
(4) and (5), an extreme example of which was the emergence of asbestos. Modelling
such deviations is beyond the scope of this paper.

As is to be expected and can be seen in Appendix D, mse(Cil) depends on the

unknown model parameters fk and ak
2. We therefore must develop an estimator for

mse(Cil) which can be calculated from the known data D only. The square root of
such an estimator is usually called 'standard error' because it is an estimate of the
standard deviation of Cil in cases in which we have to estimate the mean value, too.
The standard error s.e.(Cil) of Cil is at the same time the standard error s.e.(R,) of
the reserve estimate

of the outstanding claims reserve

because

and because the equality of the mean squared errors also implies the equality of the
standard errors. This means that

(6)

The derivation of a formula for the standard error s.e.(Cil) of Cil turns out to be the
most difficult part of this paper; it is done in Appendix D. Fortunately, the resulting
formula is simple

(7)
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where

(8)

is an unbiased estimator of ak
2 (the unbiasedness being shown in Appendix E) and

are the amounts which are automatically obtained if the run-off triangle is completed
step by step according to the chain ladder method. In (7), for notational convenience
we have also set

Formula (8) does not yield an estimator for aI-1 because it is not possible to estimate
the two parameters fI-1 and aI - j from the single observation CI,l / C1,I-1 between

development years I - 1 and I. If aI-1 = 1 and if the claims development is believed to
be finished after I - 1 years we can put aI_1 = 0. If not, we extrapolate the usually
decreasing series a1 , a2,..., a I - 3 , aI-2 by one additional member, for instance by
means of loglinear regression (see the example in section 6) or more simply by
requiring that

holds at least as long as aI-3 > a1-2.

This last possibility leads to

(9)

We now want to establish a confidence interval for our target variables Cil and Ri.
Because of the equation

the ultimate claims amount Cil consists of a known part Ci,I+1-i and an unknown part
Ri. This means that the probability distribution function of Cil (given the
observations D which include Ci,I+1-i) is completely determined by that of Ri. We
therefore need to establish a confidence interval for Ri only and can then simply shift
it to a confidence interval for Cil.
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For this purpose we need to know the distribution function of Ri. Up to now we only
have estimates Ri and s.e.(Ri) for the mean and the standard deviation of this
distribution. If the volume of the outstanding claims is large enough we can, due to
the central limit theorem, assume that this distribution function is a Normal
distribution with an expected value equal to the point estimate given by Ri and a
standard deviation equal to the standard error s.e.(Ri). A symmetric 95%-confidence
interval for Ri is then given by

But the symmetric Normal distribution may not be a good approximation to the true
distribution of Ri if this latter distribution is rather skewed. This will especially be
the case if s.e.(Ri) is greater than 50 % of Ri. This can also be seen at the above
Normal distribution confidence interval whose lower limit then becomes negative
even if a negative reserve is not possible.

In this case it is recommended to use an approach based on the Lognormal
distribution. For this purpose we approximate the unknown distribution of Ri by a

Lognormal distribution with parameters ui and aj
2 such that mean values as well as

variances of both distributions are equal, so that

This leads to

(10)

Now, if we want to estimate the 90th percentile of Ri, for example, we proceed as
follows. First we take the 90th percentile of the Standard Normal distribution which is

1.28. Then exp(ui + 128ai) with (ui and ai
2 according to (10) is the 90th percentile

of the Lognormal distribution and therefore also approximately of the distribution of
Ri.

For instance, if s. e. (Ri) / Ri = 1 then ai
2 = ln(2) and the 90th percentile is

exp(ui + 1.28AI) = Ri exp(1.28ai - a i
2 /2) = R. exp(.719) = 2.05-R;. If we had

assumed that Ri has approximately a Normal distribution, we would have obtained in
this case Ri + 1.28-s.e.(Ri) = 2.28-Rj as 90th percentile.

This may come as a surprise since we might have expected that the 90th percentile of
a Lognormal distribution always must be higher than that of a Normal distribution
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with same mean and variance. But there is no general rule, it depends on the percentile
chosen and on the size of the ratio s.e.(Rj) / R i . The Lognormal approximation only
prevents a negative lower confidence limit. In order to set a specific lower confidence
limit we choose a suitable percentile, for instance 10%, and proceed analogously as
with the 90% before. The question of which confidence probability to choose has to
be decided from a business policy point of view. The value of 80% = 90% - 10%
taken here must be regarded merely as an example.

We have now shown how to establish confidence limits for every Ri and therefore
also for every Cil = Ci,I+1-i + Ri . We may also be interested in having confidence
limits for the overall reserve

and the question is whether, in order to estimate the variance of R, we can simply add
the squares (s.e.(Rj))2 of the individual standard errors as would be the case with
standard deviations of independent variables. But unfortunately, whereas the Ri 's
themselves are independent, the estimators Rj are not because they are all influenced
by the same age-to-age factors fk, that is the Rj 's are positively correlated. In
Appendix F it is shown that the square of the standard error of the overall reserve
estimator

is given by

(11)

Formula (11) can be used to establish a confidence interval for the overall reserve
amount R in quite the same way as it was done before for Rj. Before giving a full
example of the calculation of the standard error, we will deal in the next section with
the problem of how to decide for a given run-off triangle whether the chain ladder
assumptions (3) and (5) are met or not.
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5. Checking the Chain Ladder Assumptions Against the Data

As has been pointed out, the three basic implicit chain ladder assumptions

(3)
(4) Independence of accident years

(5)

are not met in every case. In this section we will indicate how these assumptions can
be checked for a given run-off triangle. We have already mentioned in section 3 that
Appendix H develops a test for calendar year influences which may violate (4). We
can therefore concentrate in the following on assumptions (3) and (5).

First, we look at the equations (3) for an arbitrary but fixed k and for i = 1,..., I.
There, the values of Cik, 1 < i < I, are to be considered as given non-random values
and equations (3) can be interpreted as an ordinary regression model of the type

where c and b are the regression coefficients and ei the error term with E(ei) = 0,
that is E(Yj) = c + Xib. In our special case, we have c = 0, b = fk and we have
observations of the dependent variable Yi = Ci,k+1 at the points xj = Cik for
i = 1,..., I - k. Therefore, we can estimate the regression coefficient b = fk by the
usual least squares method

If the derivative of the left hand side with respect to fk is set to 0 we obtain for the
minimizing parameter fk the solution

(12)

This is not the same estimator for fk as according to the chain ladder formula (2). We
therefore have used an additional index '0' at this new estimator for fk. We can
rewrite fk0 as

which shows that fk0 is the Cik
2-weighted average of the individual development

factors Cik+1 /Ci k, whereas the chain ladder estimator fk is the Cik -weighted
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average. In section 3 we saw that these weights are inversely proportional to the

underlying variances Var(Cik+] /Cik I Cn,...,Cik).

Correspondingly, the estimator fk0 assumes

being proportional to

or equivalently

being proportional to 1

which means that Var(Ci,k+1| Cil,..., Cik) is the same for all observations
i = 1,..., I - k. This is not in agreement with the chain ladder assumption (5).

Here we remember that indeed the least squares method implicitly assumes equal
variances Var(Yi) = Var(ei) = a2 for all i. If this assumption is not met, that is if
the variances Var(Yi) = Var(ei) depend on i, one should use a weighted least
squares approach which consists of minimizing the weighted sum of squares

where the weights Wi are in inverse proportion to Var(Yi).

Therefore, in order to be in agreement with the chain ladder variance assumption (5),
we should use regression weights wi which are proportional to 1 / Cik (more

precisely to 1 / (Cikak
 2), but ak

 2 can be amalgamated with the proportionality
constant because k is fixed).

Then minimizing

with respect to fk yields indeed

which is identical to the usual chain ladder age-to-age factor fk.
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It is tempting to try another set of weights, namely 1 / Cik
2 because then the weighted

sum of squares becomes

Here the minimizing procedure yields

(13)

which is the ordinary unweighted average of the development factors. The variance
assumption corresponding to the weights used is

being proportional to

or equivalently

being proportional to 1

The benefit of transforming the estimation of the age-to-age factors into the regression
framework is the fact that the usual regression analysis instruments are now available
to check the underlying assumptions, especially the linearity and the variance
assumption. This check is usually done by carefully inspecting plots of the data and of
the residuals, as described below.

First, we plot Cik+1 against Cik, i = 1,..., I - k, in order to see if we really have an
approximately linear relationship around a straight line through the origin with slope
fk = fk1l. Second, if linearity seems acceptable, we plot the weighted residuals

(whose squares have been minimized) against Cik in order to see if the employed
variance assumption really leads to a plot in which the residuals do not show any
specific trend but appear purely random. It is recommended to compare all three
residual plots (for i = 1,..., I - k)
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and to find out which one shows the most random behaviour. All this should be done
for every development year k for which we have sufficient data points, say at least 6,
that is for k < I - 6.

Some experience with least squares residual plots is useful, especially because in our
case we have only very few data points. Consequently, it is not always easy to decide
whether a pattern in the residuals is systematic or random. However, if Plot 1 exhibits
a non-random pattern, and either Plot 0 or Plot 2 does not, and if this holds true for
several values of k, we should seriously consider replacing the chain ladder age-to-age
factors fk1 = fk with fk0 or fk2 respectively.

The following numerical example will clarify the situation a bit more.
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6. Numerical Example

The data for the following example are taken from the 'Historical Loss Development
Study', 1991 Edition, published by the Reinsurance Association of America (RAA).
There, we find on page 96 the following run-off triangle of Automatic Facultative
business in General Liability (excluding Asbestos & Environmental):

The above figures are cumulative incurred case losses in $1000. We have taken the
accident years from 1981 (i=l) to 1990 (i=10) which is enough for the sake of
example but does not mean that we believe to have reached the ultimate claims
amount after 10 years of development.

We first calculate the age-to-age factors fk = fk1 according to formula (2). The result
is shown in the following table together with the alternative factors fk0 according to
(12) and fk2 according to (13)

If one has the run-off triangle on a personal computer it is very easy to produce the
plots recommended in section 5 because most spreadsheet programs have the facility
of plotting X-Y graphs. For every k = 1,..., 8 we make a plot of the amounts Cik+1

(y-axis) of development year k+1 against the amounts Cik (x-axis) of development
year k for i = 1,..., 10 - k, and draw a straight line through the origin with slope fk1.

The plots for k = 1 to 8 are shown in the upper graphs of Figures 1 to 8, respectively.
(All figures are to be found at the end of the paper after the appendices.) The number
above each point mark indicates the corresponding accident year. (Note that the point
mark at the upper or right hand border line of each graph does not belong to the
plotted points (Cik, C1, k + 1) , it has only been used to draw the regression line.) In the
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lower graph of each of the Figures 1 to 8 the corresponding weighted residuals

(Ci,k+i - Cik) Cik are Pitted against Cik for i = 1,... ,10 - k.

The two plots for k = 1 (Figure 1) clearly show that the regression line does not
capture the direction of the data points very well. The line should preferably have a
positive intercept on the y-axis and a flatter slope. However, even then we would have
a high dispersion. Using the line through the origin we will probably underestimate
any future Ci2 if Ci1is less than 2000 and will overestimate it if Ci1 is more than
4000. Fortunately, in the one relevant case i = 10 we have Ci1 = 2063 which means
that the resulting forecast C10,2 = C10,1f2 = 2063-2.999 = 6187 is within the bulk of
the data points plotted. In any case, Figure 1 shows that any forecast of C10,2 is
associated with a high uncertainty of about ±3000 or almost ±50% of an average-sized
Ci2 which is subsequently even larger when extrapolating to ultimate. If in a future
accident year we have a value Cil outside the interval (2000,4000) it is reasonable to
introduce an additional parameter by fitting a regression line with positive intercept to
the data and using it for the projection to Ci2. Such a procedure of employing an
additional parameter is acceptable between the first two development years in which
we have the highest number of data points of all years.

The two plots for k = 2 (Figure 2) are more satisfactory. The data show a clear trend
along the regression line and quite random residuals. The same holds for the two plots
for k = 4 (Figure 4). In addition, for both k = 2 and k = 4 a weighted linear regression
including a parameter for intercept would yield a value of the intercept which is not
significantly different from zero. The plots for k = 3 (Figure 3) seem to show a
curvature to the left but because of the few data points we can hope that this is
incidental. Moreover, the plots for k = 5 have a certain curvature to the right such that
we can hope that the two curvatures offset each other. The plots for k = 6, 7 and 8 are
quite satisfactory. The trends in the residuals for k = 7 and 8 have no significance in
view of the very few data points.

We need not look at the regression lines with slopes fk0 or fk2 as these slopes are
very close to fk (except for k=l). But we should look at the corresponding plots of
weighted residuals in order to see whether they appear more satisfactory than the
previous ones. (Note that due to the different weights the residuals will be different
even if the slopes are equal.) The residual plots for fk0 and k = 1 to 4 are shown in
Figures 9 and 10. Those for fk2 and k = 1 to 4 are shown in Figures 11 and 12. In the
residual plot for f1,0 (Figure 9, upper graph) the point furthest to the left is not an
outlier as it is in the plots for fl,l = f1 (Figure 1, lower graph) and f1,2 (Figure 11,
upper graph).

But with all three residual plots for k=l the main problem is the missing intercept of
the regression line which leads to a decreasing trend in the residuals. Therefore the
improvement of the outlier is of secondary importance. For k = 2 the three residuals
plots do not show any major differences between each other. The same holds for k = 3
and 4. The residual plots for k = 5 to 8 are not important because of the small number
of data points. Altogether, we decide to keep the usual chain ladder method, that is the
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age-to-age factors fk = fk,1, because the alternative's fk,0 or fk,2 do not lead to a clear

improvement.

Next, we can carry through the tests for calendar year influences (see Appendix H)
and for correlations between subsequent development factors (see Appendix G). For
our example neither test leads to a rejection of the underlying assumption as is shown
in the appendices mentioned.

Having now finished all preliminary analyses we calculate the estimated ultimate
claims amounts Ci1 according to formula (1), the reserves Ri = CiI - Ci,I+1-i and its

standard errors (7). For the standard errors we need the estimated values of αk

2 which
according to formula (8) are given by

A plot of ln(αk

2) against k is given in Figure 13 and shows that there indeed seems

to be a linear relationship which can be used to extrapolate ln(α 9

2 ). This yields

α9

2 = exp(-.44) = .64. But we use formula (9) which is more easily programmable

and in the present case is a bit more on the safe side: it leads to α9

2 = 1.34. Using

formula (11) for s.e.(R) as well we finally obtain

(The numbers in the 'Overall'-row are R, s.e.(R) and s.e.(R)/R.) For i = 2, 3 and 10 the
percentage standard error (last column) is more than 100% of the estimated reserve
R i . For i = 2 and 3 this is due to the small amount of the corresponding reserve and is
not important because the absolute amounts of the standard errors are rather small.
But the standard error of 150% for the most recent accident year i = 10 might lead to
some concern in practice. The main reason for this high standard error is the high
uncertainty of forecasting next year's value C1 0 , 2 as was seen when examining the
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plot of Ci 2 against C i 1 . Thus, one year later we will very likely be able to give a

much more precise forecast of C 1 0 1 0 .

Because all standard errors are close to or above 50% we use the Lognormal
distribution in all years for the calculation of confidence intervals. We first calculate
the upper 90%-confidence limit (or with any other chosen percentage) for the overall

outstanding claims reserve R. Denoting by μ and σ2 the parameters of the Lognormal
distribution approximating the distribution of R and using s.e.(R)/R = .52 we have

σ2 = .236 (cf. (10)) and, in the same way as in section 4, the 90th percentile is

exp(μ + 1.28σ) = R-exp( 1.28σ- σ2/2)= 1.655-R = 86298.

Now we allocate this overall amount to the accident years i = 2,..., 10 in such a way
that we reach the same level of confidence for every accident year. Each level of
confidence corresponds to a certain percentile t of the Standard Normal distribution
and — according to section 4 — the corresponding percentile of the distribution of Ri

is R i exp(tσ; -σi

2 /2) with σi

2 = ln(l + (s.e.(Ri))2 / R i

2 ) . We therefore only have

to choose t in such a way that

This can easily be solved with the help of spreadsheet software (for example. by trial
and error, or by using a "Solver") and yields t = 1.13208 which corresponds to the
87th percentile per accident year and leads to the following distribution of the overall
amount 86298:

In order to arrive at the lower confidence limits we proceed completely analogously.
The 10th percentile, for instance, of the total outstanding claims amount is

R exp(-1.28σ - σ2 / 2) = .477 R = 24871. The distribution of this amount over the

individual accident years is made as before and leads to a value of t = -.8211 which
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corresponds to the 21st percentile. This means that a 87% - 21% = 66% confidence
interval for each accident year leads to a 90% - 10% = 80% confidence interval for
the overall reserve amount. In the following table, the confidence intervals thus
obtained for Ri are already shifted (by adding Ci,I+1-i) to confidence intervals for the
ultimate claims amounts Ci1 (for instance, the upper limit 16994 for i=2 has been
obtained by adding C2,9 = 16704 and 290 from the preceding table):

The column "empirical limits" contains the minimum and maximum size of the
ultimate claims amount resulting if, in formula (1), each age-to-age factor fk is
replaced with the minimum (or maximum) individual development factor observed so
far. These factors are defined by

and can be taken from the table of all development factors which can be found in
Appendices G and H. They are

In comparison with the confidence intervals, these empirical limits are narrower in the
earlier accident years i 4 and wider in the more recent accident years i 5. This was
to be expected because the small number of development factors observed between
the late development years only leads to a rather small variation between the
minimum and maximum factors. Therefore these empirical limits correspond to a
confidence probability which is rather small in the early accident years and becomes
larger and larger towards the recent accident years. Thus, this empirical approach to
establishing confidence limits does not seem to be reasonable.
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If we used the Normal distribution instead of the Lognormal we would obtain a 90th
percentile of R + 1.2 R (s.e.(R)/R) = 1.661 R (which is almost the same as the
1.655 R with the Lognormal) and a 10th percentile of R - 1.28 R (s.e.(R)/R) = .34 R
(which is lower than the .477 R with the Lognormal). Also, the allocation to the
accident years would be different.

Finally, we compare the standard errors obtained to the output of the claims reserving
software package ICRFS by Ben Zehnwirth.

This package is a modelling framework in which the user can specify his own model
within a large class of models. But it also contains some predefined models, inter alia
also a 'chain ladder model'. But this is not the usual chain ladder method, instead, it is
a log-linearized approximation of it. This is very similar to the model described in the
paper, Regression Model Based on Log-Incremental Payments by S.Christofides, see
Section D5, Volume 2 of the Claims Reserving Manual.

The slight difference in the results is due to a different estimator for the variance, σ2.
Therefore, the estimates of the outstanding claims amounts differ from those obtained
here with the usual chain ladder method. Moreover, it works with the logarithms of
the incremental amounts Ci,k+1 - Cik and one must therefore eliminate the negative

increment C2,7 - C2 , 6 . In addition, C2,1 was identified as an outlier and was

eliminated. Then the ICRFS results were quite similar to the chain ladder results as
can be seen in the following table

Even though the reserves Ri for i=9 and i=10 as well as the overall reserve R differ
considerably they are all within one standard error and therefore not significantly
different. But it should be remarked that this manner of using ICRFS is not intended
by Zehnwirth because any initial model should be further adjusted according to the
indications and plots given by the program. In this particular case there were strong
indications for developing the model further but then one would have to give up the
'chain ladder model'.
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7. Final Remarks

This paper develops a complete methodology of how to attack the claims reserving
task in a statistically sound manner on the basis of the well-known and simple chain
ladder method. However, the well-known weak points of the chain ladder method
should not be concealed. These are the fact that the estimators of the last two or three
factors fI, fI-1, fI-2 rely on very few observations and the fact that the known claims
amount CI1 of the last accident year (sometimes CI_1,2, too) forms a very uncertain
basis for the projection to ultimate.

This is most clearly seen if CI1 happens to be 0: Then we have CiI =0, RI = 0 and
s.e.(RI) =0 which obviously makes no sense. (Note that this weakness can often be
overcome by translating and mixing the amounts Ci1 of earlier accident years i < I
into accident year I with the help of a measure of volume for each accident year.)

Thus, even if the statistical instruments developed do not reject the applicability of the
chain ladder method, the result must be judged by an actuary and/or underwriter who
knows the business under consideration. Even then, unexpected future changes can
make all estimations obsolete. But for the many normal cases it is good to have a
sound and simple method. Simple methods have the disadvantage of not capturing all
aspects of reality but have the advantage that the user is in a position to know exactly
how the method works and where its weaknesses are. Moreover, a simple method can
be explained to non-actuaries in more detail. These are important advantages of
simple models over more sophisticated ones.
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Appendix A: Unbiasedness of Age-to-Age Factors

Proposition: Under the assumptions

(3) There are unknown constants f1,..., fI_1 with

(4) The variables {Ci1,..., CiI} and {Cj1,..., CjI} of different accident years i j are

independent

the age-to-age factors f l , … , fI_1 defined by

(2)

are unbiased, that is we have E(f k )=f k , 1 k I - 1

Proof: Because of the iterative rule for expectations we have

(Al)

for any set Bk of variables Cij assumed to be known. We take

According to the definition (2) of fk and because Cj k , 1 j I - k, is contained in

Bk and therefore has to be treated as scalar, we have

(A2)

Because of the independence assumption (4) conditions relating to accident years
other than that of Cj,k+1 can be omitted, that is we get

(A3)

using assumption (3) as well.
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Inserting (A3) into (A2) yields

(A4)

Finally, (A1) and (A4) yield E(fk) = E(fk) = fk because fk is a scalar.
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Appendix B: Minimizing the Variance of Independent Estimators

Proposition: Let T1,..., TI be independent unbiased estimators of a parameter t, that is

with

then the variance of a linear combination

under the constraint

(B1)

(which guarantees E(T) = t) is minimal iff the coefficients wi are inversely

proportional to Var(Ti), that is iff

Proof: We have to minimize

(due to the independence of T1,..., TI) with respect to wi under the constraint (B1).

A necessary condition for an extremum is that the derivatives of the Lagrangian are
zero, that is

(B2)

with a constant multiplier λ whose value can be determined by additionally using

(Bl).
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(B2) yields

or

These weights wi indeed lead to a minimum as can be seen by calculating the
extremal value of Var(T) and applying Schwarz's inequality.

Corollary: In the chain ladder case we have estimators Ti = Ci,k+1 / Cik, 1 i I - k,
for fk where the variables of the set

of the corresponding accident years i = 1,..., I - k up to development year k are
considered to be given. We therefore want to minimize the conditional variance

From the above proof it is clear that the minimizing weights should be inversely

proportional to Var(Ti Ak) . Because of the independence (4) of the accident years,
conditions relating to accident years other than that of Ti = Ci,k+1 / Cik can be
omitted. We therefore have

and arrive at the result that the minimizing weights should be inversely proportional to
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Appendix C: Unbiasedness of the Estimated Ultimate Claims Amount

Proposition: Under the assumptions

(3) There are unknown constants f1,..., fI-1 with

(4) The variables {Ci 1, ..., CiI} and { C j 1 , . . . , C j I } of different accident years i j are

independent

the expected values of the estimator

(1)

for the ultimate claims amount and of the true ultimate claims amount CiI are equal,
that is we have E(CiI) = E(CiI), 2 i I.

Proof: We first show that the age-to-age factors fk are uncorrelated. With the same
set

of variables assumed to be known as in Appendix A we have for j < k

(a)

(b)

(c)

(d)

(e)

Here (a) holds because of the iterative rule for expectations, (b) holds because fj is a

scalar for Bk given and for j < k, (c) holds due to (A4), (d) holds because fk is a
scalar and (e) was shown in Appendix A.

This result can easily be extended to arbitrary products of different fk 's, that is we
have

(C1)
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This yields

(a)

(b)

(c)
(d)
(e)

(f)

Here (a) holds because of the iterative rule for expectations, (b) holds because of the
definition (1) of CiI, (c) holds because Ci,I+1-i is a scalar under the stated condition,
(d) holds because conditions which are independent from the conditioned variable
fI+1-i…fI-1 can be omitted (observe assumption (4) and the fact that fI+1-i,..., fI-1,
only depend on variables of accident years i), (e) holds because E(fI+1-i,..., fI-1) is
a scalar and (f) holds because of (C1).

Finally, repeated application of the iterative rule for expectations and of assumption
(3) yields for the expected value of the true reserve CiI
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Appendix D: Calculation of the Standard Error of CiI

Proposition: Under the assumptions

(3) There are unknown constants f1,..., fI-1 with

(4) The variables {Ci1,..., CiI} and {Cj1,..., CjI} of different accident years i j are

independent

(5) There are unknown constants α1,…, α1-1 with

the standard error s.e. (Ci I) of the estimated ultimate claims amount

CiI

 = Ci , I + 1 - i fI+1-i … fI-1 is given by the formula

where C i k = Ci,I+1-ifI+1-i… fk-1, k > I + 1 - i, are the estimated values of the future

C i k and Ci,I+1-i = Ci , I + 1_i .

Proof: As stated in section 4, the standard error is the square root of an estimator of

mse(Ci I) and we have also seen that

(Dl)

In the following, we use the abbreviations

Because of the independence of the accident years we can omit in (Dl) that part of the

condition D = {Cik | i + k I + 1} which is independent from C i I , that is we can write

(D2)
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We first consider Vari(Cil). Because of the general rule Var(X) = E(X2) - (E(X))2

we have

(D3)

For the calculation of Ei (CiI) we use the fact that for k I + 1 - i

(D4)

Here, we have used the iterative rule for expectations in its general form
E(X|Z) = (E(X|Y)|Z) for {Y} É {Z} (mostly {Z} is the empty set). By successively
applying (D4) we obtain for k I + 1 - i

(D5)

because Ci,I+1_i is a scalar under the condition 'i'.

For the calculation of the first term Ei (CiI
2) of (D3) we use the fact that for

k I + l - i

(D6) (a)

(b)

(c)

Here, (a) holds due to the iterative rule for expectations, (b) due to the rule

E(X2) = Var(X) + (E(X))2 and (c) holds due to (3) and (5). Now, we apply (D6)
and (D5) successively to get

(D7) (D6)

(D5)

(D6)
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(D5)

(D6)

= and so on

where in the last step we have used E i (C i , I + 1 - i ) = Ci , I + 1 - i and

E i (C i , I + 1 - i

2 ) = C i , I + 1 - i 2 because under the condition 'i' Ci,I+1_i is a scalar. Due to (D5)

we have

(D8)

Inserting (D7) and (D8) into (D3) yields

(D9)

We estimate this first summand of mse(CiI) by replacing the unknown parameters

fk, αk

2 with their unbiased estimators fk and α k

2 , that is by

(D10)

where we have used the notation C i k introduced in the proposition for the estimated

amounts of the future C i , k , k > I + 1 - i, including C i , I + 1 - j = C i , I + 1 - i .
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We now turn to the second summand of the expression (D2) for mse(CiI). Because of
(D5) we have

and therefore

(D11)

This expression cannot simply be estimated by replacing fk with fk because this
would yield 0 which is not a good estimator because f I+1- i…f I-1 generally will be
different from fI+1-i …fI-1 and therefore the squared difference will be positive. We
therefore must take a different approach. We use the algebraic identity

with

This yields

where in the last summation j and k run from I + 1 - i t o I — 1 . Now we replace Sk
2

with E(Sk
2 | Bk) and SjSk, j < k, with E(SjSk | B k ) . This means that we approximate

Sk
2 and SjSk by varying and averaging as little data as possible so that as many

values Cik as possible from data observed are kept fixed. Due to (A4) we have

E(fk - fk | Bk) =0 and therefore E(SjSk | Bk) = 0 for j < k because all fr, r < k, are

scalars under B k .
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Because of

(D12)

we obtain

Taken together, we have replaced with and because all

terms of this sum are positive we can replace all unknown parameters fk, αk

 2 with

their unbiased estimators fk, α k

2 . Altogether, we estimate

by
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Using (D11), this means that we estimate (Ei(CiI) - CiI)
2 by

(D13)

From (D2), (D10) and (D13) we finally obtain the estimator (s.e.(CiI))
2 for mse(CiI)

as stated in the proposition.
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Appendix E: Unbiasedness of the Estimator αk

2

Proposition: Under the assumptions

(3) There are unknown constants fl,…, fI-1 with

(4) The variables {Ci1 ,..., CiI} and {Cj1,…, CjI} of different accident years i j are

independent.

(5) There are unknown constants αl ,…, αI-1 with

the estimators

of αk

2 are unbiased, that is we have

Proof: In this proof all summations are over the index j from j = 1 to j = I - k. The

definition of αk

2 can be rewritten as

(El)

using according to the definition of fk. Using again the set

of variables Cij assumed to be known, (E1) yields

(E2)

because C j k is a scalar under the condition of Bk being known.
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Due to the independence (4) of the accident years, conditions which are independent

from the conditioned variable can be omitted in E(Cj,k+1
2 Bk), that is

(E3)

where the rule E(X2) = Var(X) + (E(X))2 and the assumptions (5) and (3) have also
been used.

From (D12) and (A4) we gather

(E4)

Inserting (E3) and (E4) into (E2) we obtain

From this we immediately obtain

Finally, the iterative rule for expectations yields
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Appendix F: The Standard Error of the Overall Reserve Estimate

Proposition: Under the assumptions

(3) There are unknown constants f1,...,fI-1 with

(4) The variables {Ci1,..., CiI} and {Cj1,..., CjI} of different accident years i j are

independent.

(5) There are unknown constants α1,..., αI-1 with

the standard error s.e.(R) of the overall reserve estimate

R= R2+… + RI

is given by

Proof: This proof is analogous to that in Appendix D. The comments will therefore be
brief. We first must determine the mean squared error mse(R) of R. Using again
D={ Cik i + k I + 1} we have

(F1)
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The independence of the accident years yields

(F2)

whose sumraands have been calculated in Appendix D, see (D9). Furthermore

(F3)

with (as for (D11))

which is identical to F of Appendix D but here we have to carry the index i, too. In
Appendix D we have shown (cf. (D2) and (D11)) that

mse(Rj)

Comparing this with (F1), (F2) and (F3) we see that

(F4)

We therefore need only develop an estimator for FiFj. A procedure completely

analogous to that for F2 in the proof of Appendix D yields for FiFj, i < j , the
estimator

which immediately leads to the result stated in the proposition.
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Appendix G: Testing for Correlations between Subsequent Development Factors

In this appendix we first prove that the basic assumption (3) of the chain ladder
method implies that subsequent development factors Cik / Ci,k-1 and Ci,k+1 / Cik are
not correlated. Then we show how we can test if this uncorrelatedness is met for a
given run-off triangle. Finally, we apply this test procedure to the numerical example
of section 6.

Proposition: Under the assumption

(3) There are unknown constants fI,..., fI-1 with

subsequent development factors Cik /Cik_1 and Ci,k+1 /Cik are uncorrelated, that is
we have (for 1 i I, 2 k I - 1)

Proof: For j k we have

(G1) (a)

(b)

(c)
(d)

Here equation (a) holds due to the iterative rule E(X) = E(E(X|Y)) for expectations,
(b) holds because, given Cil,..., Cik, Cij- is a scalar for j k, (c) holds due to (3) and

(d) holds because fk is a scalar.

From (G1) we obtain through the special case j = k

(G2)

and through j = k - 1

(G3) (Gl)
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Inserting (G2) into (G3) completes the proof.

Designing the test procedure

The usual test for uncorrelatedness requires that we have identically distributed pairs
of observations which come from a Normal distribution. Both conditions are usually
not fulfilled for adjacent columns of development factors. (Note that due to (G2) the
development factors Cik+1 / Cik, 1 < i < I - k, have the same expectation but

assumption (5) implies that they have different variances.) We therefore use the test
with Spearman's rank correlation coefficient because this test is distribution-free and
because by using ranks the differences in the variances of Ci,k+1 / Cik, 1 < i < I - k,

become less important. Even if these differences are negligible the test will only be of
an approximate nature because, strictly speaking, it is a test for independence rather
than for uncorrelatedness. But we will take this into account when fixing the critical
value of the test statistic.

For the application of Spearman's test we consider a fixed development year k and
rank the development factors Ci,k+1 / Cik observed so far according to their size

starting with the smallest one on rank one and so on. Let rik, 1 < i < I - k, denote the

rank of Ci,k+1 / Cik obtained in this way, 1 < rik < I - k. Then we do the same with the

preceding development factors Cik / Ci ,k-1 , 1 < i < I - k, leaving out

CI + i - k , k / CI+1-k,-1 for which the subsequent development factor has not yet been

observed. Let sik, 1 < i < I - k, be the ranks obtained in this way, 1 < sik < I - k. Now,

Spearman's rank correlation coefficient Tk is defined to be

(G4)

It can be seen that

and, under the null-hypothesis,

A value of Tk close to 0 indicates that the development factors between development
years k - 1 and k and those between years k and k + 1 are not correlated. Any other
value of Tk indicates that the factors are (positively or negatively) correlated.

For a formal test we do not want to consider every pair of columns of adjacent
development years separately in order to avoid an accumulation of the error
probabilities. We therefore consider the triangle as a whole. This also is preferable
from a practical point of view because it is more important to know whether
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correlations globally prevail than to find a small part of the triangle with correlations.
We therefore combine all values T2, T3,..., T1-2 obtained in the same way like Tk.
(There is no T1 because there are no development factors before development year
k=l and similarly there is also no T1; even TI_1 is not included because there is only
one rank and therefore no randomness.)

According to Appendix B we should not form an unweighted average of
T2,..., TI_2 but rather use weights which are inversely proportional to
Var(Tk) = 1/(I - k - 1). This leads to weights which are just equal to one less than
the number of pairs (rik, sik) taken into account by Tk which seems very reasonable.

We thus calculate

(G5)

(G6)

where for the calculation of Var(T) we used the fact that under the null-hypothesis
subsequent development factors and therefore also different Tk 's are uncorrelated.

Because the distribution of a single Tk with I - k 10 is Normal in good
approximation and because T is the aggregation of several uncorrelated Tk's (which
all are symmetrically distributed around their mean 0) we can assume that T has
approximately a Normal distribution and use this to design a significance test.
Usually, when applying a significance test one rejects the null-hypothesis if it is very
unlikely to hold, e.g. if the value of the test statistic is outside its 95% confidence
interval. But in our case we propose to use only a 50% confidence interval because the
test is only of an approximate nature and because we want to detect correlations
already in a substantial part of the run-off triangle. Therefore, as the probability for a
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Standard Normal variate lying in the interval (-.67, .67) is 50% we do not reject the
null-hypothesis of having uncorrelated development factors if

If T is outside this interval we should be reluctant with the application of the chain
ladder method and analyze the correlations in more detail. In such a case, an
autoregressive model of an order > 1 is probably more appropriate, for example by
replacing the fundamental chain ladder assumption (3) with

Application to the example of section 6:

We start with the table of all development factors:

As described above we first rank column F1 according to the size of the factors, then
leave out the last element and rank the column again. Then we do the same with
columns F2 to F8. This yields the following table:
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We now add the squared differences between adjacent rank columns of equal length,
that is we add (sik - rik)2 over i for every k, 2 k 8. This yields 68, 74, 20, 24, 6, 6
and 0. (Remember that we have to leave out k = 1 because there is no sil, and k = 9
because there is only one pair of ranks and therefore no randomness.) From these
figures we obtain Spearman's rank correlation coefficients Tk according to formula
(G4):

The (I - k - l)-weighted average of the Tk's is T = .070 (see formula (G5)). Because
of Var(T) = 1/28 (see (G6)) the 50% confidence limits for T are ± .67/V28 = ±.127.
Thus, T is within its 50%-interval and the hypothesis of having uncorrelated
development factors is not rejected.
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Appendix H: Testing for Calendar Year Effects

One of the three basic assumptions underlying the chain ladder method was seen to be
assumption (4) of the independence of the accident years. The main reason why this
independence can be violated in practice is the fact that we can have certain calendar
year effects such as major changes in claims handling or in case reserving or external
influences such as substantial changes in court decisions or inflation. Note that a
constant rate of inflation which has not been removed from the data is extrapolated
into the future by the chain ladder method. In the following, we first generally
describe a procedure to test for such calendar year influences and then apply it to our
example.

Designing the test procedure:

A calendar year influence affects one of the diagonals

and therefore also influences the adjacent development factors

and

where the elements of Dj form either the denominator or the numerator. Thus, if due
to a calendar year influence the elements of Dj are larger (smaller) than usual, then
the elements of Aj-1 are also larger (smaller) than usual and the elements of Aj are
smaller (larger) than usual.

Therefore, in order to check for such calendar year influences we only have to
subdivide all development factors into 'smaller' and 'larger' ones and then to examine
whether there are diagonals where the small development factors or the large ones
clearly prevail. For this purpose, we order for every k, l k I - l,the elements of
the set

that is of the column of all development factors observed between development years
k and k + 1, according to their size and subdivide them into one part LFk of larger
factors being greater than the median of Fk and into a second part SFk of smaller

factors below the median of Fk. (The median of a set of real numbers is defined to be
a number which divides the set into two parts with the same number of elements.) If
the number I - k of elements of Fk is odd there is one element of Fk which is equal
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to the median and therefore assigned to neither of the sets LFk and SFk; this element
is eliminated from all further considerations.

Having done this procedure for each set Fk, 1 k I - 1, every development factor
observed is

- either eliminated (like e.g. the only element of FI-1 )

- or assigned to the set L = LF1 +... + LF1-2 of larger factors
- or assigned to the set S = SF1 +... + SF1-2 of smaller factors

In this way, every development factor which is not eliminated has a 50% chance of
belonging to either L or S.

Now we count for every diagonal Aj 1 j I - 1, of development factors the

number Lj of large factors, that is elements of L, and the number Sj of small factors,

that is elements of S. Intuitively, if there is no specific change from calendar year j to

calendar year j + 1, Aj should have about the same number of small factors as of

large factors, that is Lj and Sj should be of approximately the same size apart from

pure random fluctuations. But if Lj is significantly larger or smaller than Sj or,

equivalently, if

that is the smaller of the two figures, is significantly smaller than (Lj + Sj) /2, then

there is some reason for a specific calendar year influence.

In order to design a formal test we need the probability distribution of Zj under the

null-hypothesis that each development factor has a 50 % probability of belonging to
either L or S. This distribution can easily be established. We give an example for the
case where Lj + Sj = 5, that is where the set Aj contains 5 development factors

without counting any eliminated factor. Then the number Lj has a Binomial

distribution with n = 5 and p = .5, that is

Therefore
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This yields

In this way we obtain very easily the following table for the cumulative probability

distribution function of Z j :

Now, we use this table in the following way: Any realization Z j = zj with a

cumulative probability prob(Zj < zj) < 10 % indicates that the corresponding set

Aj = {Cj2 / C j 1 , Cj_1,3 / Cj-1,2,...} contains either significantly many "larger" or

significantly many "smaller" development factors. Then, the factors of the

predominant type (either the larger or the smaller factors of A j ) are assumed to be

influenced by a specific calendar year effect and are viewed to be outliers. Therefore,
it seems to be advisable to reduce their weight when calculating the age-to-age factors
fk.

Specifically, it is proposed to reduce the weight of each of these outlying development
factors to 50 % of its original weight, that is to calculate

with wi k = .5 if Ci , k + 1 / Ci k belongs to the factors of the predominant type (either

larger or smaller) of its corresponding set Ai + k - 1 and if Ai + k - 1 shows a significant

calendar year effect, that is if prob (Zi+k_1< z i + k - 1 ) < 10 %. In all other cases we put

wi k = 1 as usual. Strictly speaking, the formulae for αk

2 and for the standard error

must be changed analogously, if some wi k < 1 are used.
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As with every test procedure which is applied several times there is an accumulation
of the error probabilities, that is the danger increases that we find a significant case
which in reality is not extraordinary. But here, this will not cause any essential
disadvantage as we only change weights and do not discard anything entirely.

Application to the example of section 6:

We start with the triangle of all development factors observed:

We have to subdivide each column Fk into the subset SFk of 'smaller' factors below
the median of Fk and into the subset LFk of 'larger' factors above the median. This
can be done very easily with the help of the rank columns rik established in Appendix
G: The half of factors with small ranks belongs to SFk, those with large ranks to LFk

and if the total number is odd we have to eliminate the mean rank. Replacing a small
rank with 'S', a large rank with 'L' and a mean rank with '*' we obtain the following
picture:

We now count for every diagonal Aj, 2 j 9, the number Lj of L's and the number
Sj of S's. We have left out A1 because it contains at most one element which is not
eliminated, and therefore Z1 is not a random variable but always = 0. With the
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notations sj, lj, zj for the realizations of the random variables Sj, Lj, Zj and with

n = sj +1j as above, we obtain the following table:

According to the probabilities prob(Zj zj) there does not seem to be any calendar
year effect. Therefore, there is no reason to change any weight in the calculation of the
age-to-age factors.

As a final check for calendar year effects we can plot all standardized residuals

against the calendar years j = i + k. For the data of our example, the resulting plot is
shown in Figure 14. There does not seem to be any specific trend or irregularity in the
pattern of these residuals. The fact that only positive residuals are absolutely larger
than 1.6 hints at a positive skewness of the distribution of the development factors.
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Figure 1: Regression and Residuals
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Figure 2: Regression and Residuals
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Figure 3: Regression and Residuals
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Figure 4: Regression and Residuals
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Figure 5: Regression and Residuals
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Figure 6: Regression and Residuals
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Figure 7: Regression and Residuals
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Figure 8: Regression and Residuals
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Figure 9: Residua! Plots for fk0
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Figure 10: Residual Plots for fk0
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Figure 11: Residual Plots for fk2
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Figure 12: Residual Plots for fk2
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Figure 13: Plot of ln(αk

2) against k
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Figure 14: Std.Residuals vs. Calendar Year
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