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Section A
INTRODUCTION

Volume 2 of the Claims Reserving Manual was first published in 1989 by the Institute
of Actuaries.  At that time, Volume 2 consisted of five papers covering more advanced
reserving methods, loosely described as “statistical” methods.  The criteria for
inclusion in Volume 2 were that the methods should be “statistical”, had been used by
a practitioner and had been found to be of value.

The initial edition of Volume 2 did not include any commentary on, or summaries of,
the five original papers, nor did it attempt to present them in any sort of context.  The
present edition includes a précis of each of the original papers, so that the reader can
see the contents of each paper at a glance.  In addition, two new papers have been
added to the Manual.  Further papers will be added in the future, as appropriate.

Since the Claims Reserving Manual was first published, a considerable number of
actuarial papers on reserving have been published in a variety of journals, and some
papers have been offered to the Faculty and Institute of Actuaries for inclusion in the
Claims Reserving Manual.  Clearly, not all the papers published or submitted since the
initial edition of Volume 2 can be reproduced or referred to in the Claims Reserving
Manual.

However, so that the reader is aware of some of this further work, précis of other
selected  papers have also been added to Volume 2.  The criteria for inclusion are that
the paper either puts forward a new approach to a claims reserving model, or gives
some useful refinement of, or variation on, an existing model.  The intention is that
these summaries will be added to over time.

Whilst all the Volume 2 papers include an example where appropriate, illustrating the
use of the models, it was also felt that, with the widespread use of personal computers,
it would be useful to issue a disk with an illustration on a spreadsheet of the application
of the models.  This should further aid the reader’s understanding of the model, and
assist any readers who want to try out the models in practice.

This revision of the Claims Reserving Manual therefore includes a disk and additional
description of two of the Volume 2 papers.  Further computerised illustrations are
planned for other models where it is felt that this would be useful.
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Section B
DESCRIPTION OF STOCHASTIC MODELS

[B1]
WHAT IS A STOCHASTIC MODEL?

Section 2B of the Supplementary Introduction to Volume 1 gives a general description
of reserving methodology.  In that description, the process of arriving at an estimate of
future payments is described as one of constructing a model, fitting it to some set of
past observations, and using it to infer results about the future — in this case, the
future events we are interested in are the payment of claims.  Several distinctions are
made between different types of model, including those between deterministic and
stochastic models.

Deterministic reserving models are, broadly, those which only make assumptions about
the expected value of future payments.  Stochastic models also model the variation of
those future payments.  By making assumptions about the random component of a
model, stochastic models allow the validity of the assumptions to be tested statistically,
and produce estimates not only of the expected value of the future payments, but also
of the variation about that expected value.

All the methods in Volume 2 could be described as stochastic to a greater or lesser
extent.  One can distinguish between them a little, since the methods described in
Sections D1, D4, D5, D6 and D7 all allow the user to make estimates of the variation
about the expected future payments.  The methods described in sections D2 and D3,
however, simply involve the fitting of curves to sets of data.  The curves are then used
to predict future payments, but do not allow the modeller to make estimates of the
variation of these payments.

A further distinction can be made between those models based on individual claims,
and those which project grouped claims data.  This distinction is most commonly found
amongst stochastic methods, although the only methods presently in Volume 2 which
model individual claims information are those explained in Sections D4 and D7.
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[B2]
WHAT ARE THE ADVANTAGES / DISADVANTAGES OF A

STOCHASTIC MODEL?

This section briefly highlights some of the perceived advantages and disadvantages of
stochastic models, to give the reader some idea of their strengths and weaknesses.

Section 2B of the Supplementary Introduction to Volume 1 observed that deterministic
models may often be applied without a clear recognition of the assumptions one is
making.  One of the main benefits of a stochastic model is that it is totally explicit
about the assumptions being made.  Further, it allows these assumptions to be tested
by a variety of techniques.  Because it models the random variation of future payments,
estimates may be made of the likely variability of the estimated future payments.

This allows one to monitor whether the predictions of a model are within the bounds
one would expect.  For example, a deterministic model simply makes a point estimate
of the expected future payments in a given period.  The one sure thing one can say
about these expected payments, is that the actual payments will be different from
expected.  Deterministic models do not give you any idea as to whether this difference
is significant.  Stochastic models enable the modeller to produce a band within which
the modeller expects payments to fall with a certain level of confidence, and can be
used as an indication as to whether the assumptions of the model hold good.

The strengths of stochastic models can also be their weaknesses.

A stochastic reserving method models an immensely complex series of events with a
few parameters.  Hence, as with any model, stochastic or otherwise, it is open to the
criticism that its assumptions are far too simple and hence unrealistic.  Because
stochastic models are quite clear and rigid, there is very little scope for incorporating
judgement, or extraneous factors into the model.

Finally, stochastic models can be computationally quite complex to perform, and may
require a more in-depth statistical and computational ability than some of the more
simple deterministic models.  This in turn can mean that the results are more difficult to
communicate than some of the more simple deterministic models.
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[B3]
WHAT MAKES A GOOD STOCHASTIC MODEL?

To appreciate what makes a good stochastic model, it is necessary to understand why
one constructs a model in the first place.

Take as an example a set of data on (say) motor claims.  This may consist of tens of
thousands of claim payments, extending over a number of years.  If we simply record
each of those amounts individually on reams of paper, the human mind simply cannot
grasp the essential characteristics of the data, or discern any pattern, let alone use the
data to make sensible predictions.

To understand the data in any meaningful way, therefore, requires the formulation of a
pattern that in some way represents the data.  In this way, the important characteristics
of the data can be represented by a limited number of terms that can be relatively easily
understood.

Further, when considering any set of data over time, there will be some systematic
influences affecting the claims experience, such as the inflation in the cost of car repairs
in our example.  There may also be some random influences, such as the variation in
the frequency of cars having accidents.  To understand the data effectively, one needs
to differentiate between systematic influences and random variation.

It is this need to reduce complexity and to separate systematic influences from random
variations that leads to a stochastic model.  A stochastic model allows the modeller to
replace the individual data values by a summary that both describes the essential
characteristics of the data by a limited number of parameters, and distinguishes
between the systematic and random influences underlying the data.

The parameters of a model are chosen to “fit” the data as closely as possible.  The fit
can be made better and better by having more and more parameters.  However, this
then becomes self-defeating, as a model with hundreds of parameters provides no real
reduction in complexity from the raw data, and allows the user only a limited ability to
grasp the key characteristics of the data.

An essential requirement of a good model, therefore, is that it has enough parameters
to describe the characteristics of the data, but not so many that its descriptive power
becomes limited.  Additionally, as described in the first paper in Volume 2, as you
increase the number of parameters of the model, you decrease its predictive power.
That is, the model begins to adhere more and more closely to the raw data.  Small
changes in those data can then lead to large changes in the parameters of the model,
making any predictions produced by the model unstable.
A good stochastic model should also enable one to appreciate the systematic influences
underlying the data, together with the random influences.  Some data points may be
subject to considerable random variation, so the model should ensure that it is not
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unduly affected by such isolated values.  A good stochastic model should therefore be
capable of testing the underlying assumptions.  By applying such tests, the modeller
will gain a greater understanding of the characteristics of the data and, hence, have
better control over the projected values.

The above points are, of necessity, fairly general in nature, as any sort of modelling is
as much an art as a science.  To this end, it is worth observing what it takes to be a
good modeller.

The first and most important requirement is to appreciate that all models are “wrong”
to some extent.  They are not “reality”; they are just a simplified representation of
reality, enabling the user to make practical projections of the data.  As a consequence,
there is no one “right” model, and many different models may be more or less equally
applicable.

So, the second requirement is that a good modeller should consider many different
models, trying to recognise all those that might be useful, rather than whether they are
“right” or “wrong”.

A final requirement of the modeller is that they should check the fit of a model.  The
object of this exercise is to understand the past data, and to infer useful results about
the development of those data.  This cannot be done rigorously if the modeller does
not understand where the model fits or deviates from the data.
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Section C
PRÉCIS OF PAPERS IN SECTION D

This section provides a précis of each paper included in Section D of Volume 2.  The
intention is to give a brief summary of the paper, a description of the reserving model
on which the paper is based, and a few observations about the applicability of the
model.  The précis also deal with what data are required and what level of statistical
and computational ability is needed, and offer some thoughts on the strengths and
weaknesses of the model.

The numerical heading given to each paper refers to the relevant sub-section within
Section D of Volume 2, where the full text of that paper is to be found.
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[C1]
THE CHAIN LADDER TECHNIQUE — A STOCHASTIC MODEL

Contributed by B Zehnwirth
(9 pages, see [D1])

Summary
The chain ladder technique is one of the oldest actuarial techniques to be applied
widely for estimating loss reserves.  It appears intuitively natural and was for some
time widely regarded as being based on a non-stochastic model: that is, a model which
is deterministic and accordingly does not include a random component.

The paper demonstrates the intimate connection between the chain ladder technique
and a two-way analysis of variance model applied to the logarithms of the incremental
paid losses.  Recognition of this connection reveals the merits and defects of the chain
ladder technique more clearly.

Description of the model
The basic model is as follows:

Log(Pij) = Yij = ai + bj + eij (eij are independent identically distributed normal 
error terms)

where Pij are the incremental payments for accident year i, development period j.  This
model implies that each incremental paid loss, Pij, has a lognormal distribution.  The
model is fitted by least squares regression or by the application of an algorithm (known
as “Expectation-Maximisation”, or E–M) for the corresponding two-way analysis of
variance.

General comments
The basic statistical chain ladder is generally considered to be over-parameterised, and
can be criticised for not including any calendar year effects as part of the model.  It is,
however, a powerful diagnostic tool for exploring payment/calendar year trends.

It can also form a basis for more sophisticated models, which are not so heavily
parameterised, and can include calendar year effects and incorporate additional
information into the reserving process.

Some of these extensions to the basic statistical chain-ladder are described in the paper
by S Christofides in Section D5, which is also summarised in section C5 of this
Volume.  Further extensions to the basic model are also described in another paper by
B Zehnwirth, which is summarised in section E of this Volume.     <>
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[C2]
EXPONENTIAL RUN-OFF

Contributed by B Ajne
(11 pages, see [D2])

Summary
The paper describes a model of the exponential run-off of the incremental payments
after the first few development years, based on observations for personal injuries in
motor insurance.  A brief example is provided, as well as possible adjustments for the
effect of inflation.

Description of the model
The basic model is as follows:

C  q C ,  j = ,  ...  ,  A 1ij i ij-1= + −. α 1
C  ,  j Aij = ≥0

where Cij  are the incremental payments for accident year i, development year j.

The q i  are estimated using an algorithm to maximise a likelihood function.  The
likelihood function is found assuming that:

P Xi i i
j a(  j .  q -= =) β

where X i  is the number of years between occurrence and settlement for claims
occurred in year i ( X i > α ).

Each amount of claim payment is assumed to be independent of all others.

The reserves are calculated for each year of origin by multiplying the claims paid to
date by a ratio based on q i .

General comments
The concept of exponential run-off is particularly useful for long-tail lines of business.
The method is fairly simple mathematically, and the only data required are incremental
payments.  Provided an equation “solver” is available, it can be programmed and used
very easily in any spreadsheet.

The assumptions made by the model are very strong, and it is doubtful whether
assumption (2.2) in the paper can ever be properly met in practice.  Since this is central
to the exponential run-off assumed by the model, it casts some doubt on the validity of
the estimates, although the results of the model may still be useful.
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The author suggests that an examination of the residuals would be “useful”.  In fact,
this may more properly be described as “essential”.
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[C3.a]
THE CURVE FITTING METHOD

Contributed by S  Benjamin and L M  Eagles
(9 pages, see [D3.a])

Summary
The paper describes the use of curve fitting to the progression of paid and incurred
loss ratios.  A Craighead curve (otherwise known as a Weibull distribution) is
suggested with up to 3 parameters.  A least squares method is proposed for the curve
fitting, with graphical examples.  The use of curve-fitting is compared with other
methods.

Description of the model
The progression of loss ratios is considered by dividing the cumulative claims to date
by the estimated ultimate premiums for each year of origin.  For each year a Craighead
curve y(t) is then fitted to the loss-ratios at time t, as follows:

y(t) =  A(1 e )
( t

b
c

−
− )

where A is the estimated ultimate ratio, and b and c are parameters.  b and c are fitted
to all the years of origin, and A varies for each year.  For data consisting of a mixture
of short tail and long tail business, a double Craighead curve is proposed.

The fitting method is to minimise by iterations w(t).(y(t) y tobs−∑ ( ))2 , where w(t) is
the weighting and y (t)obs  the observed loss ratio.  The use of w(t) allows outliers to be
excluded, or the curve to be forced through the most recent data point.  Two methods
of minimisation by iterations are mentioned, although they are not spelt out in any
detail.

General comments
The model was originally intended to be applied to London Market business, but can
be used for any type of business, provided that the run-off follows a Craighead curve.

There is no particular reason why the progression of the loss-ratios beyond the data
should follow any particular type of curve, so the use of the model to extend the curve
beyond the observed data should be treated with some caution.

The data required are paid and incurred claims, together with premiums or some
appropriate measure of exposure.

Ideally, the simple visual examination of estimated relative to observed data suggested
in the paper should be supplemented by a more formal statistical check of the goodness
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of fit of the model.  The χ2  test, which can be performed quite easily, is suitable for
this purpose.

The paper only requires a few mathematical skills, although implementing the iterative
techniques requires a certain level of statistical and computational ability.
The model is non-linear with 3 parameters, so it cannot easily be fitted into a formal
spreadsheet.  However, the existence of equation “solvers” in many spreadsheets may
provide a pragmatic solution to the problem of fitting the curve.
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[C3.b]
THE REGRESSION METHOD

Contributed by S Benjamin and L M Eagles
(8 pages, see [D3.b])

Summary
The paper describes and illustrates a method of refining the ultimate loss ratios found
by some other method (for example the curve fitting method).  A suggestion is given
as to how, using graphical means, one can assess likely upper and lower bounds for the
estimates of ultimate loss-ratios.

Description of the model
Ultimate loss ratios need to be estimated prior to applying this method.  For each year
of origin and development year, IBNR loss ratios are determined by:

IBNR loss-ratio(development year t) = Ultimate loss ratio − Incurred loss-
ratio(development year t)

For a given development year, a regression line is estimated, based on all the years of
account, as:

IBNR loss-ratio(development year t) = a × Incurred loss ratio (development year t) + b

for some fixed a and b.

Reserves are then calculated from this formula.

The regression line can actually be reformulated in terms of credibility:

Future claims = Z × a
Z

 × claims to date + (1−Z) × b
Z1−

 × premiums

Giving no credibility to the premiums, by regressing with b set equal to zero, is
equivalent to using a traditional chain-ladder method.

General comments
The method can be used for any type of business, provided that the ultimate loss ratios
are already estimated.  It is very easy to implement in a spreadsheet.  As the method is
based on regression, standard errors of the estimates of the parameters can easily be
determined by statistical techniques, as well as by the graphical method suggested.
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The paper is easily understandable, but the reader has to be familiar with the principle
of  regression.  The user of the method is given many suggestions as to how the
method can be presented simply to, for example, an underwriter.
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[C4]
REID’S METHOD

Contributed by D H Reid
(20 pages, see [D4])

Summary
This paper describes a class of models, set out in a series of papers written by the
author.  It considers the case where a relatively complete set of information on
individual claims is available, and where past years' claim patterns may be expected to
give insight into the more recent years.

This approach was first described by the author in a paper in the Journal of the
Institute of Actuaries, “Claims Reserves in General Insurance”, Volume 105, Part III
(1978).  Subsequent papers in this series are set out at the end of this précis.

The method provides the means by which to establish a probability distribution of claim
reserves.  Emphasis is given to the process of fitting and re-fitting models as necessary,
prior to the extrapolation process.  The model is very flexible and allows for the
tendency of larger claims to take longer to settle, the proportion of nil claims to vary
from one origin year to another, the rate of claim settlement to vary both across and
within origin years, and for the effect of inflation on claim costs.

Description of the model
The basic model for the claims arising in a particular origin year consists of a number
of components:

1. An underlying bivariate distribution of the cost of positive claims by claim
settlement amount and development time.

2. A comparable univariate distribution by development time for nil claims.

3. The proportion of all claims represented by nil settlements.

4. A functional transformation of the settlement time axis from fixed calendar
period time to real settlement time (i.e. operational time) represented by the
underlying distributions (components 1 and 2).

5. A series of claim cost scale parameters intended to represent cost levels for fixed
intervals of operational time, relative to the underlying bivariate distribution.

6. A separate treatment of the largest group of claims by size.

The model assumes that the ordering of claim settlements is not affected by the rate of
settlement, and that this ordering is represented by the underlying distributions of
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components 1 and 2.  Recent years' data are fitted to these underlying distributions and
components 3–6 are estimated.   In conjunction with appropriate assumptions, the
fitted parameters are used to extrapolate the incomplete portion of recent years'
settlements, from which reserves and reserving distributions are derived.

General comments
The methodology is intended for situations where a detailed analysis of claims
behaviour can be obtained.  It is likely to be of most relevance for Direct business,
where data on amounts and numbers of claims are available by claim size.  The method
is quite complex, and requires a considerable amount of effort to implement in its
fullest form.

The method is very flexible, and can be adapted to embrace more (or less) elaborate
models of claim development.  It can also be used to help develop sub-models relating
claim cost movements to extraneous variables, such as inflation.

A considerable amount of statistical knowledge is required.  Some steps in the process
require the user to be able to use numerical techniques, for example finding parameters
that maximise a likelihood function, without setting out explicitly how this may be
achieved.

The original 1978 paper introduced the idea of Operational Time to the context of
claim reserving.  Although the detailed modelling of the underlying bivariate
distribution has now been much simplified in the light of experience, the remainder of
the original approach remains valid.  The papers in the series, all by D H Reid, are set
out below:

1. Claim reserves in general insurance, Journal of the Institute of Actuaries, 105, pp
211–296, 1978.

 
2. Reserves for outstanding claims in non-life insurance, Transactions of the

International Congress of Actuaries, Zurich and Lausanne, 2, pp 229–241, 1980.
 
3. A method of estimating outstanding claims in motor insurance with applications

to experience rating, Cahiers du CERO, Bruxelles, 23, pp 275–289, 1981.
 
4. Discussion of methods of claim reserving in non-life insurance, Insurance:

Mathematics and Economics 5, pp 45–56, North Holland, Amsterdam, 1986.
 
5. Operational time and a fundamental problem of insurance in a data-rich

environment, Applied Stochastic Models and Data Analysis, 1995, pp 257–269.
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[C5]
REGRESSION MODELS BASED ON LOG-INCREMENTAL PAYMENTS

Contributed by S Christofides
(54 pages, see [D5])

Summary
The paper describes a statistical reserving model, based on the logs of the incremental
payments.  It shows, by a simple example, how such models can be fitted and results
derived using a spreadsheet.  A more realistic example is then considered, and
refinements of the model are described.  Because it is a statistical model, standard
errors (a measure of the variability of the estimate) for the future incremental payments
can be calculated and statistical techniques used to test the fit of the model.

Description of the model
The basic model is as follows:

Log(Pij) = Yij = ai + bj + eij (eij are independent identically distributed normal 
error terms)

where Pij are the incremental payments for accident year i, development period j.

The ai and bj are fitted by regression, which can be done automatically in most
spreadsheets.  The future payments and standard errors are then calculated using
matrix manipulation.

Refinements to the basic model are illustrated, including fitting a curve for the
development parameters, and adjusting for claims volume and inflation.  Models based
on curves for the development factors can be useful for estimating tails, as they can be
used to project beyond the existing data set.

General comments
The method is of general use and is not restricted to any particular class of business.
The only data required are incremental payments.  The basic method can be easily
programmed in any spreadsheet, although the matrix manipulation necessary to
calculate the standard errors may be somewhat time-consuming.  Once the basic model
has been set up in a spreadsheet, however, the model can be fitted and future payments
predicted with very little time or effort for any data set of the same size.

The method does not work for negative incremental payments.  There is also a limit to
the number of future payments (n) that can be predicted in a spreadsheet, to the largest
nxn matrix that a given spreadsheet package can manipulate.
The paper requires a basic level of statistical knowledge.  Familiarity with matrix
manipulation and regression in a spreadsheet would be helpful, although the worked
example sets out all the steps clearly enough for this not to be a necessity.<>
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[C6]
MEASURING THE VARIABILITY OF CHAIN LADDER

RESERVE ESTIMATES
Contributed by T Mack

(65 pages, see [D6])

Summary
The author has written a series of papers on the subject of the variability of chain-
ladder estimates, most notably the CAS prize-winning paper "Measuring The
Variability Of Chain Ladder Reserve Estimates".  The paper in Section D6 is a
reproduction of this paper with some modifications and additions.

The paper derives a  formula for the standard error of chain-ladder reserve estimates
without assuming any specific claim amount distribution function.  For ease of
reference, these techniques are described as the “Distribution-free approach”.

Description of the model
The foundation of the Distribution-free approach is the observation of three main
assumptions which are shown to underlie traditional chain-ladder techniques.  These
are:

(i) E(Ci,k+1|Ci1, ..., Cik) = Cikfk, 1 ≤ i ≤ I, 1 ≤ k ≤ I − 1,

(ii) {Ci1, ..., CiI}, {Cj1, ..., CjI}, i ≠ j, are independent,

(iii) Var(Ci,k+1|Ci1, ..., Cik) = Cikσk2, 1 ≤ i ≤ I, 1 ≤ k ≤ I – 1.

Where Cik denotes the accumulated total claims amount of accident year i up to
development year k, fk is the development factor from k to k+1, and σk are
parameters.

The first two assumptions seem intuitively sensible, although these can be
demonstrated to be the implicit assumptions of the formal chain-ladder model.  The
third assumption is deduced from the fact that the estimator of fk, is the Cik-weighted
mean of the individual development factors.

An important corollary of assumption (i) is that the development factors are not
correlated.  That is, if we have a particularly high development factor in one period,
there is no tendency for the subsequent factor to be particularly low (or high).
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The main results of the paper are as follows.  The estimate of the standard error of the
reserve estimate for accident year i, $R i , is:
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The estimate of the standard error of the reserve estimate for all accident years
combined, $R , is:
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A hat indicates an estimator of the particular figure.  The derivations of the estimators
of Cik, fk and σk are straightforward, and are set out in the paper.

General comments
Although the above formulae look quite daunting, they consist of nothing more than
basic arithmetic — addition, multiplication and so on — and are in fact quite easy to
implement in a spreadsheet.  Once the formulae have been set up, a new set of data can
be brought into a spreadsheet.  Activating a “calc” to the spreadsheet will then yield
the estimates of the standard errors of the reserves for each accident year, and the
reserve as a whole, for the new set of data.  This is probably one of the easiest ways of
obtaining estimates of reserve variability.

There are many potential drawbacks to simple chain-ladder reserve estimates, which
are discussed in Volume 1.  The approach in this paper does, however, have the
significant benefit of making clear the assumptions one is making.  Also, because it is a
statistical model, it provides a series of diagnostic tools to test whether these
assumptions are valid, as well as giving estimates of reserve variability.  The use of
these diagnostic tools in discussed further in Section F of Volume 2.

To understand fully the proofs in the paper requires a considerable amount of statistical
knowledge.  However, the general reasoning involved and the final formulae for the
standard errors of the reserve estimates are quite simple, and within the reach of most
people with a basic grasp of statistics.
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[C7]
PROBABILITY DISTRIBUTION OF OUTSTANDING LIABILITY

FROM INDIVIDUAL PAYMENTS DATA
Contributed by T S Wright

(20 pages, see [D7]

Summary
The paper describes an approach to estimating future claims using data on individual
claim payments, rather than the more usual aggregate data.  The approach provides an
estimate of the whole probability distribution of the outstanding liability, rather than
just the first two moments.  This additional information may be used to assess safety
loadings of reserve estimates, allowing for the skewness of the distribution of the
outstanding liability.

Description of the approach
The approach may be summarised as follows:

(i) Estimate the distribution functions, Fi(x), for the size of payments made in
development period i.

(ii) Use a weighted combination of the Fi(x) to estimate the distribution of future
payments, F(x).

(iii) Fit a curve to F(x) and discretise the fitted curve so it can be used in a
compounding algorithm in step (v).

(iv) Construct a probability distribution for the number of future payments.

(v) Calculate the compound distribution of the amount of future payments based on
the estimated probability distribution functions in (iii) and (iv).  This is done using
Panjer’s recursive method.

General comments
The approach relies on the availability of individual claim size information, and is
capable of implementation in a spreadsheet.  To do so, one needs to be able to fit
curves to distributions.  The curve-fitting and calculating of the compound distribution
would probably be quite time-consuming to implement.  The approach is probably of
most use for situations where one is not considering a very large number of claims.

The paper does make a few sweeping assumptions, which are not fully spelt out.  It is
intended, however, to illustrate a pragmatic approach to the use of individual claim size
information.  The paper illustrates the calculation of a safety loading using the
Proportional Hazards criterion , suggested by Wang, which may not be widely known.
The use of Panjer’s recursive method may also be new to many readers.
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The paper requires a moderate level of statistical and computational ability.

<>
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Section D
PAPERS OF MORE ADVANCED METHODS

This Section includes the full text of seven papers, covering more advanced reserving
methods than those dealt with in Volume 1.  In each case, the paper is based on a
formal statistical concept, and has been found to be of value when dealing with
practical reserving issues.  A précis of each paper is also given in Section C, for those
who do not wish to read each paper in full.

The papers included are as follows:

D1. The Chain Ladder Technique — A Stochastic Model by B Zehnwirth

D2. Exponential Run-Off by B Ajne

D3.  a. A Curve Fitting Method by S Benjamin and L M Eagles
b. A Regression Method by S Benjamin and L M Eagles

D4. Reid’s Method by D H Reid

D5. Regression Models Based on Log-Incremental Payments by
S Christofides

D6. Measuring the Variability of Chain Ladder Reserve Estimates by T Mack

D7. Probability Distribution of Outstanding Liability from Individual
Payments Data by T S Wright

<>



   

09/97 D1.1 

[D1] 
THE CHAIN LADDER TECHNIQUE  A STOCHASTIC MODEL  

Contributed by B Zehnwirth  

1. Introduction  

The chain ladder technique (equivalently, age-to-age development factors) is 
one of the oldest actuarial techniques to be applied widely for estimating loss 
reserves.  

The technique appears intuitively natural and only until more recently was 
always regarded as being based on a non-stochastic model: that is, a model 
which is deterministic and accordingly does not include a random component.  

The principal objective of this article is to demonstrate the intimate connection 
between the chain ladder technique and a two-way analysis of variance model 
applied to the logarithms of the incremental paid losses.  Recognition of this 
connection reveals the merits and defects of the chain ladder technique more 
clearly.  

2. Chain ladder technique  

We first review the chain ladder technique in order to indicate two underlying 
model assumptions.  The second model assumption is often not recognised by 
many users of the technique.  

Let Pij represent the incremental paid loss made in development year j, in 
respect of accident year i.  The batch of data Pij, i=1,...,s; j=1,...,s i+1 is 
represented as a matrix thus:                 
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Accident years (rows) range from 1 to s and development years (columns) also 
range from 1 to s.  

We denote the cumulative paid loss in development year j, in respect of 
accident year I by Cij.  It is given by:  

ijC  = 
j

ij
h=1

 
P  .  

A matrix of development factors based on the { Cij } array is constructed by 
computing the development factor Dij as   

ijD  = ij

i j1

C

C

         

i = 1,...,s; 

j = 2,...,s i+1  

The first basic assumption made is  

Assumption 1: Each accident year has the same age-to-age development 
factors.  Equivalently, for each j=2,...,s  

Dij = Dj        for all i = 1,2,...s.  

Under Assumption 1, the most popular estimator of the development factor Dj 

is the weighted average  

jD

  

= 

sj+1

ij
i=1

sj+1

i j1
i=1

 

C

 

C

  

= 

sj+1

iji j1
i=1

sj+1

i j1
i=1

  

* C D

 

C

  

The development factor Dij is weighted by the corresponding "volume" 
measure Ci j 1.  

Some users of the chain ladder technique do not use the weighted average 
estimator of Dj.  This is an estimation issue that we address subsequently in this 
chapter.  The fact remains that Assumption 1 is a model assumption associated 
with the chain ladder technique.  



 
THE CHAIN LADDER TECHNIQUE  A STOCHASTIC MODEL     

09/97 D1.3 

Projections of the quantities Cij; i=2,...,s; j=s i+2,...s are computed thus:  

ijC

 
= 

s

i si+1 k
k=s1+2

  
C D

  
This technique of projection is explicitly based on the fact that a second model 
assumption is valid.  It is assumed that each accident year has necessarily a 
different level estimated by that year's individual experience.  The quantity 
Ci s i+1 represents an estimate of the level of accident year i.  

Assumption 2: Each accident year has a parameter representing its level.  The 
level parameter for accident year I is estimated by Ci s i+1.  

The last accident year s is represented by the single observation Ci1.  Were we 
to assume that accident years are completely homogeneous, we should 
estimate the level of accident years by  

s

i
i=1

 

1/sC  ,  

(or a better estimator of the mean level at development year 1).  

Complete homogeneity means that the observations Ci1, C21,...,C s1 are 
generated by the same mechanism.  The chain ladder technique explicitly 
assumes that the mechanisms generating the incremental paid losses Ci1, 
C21,...,C s1 are so unrelated that pooling of the information does not afford any 
increased efficiency.  I would find it very difficult to believe that this 
assumption is ever true.  In any case, why not find out first what the data 
indicate?  

3. Statistical models related to chain ladder technique  

Based on the two assumptions discussed in the preceding section, the following 
autoregressive model discussed in the paper by Kamreiter and Straub (1973) 
suggests itself.  

Cij = Dj Ci j 1 + ij ; i = 1,...,s  

where the random variables Dj, ij and Ci j 1 are independent and satisfy  

E[ ij] = 0, E[Dj] = dj.  

The quantities { Dj } represent the development factors and are the same for 
each accident year.  Note that it is implicitly assumed that the observations Ci1, 
C21,..., Cs1 are not related (at all).  Moreover, the additive error term ij is 
questionable  the error term should be multiplicative (see Section 4).  
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We only remark that the above mentioned model satisfies Assumptions 1 and 2 
of the preceding section and devote the remainder of this chapter to a second 
stochastic model, discussed by Kremer (1982).  

The basic model is defined by the multiplicative representation,  

Pij = ai  . bj  eij

 
(2.1)  

where ai

 

is the parameter representing the effect of accident year I; 
bj

 

is the parameter representing the effect of development year j;  

and   eij

 

is a random error term.  

By taking logarithms of both sides of equation (2.1), the model may be re-
formulated as a two-way analysis of variance model, viz.,  

Yij = logPij =  + ai + bj + eij (2.2)  

where the parameter  represents the overall mean effect (on a logarithmic 
scale), the parameter ai represents the residual effect due to accident year i and 
the parameter bj represents the residual effect due to development year j.  It is 
also assumed that  

s

i
i=1

 

a  = 
s

j
i=1

 

b  = 0 (2.3)  

and that { eij } represent zero mean uncorrelated errors with Var[eij]=
2.  

This model implies that each incremental paid loss Pij has a lognormal 
distribution.  

In the two-way analysis of variance model (2.2), accident year is regarded as a 
factor at s levels and development year is regarded as a factor at s levels.  It is 
also assumed that the Pij's are independent random variables having a 
lognormal distribution with  

mean = exp( + ai + bj + 0.5 2) (2.4)  

and  

variance = mean2 * (exp( 2) 1) (2.5)  

Accident year effects and development year effects are assumed to be additive 
with no interaction.  In other words, the effect of an accident year is the same 
for each development year and vice versa.  

We now turn to the estimation of the parameters , { ai } and { bj }.    
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Model (2.2) is essentially a regression model where the design matrix involves 
indicator variables.  However, the design based on (2.2) alone is singular.  In 
view of constraint (2,3), the actual number of free parameters is 2s 1, yet 
model (2.2) has 2s+1 parameters.  By setting a1=b1=0, say, the resulting design 
is non-singular and estimates of parameters can be obtained using a statistical 
regression package.  

Kremer (1982) presents three recursive equations for estimating the parameters 
, { ai } and { bj }.  These equations are essentially solutions to the normal 

equations of the model described by expression (2.2) and constraint (2.3).  If 
there are no missing data values in the matrix, estimates of the parameters can 
be obtained using standard methods.  When there are too many missing values, 
and standard methods cannot be used, the following technique, called the E M 
algorithm has a fair amount of intuitive appeal.  

For a complete matrix the estimates of the parameters are well known:  

 = Y..  = 
s s

2
ij

i=1 j=1

   

/ ,sY

 

(2.6)  

ia  = i. ..

   

,Y Y

 

(2.7)  

and  

jb  = . j ..

   

,Y Y

 

(2.8)  

where  

i.Y  = 
s

ij
j=1

  

/ sY

 

(2.9)  

. jY  = 
s

ij
j=1

  

/ sY

 

(2.10)  

The E M algorithm is a recursive technique for finding maximum likelihood 
estimates in the case of incomplete data.  The estimates given by (2.6) to 2.8) 
are maximum likelihood but are based on a complete matrix.  The E in the term 
"E M algorithm" stands for Expectation and the M for Maximisation (of the 
likelihood).  

Step 0: Complete the matrix by starting with some initial expected values.  For 
instance, you may enter into the (empty) cell (i,j) the value  yi,s i+1.  

Step 1: Compute the maximum likelihood estimates for the completed matrix 
using equations (2.6) to (2.8).  
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Step 2: Use the estimates û, { âi } and { jb } obtained in Step 1 to compute new 

expected values û,+ âi + jb  for the empty cells (lower triangle).  

Now return to Step 1 and continue the recursions until a certain prescribed 
tolerance is reached, e.g. relative change in all estimates is less than 10 3.  

The final estimates û, { âi } and { jb } represent the maximum likelihood 

estimates. The variance 2 is estimated by the Mean Square Error  

2 = 
s si+1

2
iij j

i=1 j=1

  

(       / (n  2s  1)y )a b

  

where n=total number of observations in the upper triangle, viz., s(s+1)/2.  

Forecasts of Pij for i=2,..., s and j=s i+2,..., s are given by  

ijP

 

= 2
i jexp ( +  +  + 0.5 ).a b

  

Note that the two-way analysis of variance model can be applied and estimated 
for any shape array of the incremental paid losses.  This means that a formal 
chain ladder technique can be applied to any shape array provided n>2s 1.  

4. The importance of the log transform  removal of heterogeniety  

Loss reservers often describe their data as being heterogeneous.  For a long tail 
line of business, payments are necessarily made over time.  Indeed, the main 
cause of heterogeneity is time itself!  Time, almost always, almost everywhere, 
subjects incremental paid losses (and severities) to one type of heterogeneity 
we already know about: the variability in incremental paid losses (and in 
severities) increases as mean level increases.  

Let's illustrate this well supported phenomenon with an example.  If in 1965 
average severity was 1,000 and standard deviation of severity 200, and if in 
1988 average severity is 30,000, then the standard deviation of severity in 1988 
is probably around 6,000.  However, the standard deviation of the logarithms of 
severities has remained stable between 1965 and 1988.  The logarithmic 
transformation stabilises the variance since it has a standard deviation that is 
proportional to the mean.  

Based on the foregoing discussion, the model  

Pij =  + ai +bj + eij  

in place of model (2.1) of Section 3, cannot be correct because the variance of 
the error term eij will necessarily depend on , ai and bj.  
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The foregoing discussion, moreover, also indicates that the geometric mean of 
development factors is a more efficient estimate of the mean development 
factor than an arithmetic average.  

5. Estimation of development factors  

Development factors are typically based on the cumulative paid losses and are 
ratios of numbers.  It is not possible to determine, by eye, if two computed 
development factors are different in the sense that they are generated by a 
different process.  For example, suppose the incremental paid losses for the 
first two development years, for two contiguous accident years, are generated 
by 100 tosses of a symmetric coin.  The following scenario may be observed.   

Development Year  
0  1 

Accident 1 41  63 
Year 2 59  38  

The two computed development factors are 2.537 and 1.644.  These, however, 
are generated by the same process.   

Moreover, there is a substantial loss of information when data are cumulated.  
For instance, a constant incremental paid loss of 100 at every development year 
has development factors based on cumulative data that asymptote to one, and 
indeed, even if the incremental paid losses increase according to a polynomial 
trend, the development factors (based on the cumulative data) asymptote to 
one.  Furthermore, any trends in the payment year direction are different to 
identify and estimate if the data are cumulated in the development direction.  

6. Parameters  

Consider the following quadratic trend model representing annual sales of a 
product,  

yt = 2 + 3t2 + nt  

where t = 1,2,... denotes year, yt sales in year t, and the error terms { nt } are 
zero mean and independent from a Normal distribution with variance 2.  

Suppose we generate the values y1, y2,..., y7 (seven year sales figures) and ask a 
colleague to forecast y8.  We know the complete specification of the model 
generating the sales including 2.  
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The colleague estimates the following models:  

1. Linear trend  

yt = a0 + a1t + nt.  

The regression output indicates that R2=68% but the residuals appear to 
have a systematic pattern.  

2. Quadratic trend  

yt = a0 + a1t + a2 t
2 + nt  

For this model R2=76% and the residuals appear to be in good shape.  

The colleague observes that as the number of parameters increases, the 
quality of fit is improved as measured by R2.  Accordingly, the next model 
suggests itself.  

3. A polynomial of degree six  

yt = a0 + a1t +... a6t
6  

Here R2=100% and the fitted curve presents residuals that are all zero.  

The colleague presents his forecast as  

y8 = a0 + 8a1 +... + 86a6  

When the colleague presents his solution, we mention to him that the data 
presented to him had an error, that is, the datum y4 had been incorrectly 
generated.  

The colleague has now to revise his forecast in the light of this information 

 

the revised forecast is likely to bear no resemblance to the first forecast 
especially if 2 is large!!  

The moral of this tale is that the polynomial model used by the colleague 
produces forecasts that are extremely sensitive to the random component in the 
data.  The forecasts are subject to large uncertainties and accordingly are not 
useful.  This is a feature possessed by any model that has many parameters 

 

overparametrisation results in instability.  The chain ladder model or technique 
has many parameters.  An array comprising s accident years and s development 
years involves 2s 1 parameters.  In particular, there is an accident year 
parameter for accident year s where there is only one observation  similarly 
for development year s.  
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Every model contains a priori information  the chain ladder model contains 
very little a priori information.  The chain ladder model does not contain any 
information in respect of:  

(i) trends and/or patterns in development factors; 
(ii) trends across accident years; 
(iii) trends across payment years.  

Typically in Statistics, a two-way analysis of variance model is applied to a 
rectangular array involving two factors, each at a number of levels.  A factor is 
a qualitative variable.  We normally do not relate the different levels of a 
factor.  For example, when analysing the effects of different soil types and 
fertilisers on yield of barley, we do not assume some kind of trend or 
systematic pattern across the fertilisers!  It is absurd to treat accident years and 
development years as factors at different levels, the way we treat different soil 
types and different fertilisers.  

The example involving the sixth degree polynomial gives us some insight as to 
when the chain ladder technique may work (provided the parameters are 
estimated efficiently).  The chain ladder technique works when the mechanisms 
generating the paid losses are completely deterministic, that is, 2 = 0, or 2 is 
very close to 0 and development factors are homogeneous.  Unfortunately, the 
real world is not like that.   
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[D2] 
EXPONENTIAL RUN-OFF 

Contributed by B Ajne  

1. Introduction  

This method has been used to assess reserves for personal injury liabilities 
within direct motor third party insurance.  It is a relatively straightforward 
method which simply models claims run-off by an exponential distribution.  It 
is based on the observation that the claims in each development year for a 
particular year of business often show an exponentially decreasing shape apart 
perhaps from the first two years of development.  

Thus, if the first few development years (often the first two years) are ignored, 
an exponential model can be applied.  Care must obviously be taken that the 
model fits the data accurately and an examination of the residuals would 
perhaps be useful.  The method has the advantage that prediction is possible for 
later development years than any in the triangle, unlike the chain ladder 
method.  

A separate model is applied to each year of business written, but the results are 
inspected for trends and possible pooling of years of incurrence for which there 
is insufficient data for estimation.  

The method is described first without taking account of inflation; inflation is 
dealt with in section 6.  

2. The general case  

In this section the model is discussed in detail, without inflation adjustments.  

Define Cij = amount paid in development year j in respect of claims incurred in 
year i.  

It is assumed that all payments are made before year A.  

i.e. Cij = 0  for j  A (2.1)  

Also, after year 

 

( < A) the claim payments are modelled by  

Ci j+1= qi Cij (2.2)  

for some fixed qi.  
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This is equivalent to an exponential tail, since, under the exponential model,  

Cij = i 
i je

  
for some 

 
(2.3)  

then Ci j+1 = i 
i(j+1)e  = ie  Cij (2.4)  

and (2.4) is equivalent to (2.2) with a parameter transformation.  

The following is a non-rigorous motivation of the likelihood which is used to 
estimate qi.  Considering one particular incurrence year i, the suffix on qi is 
dropped, and it is assumed that there have been T years of run-off (T > ).  

Let X  = development year by the end of which a claim is paid (X > ).  

Then set P(X = j) = qj

  

j = ,...,T (2.5)  

Summing over j gives   

= 
T +1

1

1  q
1  q

 = T +1

1  q

1  q

 

(2.6)  

The likelihood function is  

L(q) = ij

T
j N

j=

( q )

 

(2.7)  

where Nij = number of claims in development year j in respect of claims 
incurred in year i  

It can be shown that, if each pound of claim is independent of the rest, (2.7) can 
be replaced by  

L(q) = ij

T
j C

j=

( q )

 

(2.8)  

and (2.8) is used in all cases, even when the above assumption does not hold.  

Taking logs of (2.8),  

logL(q) = 
T

ij
j=

 

(log + (j  ) logq)C

 

(2.9)  

(2.9) can be maximised and the maximum likelihood estimate of q found.  This 
is done for each row and thus a set of qi estimates found. 
The mathematical maximisation is contained in the appendix: this shows the 
uniqueness and existence of the maximum.  However, it is more 
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straightforward to maximise (2.9) numerically using a simple search algorithm 
such as interval bisection.  This is illustrated by the example in section 5.  

3. Reserves  

Let Rij be the claims reserve at the end of the development year j (where j > ) 
assuming no inflation.  

So  

Rij = ik
k=

  C

 

(3.1)  

Now  

Rij = 
ik

k = j + 1
ik j

k=
ik

k =  

C

   

C 
C

 

(3.2)  

and, according to the model in section 2,  

ik
k= j+1

j

ik
k=

 

C

 

C

 

= 

A
k

i i
k= j+1

j
k

i i
k=

  

q

  

q

 

where i = Ci

    

= 

A
k
i

k= j+1

j
k
i

k=

 

q

 

q

  

= 
j +1 Aj 1
i i i

j +1 1
i i

 

(1  ) (1  q q q )

(1  )(1  q q )

  

= 
j A
i i

1 j
i i

  q q

  q q

  

= Sj(qi), say (3.3)  

Now, since we are using maximum likelihood estimation, the maximum 
likelihood estimate of the reserve is  

j

ik jij i
k=

 

=    ( )qC SR

 

(3.4) 
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The reserves in the example (section 5) have been calculated using (3.4) and 
the estimate of qi from section 2.  

4. The model in practice  

The model which has been used in practice can be summarised in the following 
table.  

For year of incurrence i,   

development year  data  model 

 

0 

1 

2 

3 

4 

. 

. 

. 

A 1 

A 

A+1 

. 

. 

.  

Ci0 

Ci1 

Ci2 

Ci3 

Ci4 

. 

. 

. 

Ci A 1 

CiA 

Ci A+1 

. 

. 

.  

Ci0 

Ci1 

i 

iqi 

iqi
2 

. 

. 

. 

iqi
A 3 

iqi
A 2 

0 

. 

. 

. 

 

where i = Ci2.  

It can be seen that this case has  = 2.  From the data, qi is usually estimated to 
be around 0.9 for a succession of origin years i, and A is about 19.  

Thus, in practice, the first two years are not modelled: the forecasting is applied 
only to run-off years of delay 3 or more.  This means that the two most recent 
accident years have no forecast values of ultimate claims.  
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5. Example  

The method is illustrated in this section by applying it to some actual data.  In 
the example, the theoretical derivation of qi is used (as set out in the appendix). 
 As stated earlier, it is much easier to use a simple search method, but the 
theoretical approach is used in order to illustrate the method.  

Year of origin 1974  

T = 10, 
(T  2)

2
 = 4          (j  2) Cij = 30,483          Cij = 10,335  

From equation (A.9)  

X  = 2.9495 < 
T  2

2

  

Hence a solution of f(q) = 0 is needed where  

f(q) = 9

9 1

   

- (8  X)
1  q1  q 

(equation (A10))  

As a first approximation, using equation (A11)  

q = 
T  2 12

1      X   
2 T(T  2)

 = 0.842   

q  f(q) 

 

0.842 
0.860 
0.850  

5.102  5.05 > 0 
4.976  5.05 < 0 
5.046  5.05  0 

  

q

 

 0.85  

Year of origin 1975  

T = 9, 
(T  2)

2
 = 3.5         (j  2) Cij = 24,090         Cij = 8,354  

X  = 2.8836 < 
T  2

2

   

f(q) = 8

8 1

    

(7  X)
1   q1  q 

As a first approximation, q = 0.883   
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q f(q) 

 
0.883 
0.890 
0.885  

4.143  4.1164 > 0 
4.103  4.1164 < 0 
4.131  4.1164 > 0 

  
q

 
 0.89  

and so on.  

Continuing the process for years of origin 1976 to 1981 gives the following table:   

Year of origin  q

  

1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981  

0.85 
0.89 
0.84 
0.78 
0.74 
0.69 
0.78 
0.79 

 

These values of q  can be substituted into the formula in section 3 to calculate the 
reserves.  

The simpler search method can be illustrated by considering, for example, year of 
origin 1974.  The values of q and I = logL(q) (which has to be maximised) in the 
relevant range are   

q  I 

 

0.82 
0.83 
0.84 
0.85 
0.86 
0.87 
0.88  

21875.7 
21854.2  
21841.7 
21837.9 
21842.7 
21855.8 
21877.2 
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Thus the maximum likelihood estimate of q is  

q

 
 0.85  (as before)  

For the most recent years of origin there is very little data to use in the estimation 
procedure, and an IBNR computation is needed.  For these years a "smoothed" 
common q value may be chosen which is a conservative estimate (e.g. 0.85 or 0.90) in 
the sense that it over-reserves: it is preferable that the predicted claims should be 
greater than the actual claims.  

6. Adjustment for future inflation  

Future inflation can be taken into account by modifying the claims reserve at the end 
of year j, Rij.  

Suppose future inflation with inflation factor r per year is to be taken into account.  

This implies that Rij has to be increased by a factor  

A
k kj

i i
k= j+1

A
k

i i
k= j+1

   

q r

  

q

  

= 
j +1 Aj 1
i i i

j +1 Aj 1
i i i

 

(1  ( r ) (1   rq q ) q )r 
(1  ) (1  q q q )

  

= 
Aj

i i
Aj
i i

[1  ( r ](1  )q ) qr
(1  )(1   r)q q  

if qi r  1  

or  

= i
Aj
i

(A  j)(1  )qr
1  q   

if qi r = 1 (6.1)  

This factor is called Ij(qi, r).  
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If future inflation is to be taken into account, but its influence limited to n years ahead, 
then the factor by which Rij has to be increased is instead (for j  A  n)  

j+n1 A
k kkj n

i ii i
k= j+1 k= j+n

A
k

i i
k= j+1

    
+    q qr r

  
q

  

= 
j +1 n1 1 j+n Ajn+1 1n
i i i i i i

j +1 Aj 1
i i i    

(1    (  r )  (1      r  +      (1   

 

)  (1    q q ) q ) q q q )r r  
(1    )  (1    q q q )

  

= 
n1 n1 Ajn+1n

i i i i i
Aj
i i

(1  ( r )(1  ) +   (1  )(1   r)q ) q q q qr r
(1  ) (1   r)q q 

if qi r  1  

or  

= 
Ajn+1

i i
Aj
i

(n  1) (1  ) +  (1  )q qr r
(1  )q    

if qi r = 1  

(6.2)  

This factor is called Ij
(n)(qi, r).  

Summarising, it can be seen that if future inflation is taken into account then the 
reserve must be  

Rij Ij i( , r)q  or  Rij Ij
(n) 

i( , r)q  

depending on how many years inflation are taken into account.  

Appendix  

In section 2, the log likelihood is derived in equation (2.9) as  

logL(q) = 
T

ij
j = 

  

(log  + (j  ) log q)C

  

This expression has to be differentiated with respect to q.  First of all, note that  

d

dq

 

= 
T-

T +1 T +1 2

1 (1  q)  (T   + 1)q
 + 

(1  ) (1  q q )

 

(A.1)  
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and so   

d
 logL

dq 
= 

T T +1T

ij T +1 2
j=

(1  q) (T   + 1) (1  )q q     
. C

(1  q)(1  q )

  
T +1

T +1

1 (1  ) (j  )q

  
.  +   

(1  q) q(1  )q

  

= 
TT

ij T +1
j=

(T   + 1) 1 (j  )q

       

+   C
(1  q) q(1  )q

  

(A.2)  

Put X

 

= 
T

ijT
j=

ij
j=

1

  

(j  ) C

 

C

 and note that  

T

T +1

q

(1  )q
 = T +1

1 1

   

1 +   
q (1  )q

 . (A.3)  

Substituting into (A.2) it can be seen that  

d

dq
 logL = 

T

ij T +1
j=

(T   + 1) 1 1 X

         

1     +   C
q 1  q q(1  )q

  

= 
T

ij T +1
j=

1 q T   + 1

           

X    (T   + 1) +     C
q 1  q 1  q

  

= 
T

ij T +1
j=

1 1 T   + 1

         

X     + (T  )      C
q 1  q 1  q

   

(A.4)  

A solution of 
d

dq
 logL = 0 is needed, so consider  

f(q) = T +1

1 T   + 1
X   + (T  )  

1  q 1  q

 

(A.5)  
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and note that  

f(q) = T   + 1

T   + 1 1

   
- (T    X)

1  q1  q

 
(A.6)  

Hence f(0+) = X > 0.

  
It is easy to show that f is a decreasing function of q for 0 < q < 1 (just differentiate 
and show that the derivative is always < 0).  So if it can be shown that f(1 ) < 0 it will 
have been proved that there is an unique solution of f(q) = 0 in 0 < q < 1 and that this 
is the maximum likelihood estimator of q.  

To calculate f(1 ), first consider q = 1 

 

.  Then  

f(q) = T +1

T   + 1 1

    

(T    X)
1  (1  )

  

= 
2 3 41

6

T +1

1[1(T +1) + (T +1)(T ) (T +1)(T )(T 1) + O( )]

  

1

      

(T        X)

  

= 
2 31

6

1 1

          

T        X  
[(1    (T    )  +  (t    )(T        1)  +  O( )]

  

= 
2

21 T    (T    )(T        1) T    1              
+          +  O( )        (T        X)

2 6 2

  

= 2T    T    T        1 T  

                   

+  O( )    (T        X)
2 2 3 2

 

(A.7)  

 

T  
X  

2

 

as 

  

0  

So f(1 ) < 0 if 
T  

X < 
2

.  
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A value of q is needed such that f(q) = 0.  If 
T  

X < 
2

, and if q = 1 

 
 then from the 

above equation (A.7) it can be seen that a first order approximation for  is given by   

= 
T  12  

X . 
2 (T  )(T   + 2)

 
(A.8)  

For the model in practice (section 4),  

X  = 
T

ijT
j=2

ij
j=2

1

  

(j  2) C

 

C

 

(A.9)  

Then if 
T  

X < 
2

, q is a solution of  

f(q) = 
T1

T  1 1

    

(T  2  X)
1  q1  q 

(A.10)  

and a first order approximation for  is given by   

= 
T  2 12

  

X . 
2 T(T  2)

 

(A.11)  

A more accurate maximum likelihood estimate of q can be found by a numerical 
search method around this first order approximation.  This is illustrated in the example 
in section 5.  

The approximate maximum likelihood estimate of q can be found from equation (A.8) 
using  

q  = 1 

 

.   

<> 
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[D4] 
REID'S METHOD 

Contributed by D H Reid  

1. Introduction  

The method used by D H Reid is essentially non-parametric in nature.  A 
central feature is the use of an empirical estimate of the distribution of claims 
by size and delay-time, based on one chosen year of origin, the "base year".  
This estimated distribution is assumed to underlie all the other years of 
business.  The number of claims for each year is assumed to be known or 
estimated.  Instead of estimating a rate of development for the other years of 
business, each is compared with the base year.  For example, if the proportions 
of the total number of claims from year of origin 2, developed to the end of the 
first, second, third etc year of their run-off are calculated, then the 
corresponding points of time for the same proportions in the base year are 
labelled r21, r22, r23, etc.  

The way in which corresponding points of time in the run-offs, and the 
corresponding sizes of claims are developed and used are described in the 
paper and shown graphically in Figure 5.  

The complications arise mostly from the special treatment required for the end-
periods, and for large claims.  

Various complicated expressions are evaluated using numerical techniques 
which are typical of modern computer-based calculations; in principle, they do 
not affect the method, although they are part of the work of implementation.  

1.1 This is a description of a reserving method first proposed by D H Reid (1978) 
and subsequently developed in a series of papers (Reference 1 to 3).  It is a 
very powerful method of most relevance in direct business where data is 
available subdivided by claim size.  

1.2 The following aspects of the claims reserving situation provide motivation for 
the particular approach taken:  

1.2.1 In most reserving contexts for the claims arising from a particular period 
a correlation exists between their cost and the period of time elapsing 
between origin and settlement.  Rates of settlement are at least partially 
within the control of claim officials and are not necessarily constant 
from year to year.  Prima facie, adequate understanding of the 
developing experience of a claim portfolio upon which reserves can be 
constructed can  thus be gained only by monitoring both development 
time and cost variables jointly.  Thus both of these variables and in 
particular cost must be treated in any thorough reserving process.  
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1.2.2 The standard actuarial approach to graduation by means of a standard 
table would appear to provide a framework suitable for generalisation in 
this context.  It turns out, however, that, because of the subjectivity 
involved in what constitutes a claim at the practical level  leading to 
varying proportions of "nil" claims  the relevant features of the 
process require careful specification.  

1.2.3 The actual cost of claims is determined partly by factors extrinsic to the 
company, and partly by company policy. It is important that historic cost 
movements should be visible in a form which enables the effect of these 
sources to be viewed, before extrapolation to the future, and that this 
view should as far as possible be free of corruption through point 1.2.1 
above.  

1.2.4 It goes almost without saying that the general insurance market is highly 
competitive.  Particularly in the context of a small market share there is a 
considerable premium on estimating claims experience levels as 
precisely as possible, and to this end maximum benefit from available 
data is needed.  The objective should be to create claim estimation 
methods which make explicit use of data and use visible valuation bases 
and are thus directly under management's control.  Present day 
computing power is such as to render computational labour transparent 
to the user.  

1.2.5 Although the method is relatively complex, it is readily capable of being 
implemented on a PC.  

1.2.6 The underlying model represents a deliberate simplification of the claim 
process (although more elaborate than any other currently in use).  The 
extent to which it is refined in application will depend on the context 

 

in most applications the model as proposed will be adequate.  For some, 
for example where radically different types of payment are embraced 
within a claim, and where factors affecting each may be different, a 
version of the model which reflects this may be necessary (see e.g. 
Section 4 of Reference 2), or a "DP" solution may be adequate which 
subdivides the experience into two or more parts each of which can be 
valued separately.  Nevertheless, it should be said that experience over 
10 years has shown the basic model to be applicable in most cases 
without further elaboration.  

1.2.7 Any valuation method  from case estimates onwards  involves the 
use (explicitly or implicitly) of a conceptual model, and it is critical to 
the success of the method that the degree of adequacy of the model 
should be visible  and where inadequate the model should be capable 
of modification, or, in the last resort, rejection.  

1.2.8 Whilst the method has wide application  and can easily cope with, 
e.g., the effect of Excess of Loss reinsurance cover on claims experience, 
it is not readily applicable to "pathological" types of claim, such as 
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certain long term industrial diseases  at least until considerably 
extended data bases are available.  

1.2.9 It is important to mention that in the original paper much of the 
presentation was concerned with modelling the two way distribution of 
the base year in considerable detail.  The author has now indicated that a 
relatively simple approach to the distribution based on linear 
interpolation will suffice for most practical purposes.  This results in a 
much less labour-intensive approach than formerly.  

2. The structure of the method is quite involved and the flowchart (fig. 1) may 
help clarify the interdependence of the various stages.  The heart of the method 
is a bivariate distribution intended to express the relationship between ultimate 
cost and time of settlement of claims originating in one year.                                 

Figure 1 
2.1 The variable x represents size of claim (aggregation of individual payments) 

The variable t represents time of development (time elapsing from the 
beginning of the origin year to the date of settlement).  
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Then M(x,t) represents the probability that a claim exceeds amount x and is 
settled at a time of development greater than t.  

2.1.1 Origin date can refer either to date of originating event or date of 
notification to the company: in the second case estimation for known 
outstandings is produced; in the first some method of forecasting IBNR 
numbers is needed  then the method can produce total reserves 
(known cases and IBNR).  

2.1.2 Consistency is required in the definition of a claim and its "time of 
settlement".  The latter could for example relate to "time of first closure" 

 leaving liability in respect of reopenings to be determined separately. 
 The important thing is consistency  other arrangements are possible.  

2.2 The underlying method is as follows for a particular year of origin of claim:  

 

a proportion p of the claims are zero (i.e. settled at no cost); 

 

of the zero claims, Mz(t) is the proportion whose time to settlement 
exceeds t; 

 

of the non-zero claims Mnz(x,t) is the proportion whose cost exceeds x 
and time to settlement exceeds t.  

2.3 The distributions Mz(t), Mnz(x,t) are empirically determined from the 
experience of a well (i.e. nearly completed) developed year of origin (the "base 
year").  For later years of origin this distribution is assumed to apply, although 
the model allows for different rates of settlement and for claim inflation by 
fitting mappings from the actual time and monetary amounts of later years to 
the operational time and monetary amounts of the base year.  It also allows for 
varying proportions of zero claims.  

2.4 The function Mnz(x,t) is truncated so that large claims and claims settled at very 
late durations are treated differently in this analysis.  

2.4.1 The definitions of cut-off points for large and late claims should be 
chosen to fit convenience.  

2.4.2 Late claims are included in the last time period analysed (the "end 
group").  For most direct lines of business the end group should form a 
very small proportion of all the claims and no significant distortion need 
be introduced by this approach.  

2.4.3 Large claims are modelled separately.  The assumption here is that the 
number of large claims is binomially distributed and that the amount can 
be modelled by a Pareto curve.  The most recent years will not (yet) 
supply much data for large claims and older years, including years 
earlier than the base year, can be used.  The large claims modelled in this 
section may also include claims included in the main analysis so as to 
provide more data; obviously in any final calculations care should be 
taken to avoid double counting on any claim. 
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2.4.3.1 The proportion of large claims is settled from the base year data 
by judgement.  This same proportion is then used to determine 
the actual large claims in each year of origin j.  

2.4.3.2 Data from a number of years of origin are deflated back to the 
base year by a number of assumed large claims inflation factors. 
 When a Pareto curve provides a good fit, this combination of 
inflation factor and curve is adopted.  Projections of future sizes 
of large claims can then be carried out on a future large claims 
inflation factor, which may be based upon the fitting above.  

2.4.3.3 The chosen proportion of large claims is used on the future 
probability of a large claim arising.  This probability is applied 
to the total number of claims in each year of origin j to find the 
expected number of large claims for year j.  This number is then 
combined with the size as found above.  

2.5 A year which is well developed is chosen as the base year.  Experience has 
shown that the actual choice of base year does not have a major effect on the 
final results, as the fitting of mappings between the base and later years will 
correct for any unusual effects.  In any case of doubt, alternative base years can 
often be selected for comparison.  

3. Fitting the time mappings  

3.1 "Operational Time"  

A critical feature of the model (necessary because of 1.2.1 above) is the manner 
in which allowance is made for varying rates of claim settlement on the claims 
arising in each origin year.  This is achieved by the introduction of an 
"operational time" mapping in each origin year subsequent to the base year.  
The idea is that the proportions of claims settled at each point of development 
of a given origin year equate to those for the base year at the operational time 
value specific to that point of development.  

The operational time scale for each origin year is determined entirely on the 
number of claims settled, and not the cost of claims.  

Thus (refer to figure 2) r21 represents the value of operational time for origin 
year 2 corresponding to the stage of development (by number of claims and not 
amounts) which that origin year has reached at development time 1 year.  

More generally rjk is the operational time at which the base year has reached 
the same stage of development as origin year j at its kth year of development. 

3.2 Total number of claims by origin year  

If the origin year is defined as year of notification, there is no difficulty in 
ascertaining the number of claims.  If however the origin year is defined as 
year of event, some means is required at this stage for estimating the eventual 
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number of IBNR claims.  Usually a simple procedure based on reporting 
patterns will suffice.                  

Figure 2  

3.3 Fitting rjk and pj  

The data will then provide us with:  

Qnz
jk = the number of origin year j claims settled at positive cost in calendar 

time (j+k, j+k+1).  

Qz
jk  = the number of origin year j claims settled at zero cost in calendar time 

(j+k, j+k+1).  

Qj  = the number of origin year j claims still unsettled at calendar time s 
(where s is the final calendar year of development currently 
available).  
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Diagrammatically:  

  
non-zero

  
Qjn1z

  
Qjn2z

  
. . .

  
Qjnsz

   
origin year j

           
zero

  
Qjz1

  
Qjz2

  
. . .

  
Qjzs

              
Qj 

 

settlement time t = 0  1 2 . .  s j 1 s j 

   

Figure 3 
We would expect these relative ratios to be:   

(1 pj)* 

[Mnz(0,0) Mnz(0,rj1)]  

(1 pj)* 

[Mnz(0,rj1) Mnz(0,rj2)]  

. . .   

 

pj* 

[Mz(0) Mz(rj1)]  

pj* 

[Mz(rj1) Mz(rj2)]  

. . .    

pj M
z(rj s j)   

+ (1 pj)M
nz(rj 

s j) 

  

Figure 4  

We can construct a log-likelihood function for this fit:  

L = 
s1js1

z nz
jk jk j

j=1 k=0

    

[ + ] +   N N N

  

where  

z
jkN

 

= z zz z
jk j k+1jk jk j

 

ln {M [ ]  M [ ]} +  ln pQ Qr r   

nz
jkN

 

= nz nznz nz
jk j k+1jk jk j

 

ln {M [ , 0]  M [ , 0]} +  ln (1  )pQ Qr r   

jN

  

= z nz
j sj j sjj j j

 

ln { M [ ] + (1  ) [ , 0]}p pQ r M r   

Estimates of rjk and pj are found by maximising the log-likelihood function.  
This is achieved by standard computational methods.  

3.4 Validation  

At this stage the actual and predicted results can be compared, and if the base 
year is inappropriate for the data this should become evident.  

3.5 Alternatives 
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In the event that a significant diversion should be found at this stage between 
actual and predicted results, various alternative models are available  for 
example it may be appropriate in some contexts to sever completely the 
connection between zero and non-zero claims and proceed accordingly, 
allowing different rjk for zero and non-zero claims.  

4. Fitting the monetary mapping  

The development of numbers of claims in each origin year has been compared 
to the base year, and it is now necessary to compare each origin year to the 
base year on the basis of the cost of claims.  This will produce a set of inflation 
factors.  

4.1 bjk represents the factor by which the cost of claims originating in year j and 
settled in development year k exceeded that of those base year claims which 
were settled between rjk and rj k+1, i.e. the equivalent time in the base year.  

4.2 Again it is possible to fit bjk for all the j,k available using a log-likelihood 
method.  

To bring size of claim into the analysis we group by size into bands (xi, xi+1).  If 
we then let Qijk represent those claims included in Qnz

jk falling between xi and 
xi+1, where the xi are dividing points between the bands, we can express the 
distribution of Qijk as:  

* *
ijk i+1jk - M M  

where  

*
ijkM

 

= i inz nz
jk j k+1

jk jk

x xM   ,     M   ,   r r
b b

  

The log-likelihood function is proportional to: 
`  

* *
ijk i+1 jkijk

  

log  (  -  )Q M M

   

and the values of bjk which maximise this can be found by numerical 
techniques.  

4.3 Again, at this stage we can examine the bjk to determine whether they accord 
with intuitive understanding.  We can also compare the fitted and actual 
distributions of claims by size.  In the event that what appears to be a poor fit is 
obtained three possibilities need to be distinguished.  

 

The sample of claims involved may be so small that appreciable random 
fluctuation is anticipated.  
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The choice of bands of claim size on which the fit has been carried out 
may be inappropriate relative to the weight of the distribution concerned.  

 
It may be that a substantive change in the underlying distribution has taken 
place which does not permit of representation by the underlying surface 
mapped by the successive transformations involved.  

In the first of these cases typically recourse would be had to comparative 
values from earlier years, or alternatively the period concerned would be 
grouped with one or more surrounding periods in order to provide a more 
statistically viable sample.  

In the second case, an alternative choice of fitting points can be examined, and 
it would be the intention to develop an "expert" system to provide this facility 
automatically.  

In the third case a decision must be made as to whether the feature concerned is 
one which can be expected to persist in future and should therefore be carried 
forward or may safely be disregarded from the point of view of future 
projections.  

4.4 It is now possible to examine the effect of inflation on past settlements.  Before 
doing so, however, it is necessary to allow for changes in rate of settlement, 
which may distort the observed values of bjk, (see section 1.2.1).  This is done 
by deriving adjusted inflation factors Bjk, which relate to fixed periods of 
operational time rather than calendar time.  

i.e. whereas bjk relates to the period between settlement times k and k+1, 
corresponding to operational times rjk and rj k+1, Bjk relates to the period 
between operational times k and k+1.  

Comparisons of Bjk for successive origin years should then be free of the 
distorting effect of changes in rates of settlement and should reflect the "true" 
effect of inflation.  

Note  for notational convenience the fixed periods of operational time to 
which the Bjk relate are termed "groups".  

4.4.1 The Bjk are obtained as weighted averages of those bjk which lie wholly 
or partly between operational time k and k+1.  The weights used are the 
contributions to the mean non-zero claim cost from the component parts 
of the base year distribution.  

This derivation assumes that each bjk applies uniformly over the period 
to which it relates.  Other assumptions, and other methods of combining 
the component bjk could be used.  It would also be possible to calculate 
the Bjk directly, using bjk derived from them to fit the data.  

4.4.2 Since the Bjk correspond to periods of operational time it is desirable to 
be able to relate them to calendar times so that secular changes in claim 
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cost can be properly measured.  This is done via Rjk, which is defined as 
the time to settlement in origin year j of the beginning of group k; i.e. Bjk 

relates to the period of settlement Rjk to Rjk+1.  The Rjk are obtained from 
the rjk by linear interpolation, though other means for obtaining them 
could be used.  Figure 5 demonstrates the relationship between the bjk 

and Bjk and between the rjk and Rjk.  

4.4.3 Because groups and calendar years of development rarely correspond 
exactly, the situation often arises, for a particular origin year, where past 
bjk provide information for only part of a group, the remaining part being 
outstanding.  Such outstanding parts of groups are known as fringe 

groups.  Usually each origin year will have one fringe group (never more 
than one).  

The treatment of these groups has to be considered carefully.  If only a 
small part of the group is outstanding then it may be appropriate to apply 
the Bjk obtained from the settled part to the outstanding part.  
Conversely, if only a small part is settled then it would be more 
appropriate to use preceding origin years' Bjk for the same group, along 
with projected inflation, as a guide to the Bjk for the outstanding part.                

Figure 5   

 



 
REID S METHOD     

09/97 D4.11 

5. Estimating Reserves  

5.1 The process of estimating reserves arises as a natural consequence of the 
underlying conceptual framework  a bivariate claims distribution (by size 
and time) is modified to reflect the observed experience of individual origin 
years.  The required modifications are produced by the Bjk.  

In the reserving context, what is required is that part of the modified bivariate 
distribution which is outstanding at the time of inspection, i.e. that part which 
lies after rj(s j+1).  

5.2 Estimation of reserves thus boils down to estimation of the outstanding Bjk.  
This may normally be done by assuming a constant rate of future claims 
inflation (f, say) and applying the formula Bj+1 k=(1+f)Bjk for outstanding 
groups but other adjustments may also be made to allow for, e.g., anticipated 
changes in rate of settlement or inflation rates which vary by origin year or 
settlement year.  
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5.2.1 The expected settlement amount for each outstanding group is then 
calculated as the product of  

(i) Bjk 

(ii) mean non-zero claim cost for the group 
(iii) expected number of non-zero claims in the group.  

To obtain (iii), the expected number of non-zero claims in each group, 
the estimated total number of outstanding non-zero claims (as obtained 
from the fitting procedure described in 3.3) is spread over the group pro 
rata to the proportion of all non-zero claims attributable to each group.  

It is then a simple matter to accumulate the total settlement amount 
outstanding.  

5.2.2 It should be borne in mind that, as mentioned in 2.1, the claim costs 
reserved represent aggregations of individual payments, i.e. the ultimate 
cost of outstanding claims.  To obtain the outstanding monetary amounts 
any payments made on account on these claims should be deducted from 
the reserve calculated as described above.  

5.2.3 Fringe groups, described in 4.4.3, require special consideration.  The 
appropriate Bjk should be obtained as discussed in 4.4.3 and the mean 
non-zero claim cost and expected number of non-zero claims are derived 
from the distribution for only the outstanding part of the group.  

5.2.4 Large claims also require special consideration.  When assigning the 
outstanding non-zero claims to groups, the proportion of large claims 
may be reduced in line with the number of such claims already settled 
for each origin year, in order to allow for the time development of these 
claims.  The appropriate Bjk may be obtained from an assumed constant 
inflation rate, though it should be borne in mind that for these claims 
origin year is the important determining factor for cost level.  

6. Miscellaneous  

6.1 The advantages of the method cover two main headings:  

(i) Analysis  

By removing the effect changes in the rate of settlement have on observed 
claim cost the method allows a proper analysis of the underlying 
movements in claim cost and, unlike other standard methods (e.g. chain 
ladder, separation method) is free from the distorting influence of such 
changes.  Inspection of the fits, both by size and time, may also indicate 
whether observed changes can be attributed to secular movement or relate 
to underlying changes in the nature of the business, in which case 
appropriate steps may be taken to amend any assumptions for the future.  

(ii) Control 
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By suitable adjustment of the parameters affecting the reserves (e.g. rate of 
inflation, individual Bjk, proportion of large claims) senior management 
can ensure that the reserves reflect their judgements as to general 
economic conditions and the nature of the business (possibly as indicated 
by the method's own analysis).  The flexibility of the method allows such 
adjustments to be precise and specific.  

6.2 The method can also be extended to experience rating of larger commercial 
risk, though a number of constraints may be required because of greater 
variability, e.g. by reference to an extended model using Bjk from a larger 
portfolio.  This is of particular significance to those contexts where rating is 
based on "burning cost".  (For a fuller discussion see Reference 3.)  

6.3 As pointed out in the original paper, the method gives rise to the possibility of 
estimating confidence intervals for outstanding claims.  Beyond this it becomes 
a practical possibility to examine the "strength" of reserves in terms of the trade 
off of variability against mean cost at a given reserve level.  

7. Example  

Example Accounting Date: 31.12.87  

MODEL (Section 2)  

The Base Year for the model is 1982 with truncation points of 6 for operational 
time t and £80,000 for claim size x (see paragraph 2.3 2.5).  

The model for Nil claims, Mz(t), is: 
(x 10 5)   

t:

  

0.00  0.5  1  2  3  4  5  6 

 

Mz(t):

  

100,000  84,835

  

37,299  1,288  46  13  3  1 

 



 
PAPERS OF MORE ADVANCED METHODS     

09/97 D4.14 

The model for Non-nil claims, Mnz(x,t), is: 
(x 10-5)  

t:

 
x

  
0

  
0.5

  
1

  
2

  
3

  
4

  
5

  
6

  
£0

 
£25

 
£100

 

£200

 

£500

 

£1,000

 

£1,500

 

£2,000

 

£3,000

 

£4,000

 

£5,000

 

£6,500

 

£8,000

 

£10,000

 

£15,000

 

£20,000

 

£25,000

 

£30,000

 

£40,000

 

£50,000

 

£65,000

 

£80,000

 

£100,000

  
100,000

 
95,126

 
56,228

 

35,885

 

15,727

 

7,336

 

4,512

 

3,030

 

1,529

 

918

 

595

 

414

 

285

 

203

 

104

 

68

 

55

 

40

 

28

 

17

 

17

 

13

 

6

  
71,556

 
68,026

 
43,280

 

28,612

 

13,189

 

6,529

 

4,115

 

2,792

 

1,425

 

876

 

570

 

407

 

279

 

203

 

104

 

68

 

55

 

40

 

28

 

17

 

17

 

13

 

6

  
28,296

 
26,889

 
19,881

 

14,386

 

7,577

 

4,158

 

2,798

 

1,989

 

1,126

 

745

 

511

 

372

 

258

 

186

 

97

 

66

 

55

 

40

 

28

 

17

 

17

 

13

 

6

  
2,278

 
2,147

 
1,852

 

1,552

 

1,136

 

859

 

728

 

615

 

462

 

376

 

310

 

255

 

190

 

148

 

85

 

63

 

51

 

38

 

28

 

17

 

17

 

13

 

6

  
598

 
568

 
513

 

454

 

384

 

334

 

304

 

275

 

234

 

211

 

184

 

160

 

133

 

112

 

74

 

57

 

49

 

36

 

27

 

17

 

17

 

13

 

6

  
243

 
234

 
213

 

201

 

180

 

160

 

150

 

139

 

122

 

112

 

104

 

99

 

87

 

76

 

51

 

47

 

40

 

27

 

21

 

15

 

15

 

13

 

6

  
112

 
106

 
99

 

97

 

93

 

84

 

80

 

76

 

68

 

68

 

65

 

59

 

55

 

49

 

34

 

34

 

28

 

21

 

15

 

11

 

11

 

9

 

4

  
70

 
68

 
65

 

63

 

59

 

53

 

4

 

49

 

44

 

44

 

42

 

40

 

40

 

38

 

28

 

28

 

25

 

19

 

13

 

9

 

9

 

8

 

2

  

The above matrices are based on 23,679 Nil claims and 52,643 Non-nil claims 
forming the actual data for the Base Year as seen at 31/12/87.  The values of 
Mz(t) and Mnz(x,t) at intermediate values of x and t are derived from linear 
interpolation of ln(M) against t and/or ln(x).  For this purpose, the device is 
used of re-assigning the lowest value of x to 1, in order to avoid singularities 
when taking logs.  

For large claims (see paragraph 2.4.3) the model consists of a truncated pareto 
distribution over the range £80,000 to £420,000 with parameter 1.29.  The 
proportion of large claims is 0.00012.  This is slightly different from the 
proportion shown in the bivariate model above because it is derived from the 
inspection of a number of years' data as described in paragraph 2.4.3, as are 
also the truncated limit £420,000 and the pareto parameter 1.29.  
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FITTING THE "TIME" MAPPINGS (Section 3)  

The actual number of claims settled and outstanding for later years is:   

  
YEAR OF DEVELOPMENT  

  
ORIGIN 
YEAR  

  
0  1  2  3  4  OUTSTANDING

  

1983  Nil 
Non-nil

  

15,204 
39,052

  

7,609 
14,006

  

289 
964

  

13 
192

  

6 
76

  

} 
}

   

92

  

1984  Nil 
Non-nil

  

16,381 
43,971

  

9,569 
16,561

  

457 
1,299

  

35 
280

    

} 
}

   

217

  

1985  Nil 
Non-nil

  

18,132 
51,167

  

11,025 
18,919

  

786 
1,712

      

} 
}

   

725

  

1986  Nil 
Non-nil

  

18,511 
58,257

  

12,885 
21,218

        

} 
}

   

4,104

  

1987  Nil 
Non-nil

  

19,080 
62,522

          

} 
}

   

46,531

  

Fitting the pj and rjk as described in paragraph 3.3 gives the following 
parameter values:   

ORIGIN 
YEAR  

pj

  

rj1

  

rj2

  

rj3

  

rj4

  

rj5

  

1983 
1984 
1985 
1986 
1987  

0.7015

 

0.7019

 

0.7073

 

0.7195

 

0.7361

  

1.014

 

0.981

 

0.974

 

0.958

 

0.906

  

1.982

 

1.900

 

1.826

 

1.780

  

2.918

 

2.743

 

2.638

  

3.720

 

3.569

  

4.486
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which generate fitted data as follows:   

  
YEAR OF DEVELOPMENT  

  
ORIGIN 
YEAR  

  
0  1  2  3  4  OUTSTANDING

  
1983  Nil

 
Non-nil

  
14,902

 
39,515

  
7,917

 
13,558

  
302

 
931

  
10 

193

  
3 

79

    
2 

91

  

1984  Nil

 

Non-nil

  

16,282

 

44,051

  

9,702

 

16,430

  

449

 

1,302

  

23 
302

      

6

 

223

  

1985  Nil

 

Non-nil

  

18,314

 

50,959

  

10,980

 

18,964

  

647

 

1,856

        

46

 

704

  

1986  Nil

 

Non-nil

  

19,358

 

57,423

  

12,016

 

22,027

          

871

 

3,280

  

1987  Nil

 

Non-nil

  

19,091

 

62,548

            

14,717

 

31,777

  

FITTING THE MONETARY MAPPING (Section 4)  

The actual numbers of claims settled in size bands are shown in detail in the 
Appendix.  The numbers shown represent the numbers of claims settled at a cost 
greater than the corresponding value of x (claim size).  In this way, the number of 
claims settled greater than £0 can be seen to correspond to the number of non-nil 
claims settled in fitting the time mapping above.  Numbers of claims settled within 
size bands, Qijk, can easily be obtained by differencing.  

Fitting bjk as described in paragraph 4.2 gives the following results:   

ORIGIN 
YEAR  

bj0

  

bj1

  

bj2

  

bj3

  

bj4

  

1983 
1984 
1985 
1986 
1987  

1.138

 

1.216

 

1.327

 

1.372

 

1.416

  

1.091

 

1.190

 

1.355

 

1.471

  

1.235

 

1.216

 

1.458

  

1.103

 

1.406

  

1.113

  

which generate the modelled numbers of claims by size shown in the Appendix.  
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As described in paragraph 4.4, the fitted bjk are transformed to Bjk, which are free 
of the distorting effect of changes in settlement rates evidence from the rjk.  The 
resultant Bjk, using the method described in paragraph 4.4.1, are:   

ORIGIN 
YEAR  

Bj0

  
Bj1

  
Bj2

  
Bj3

  
Bj4

  
1983 
1984 
1985 
1986 
1987  

1.138

 

1.216

 

1.328

 

1.376

 

1.416

  
1.093

 

1.191

 

1.363

 

1.471

  
1.228

 

1.251

 

1.458

  
1.105

 

1.406

  
1.113

  

Note that each of the Bjk in the bottom diagonal corresponds to a fringe group, as 
discussed in paragraph 4.4.3.  The effect of the special considerations applied to 
fringe groups will be apparent in the section on estimating reserves.  

The Rjk, discussed in paragraph 4.4.2, define the periods of calendar time covered 
by groups in the fitted data.  Derived from the rjk, they have the following values.   

ORIGIN 
YEAR  

Rj0

  

Rj1

  

Rj2

  

Rj3

  

Rj4

  

1983 
1984 
1985 
1986 
1987  

0.986

 

1.020

 

1.031

 

1.051

 

1.000

  

2.019

 

2.119

 

2.214

 

2.000

  

3.103

 

3.311

 

3.000

  

4.366

 

4.000

  

5.000

  

ESTIMATING RESERVES (Section 5)  

In this example the outstanding Bjk have been estimated by assuming a constant 
rate of 7.5% p.a. for future claims inflation but the following two cases of special 
treatment should be noted:  

(a) Fringe Groups (see paragraph 4.4.3)  

For 1985 87 the outstanding part of the fringe group has been assigned the 
same value of Bjk as was fitted to the settled part.  For 1983 84, however, the 
settled part has been deemed to be too small to give a reliable indication of the 
Bjk for the whole group and the Bjk for the outstanding part has been projected 
at the assumed rate of inflation from the Bjk for the previous year.  
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(b) End and Large Claims Groups (see paragraph 2.4)  

The Bjk for these groups are projected at the assumed rate of inflation from the 
Base Year, for which the Bjk are automatically equal to 1.  A similar 
consideration also applies to Group 5.  The resultant Bjk are:       

GROUP     

  

ORIGIN 
YEAR  0  1  2  3  4  5    END   

LARGE 
CLAIMS 

 

1983 
1984 
1985 
1986 
1987      1.416     

1.471 
1.581    

1.458 
1.567 
1.685   

1.188 
1.277 
1.373 
1.476  

1.075 
1.156 
1.242 
1.335 
1.436  

1.075 
1.156 
1.242 
1.335 
1.436  

1.075 
1.156 
1.242 
1.335 
1.436  

1.075 
1.156 
1.242 
1.336 
1.436 

 

The corresponding mean claim costs, derived from the model after application 
of the estimated outstanding Bjk given above, are:       

GROUP     

  

ORIGIN 
YEAR  0  1  2  3  4  5    END   

LARGE 
CLAIMS 

 

1983 
1984 
1985 
1986 
1987      448  

   

1,174

 

796

    

2,653 
2,287 
2,459   

5,396 
5,107 
5,490 
5,902  

6,229 
6,160 
6,622 
7,119 
7,653  

7,257 
7,802 
8,387 
9,016 
9,692  

15,768
16,951 
18,222 
19,589 
21,058  

165,539 
177,954 
191,300 
205,648 
221,071 

 

Note the effect of the positive correlation between time to settlement and 
claim size on the outstanding fringe groups' mean claim costs, which are 
greater than those for the corresponding complete groups.  The number of 
outstanding non-zero claims for each year, as estimated in "Fitting the Time 
Mapping" above, is assigned to individual outstanding groups pro rata to the 
corresponding probabilities from the model.  This gives the following 
expected numbers of non-zero claims in each group:       

GROUP     

  

ORIGIN 
YEAR  0  1  2  3  4  5    END   

LARGE 
CLAIMS 

 

1983 
1984 
1985 
1986 
1987  

    

5,091

     

1,379

 

24,562

    

260

 

1,373

 

1,585

   

68

 

248

 

290

 

335

  

28

 

75

 

89

 

104

 

120

  

21

 

23

 

28

 

33

 

38

  

34

 

37

 

44

 

51

 

59

  

7

 

9

 

10

 

12

 

14
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Note that for 1983 the probability of being assigned to the Large Claims group has been reduced 
slightly because of the known settlement of one large claim.  The resultant outstanding settlement 
amounts (product of numbers and averages) are, in £000:       

GROUP     

  
ORIGIN 
YEAR  0  1  2  3  4  5    END   

LARGE 
CLAIMS 

 

1983 
1984 
1985 
1986 
1987  

Total  

    

2,281

  

2,281

     

1,619

 

19,560

  

21,179

    

691

 

3,140

 

3,898

  

7,729

   

365

 

1,269

 

1,594

 

1,979

  

5,208

  

177

 

460

 

590

 

741

 

920

  

2,887

  

155

 

183

 

234

 

294

 

365

  

1,231

  

530

 

624

 

799

 

1,004

 

1,246

  

5,154

  

1,171

 

1,567

 

2,007

 

2,522

 

3,130

  

12,451

  

Aggregating these amounts for each origin year and subtracting payments made on account (see 
paragraph 5.2.2) gives the following table of claims reserves, in £000:   

ORIGIN 
PERIOD  

OUTSTANDING 
SETTLEMENT 

COSTS  

AMOUNT PAID 
ON ACCOUNT  

RESERVE 

 

1983 
1984 
1985 
1986 
1987  

Total  

2,033

 

3,199

 

5,590

 

10,915

 

33,380

  

58,120

    

789

 

1,075

 

1,525

 

3,836

 

10,435

  

19,377

    

1,244

 

2,124

 

4,065

 

7,079

 

22,945

  

38,743
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ACTUAL & MODELLED NUMBERS OF CLAIMS BY SIZE (ACTUAL DATA)     
YEAR 

OF 
ORIGI

N 

    

1983  1984  1985  1986  1987 

   

CLAIM 
SIZE    YEAR OF DEVELOPMENT    YEAR OF DEVELOPMENT    YEAR OF DEVELOPMENT

   

0  1  2  3  4  0  1  2  3  0  1  

 

£0

  

39,052

  

14,006

   

964

   

192

   

76

  

43,971

  

16,561

   

1,299

   

280

  

51,167

  

18,919

   

1,712

 

£25

  

37,285

  

13,407

   

920

   

181

   

69

  

42,140

  

15,859

   

1,236

   

270

  

49,496

  

18,284

   

1,632

 

£100

  

20,991

  

10,066

   

792

   

168

   

62

  

24,616

  

12,086

   

1,071

   

245

  

30,599

  

14,356

   

1,437

 

£200

  

12,506

   

7,201

   

658

   

141

   

54

  

14,593

   

8,841

   

909

   

217

  

18,295

  

10,732

   

1,193

 

£500

   

5,097

   

3,735

   

442

   

113

   

46

   

6,114

   

4,625

   

600

   

170

   

7,696

   

5,730

   

828

 

£1,000

   

2,138

   

1,948

   

326

   

96

   

42

   

28

   

211

   

326

   

119

   

64

   

3,039

   

581

 

£1,500

   

1,235

   

1,248

   

261

   

83

   

38

   

1,456

   

1,546

   

334

   

120

   

1,916

   

1,966

   

457

 

£2,000

   

802

   

840

   

212

   

74

   

36

   

920

   

1,286

   

273

   

105

   

1,264

   

1,373

   

371

 

£3,000

   

340

   

414

   

138

   

62

   

32

   

417

   

541

   

187

   

83

   

613

   

760

   

247

 

£4,000

   

177

   

236

   

96

   

42

   

28

   

211

   

326

   

119

   

64

   

316

   

388

   

164

 

£5,000

   

88

   

140

   

67

   

34

   

24

   

123

   

204

   

84

   

48

   

206

   

231

   

122

 

£6,500

   

41

   

79

   

42

   

26

   

20

   

68

   

97

   

56

   

41

   

122

   

118

    

£8,000

   

29

   

43

   

31

   

22

   

16

   

37

   

60

   

42

   

31

   

61

   

69

    

£10,000

   

14

   

19

   

22

   

18

   

13

   

21

   

34

   

22

   

17

   

33

   

35

    

£15,000

   

5

   

6

   

11

   

9

   

9

   

4

   

9

   

7

   

8

   

9

   

12

    

£20,000

   

2

   

1

   

7

   

3

   

5

   

0

   

5

   

6

   

3

   

3

   

3

    

£25,000

   

1

   

0

   

5

   

3

   

3

   

0

   

3

   

4

   

2

   

2

   

1

    

£30,000

   

1

   

0

   

5

   

2

   

3

   

0

   

2

   

3

   

0

   

1

   

1

    

£40,000

   

0

   

0

   

2

   

0

   

2

   

0

   

1

   

2

   

0

   

0

   

1

    

£50,000

   

0

   

0

   

1

   

0

   

2

   

0

   

1

   

1

    

0

   

0

   

0

    

£65,000

   

0

   

0

   

0

   

0

   

2

   

0

   

0

   

1

   

0

   

0

   

0

    

£80,000

   

0

   

0

   

0

   

0

   

1

   

0

   

0

   

1

   

0

   

0

   

0

    

£100.000

   

0

   

0

   

0

   

0

   

1

   

0

   

0

   

0

   

0

   

0

   

0

    

£150,000

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

    

£200,000

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0
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APPENDIX 

 

ACTUAL & MODELLED NUMBERS OF CLAIMS BY SIZE (MODELLED DATA)

    

YEAR 
OF 

ORIGIN

     

1983  1984  1985  1986  1987 

   

CLAIM 
SIZE    YEAR OF DEVELOPMENT    YEAR OF DEVELOPMENT    YEAR OF DEVELOPMENT

   

0  1  2  3  4  0  1  2  3  0  1 

 

£0

   

39,052

   

14,006

   

964

   

192

   

76

   

43,971

   

16,561

   

1,299

   

280

   

51,167

   

18,919

  

£25

   

37,239

   

13,336

   

910

   

181

   

73

   

41,972

   

15,793

   

1,228

   

265

   

48,906

   

18,080

  

£100

   

21,106

   

9,913

   

786

   

162

   

66

   

24,369

   

11,857

   

1,045

   

240

   

29,505

   

13,918

  

£200

   

13,014

   

7,228

   

666

   

138

   

59

   

15,260

   

8,786

   

871

   

212

   

18,962

   

10,642

  

£500

   

5,158

   

3,723

   

465

   

109

   

49

   

6,142

   

4,572

   

590

   

164

   

7,832

   

5,699

  

£1,000

   

2,103

   

1,948

   

329

   

91

   

42

   

2,540

   

2,408

   

405

   

133

   

3,321

   

3,067

  

£1,500

   

1,159

   

1,244

   

264

   

80

   

39

   

1,408

   

1,549

   

317

   

116

   

1,863

   

2009

  

£2,000

   

723

   

846

   

222

   

71

   

35

   

888

   

1,071

   

260

   

104

   

1,196

   

1,427

  

£3,000

   

306

   

425

   

155

   

58

   

29

   

391

   

550

   

175

   

84

   

555

   

766

  

£4,000

   

144

   

241

   

115

   

50

   

25

   

189

   

315

   

126

   

70

   

279

   

448

  

£5,000

   

72

   

140

   

88

   

42

   

22

   

96

   

192

   

95

   

61

   

146

   

283

  

£6,500

   

34

   

77

   

64

   

32

   

20

   

43

   

99

   

66

   

48

   

63

   

144

  

£8,000

   

20

   

47

   

51

   

24

   

17

   

25

   

63

   

51

   

39

   

36

   

91

  

£10,000

   

12

   

26

   

30

   

18

   

13

   

15

   

35

   

30

   

29

   

21

   

53

  

£15,000

   

5

   

8

   

12

   

11

   

9

   

7

   

12

   

11

   

16

   

9

   

18

  

£20,000

   

2

   

3

   

5

   

6

   

6

   

3

   

5

   

5

   

10

   

5

   

8

  

£25,000

   

1

   

2

   

3

   

4

   

5

   

1

   

2

   

3

   

6

   

2

   

3

  

£30,000

   

0

   

1

   

1

   

4

   

4

   

0

   

2

   

1

   

4

   

1

   

2

  

£40,000

   

0

   

0

   

1

   

3

   

2

   

0

   

1

   

1

   

4

   

0

   

1

  

£50,000

   

0

   

0

   

1

   

1

   

2

   

0

   

0

   

1

   

3

   

0

   

0

  

£65,000

   

0

   

0

   

0

   

1

   

1

   

0

   

0

   

0

   

1

   

0

   

0

  

£80,000

   

0

   

0

   

0

   

0

   

1

   

0

   

0

   

0

   

1

   

0

   

0

  

£100,000

   

0

   

0

   

0

   

0

   

1

   

0

   

0

   

0

   

0

   

0

   

0

  

£150,000

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

  

£200.000

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   

0

   



  

09/97 D5.1 

[D5] 
REGRESSION MODELS BASED ON LOG-INCREMENTAL PAYMENTS 

Contributed by S Christofides   

The first article in Volume 2 of this Manual by B Zehnwirth has shown the close 
connection between the intuitive Chain Ladder technique and the more formal two 
way analysis of variance model based on the log-incremental payments.  

Models initiated by this more formal definition of the basic chain ladder have recently 
started to gain acceptance in loss reserving work and a number of papers on the 
subject have now been published.  These models differ from the traditional techniques 
by a more formal definition of both the model assumptions and the parameter 
estimation and testing.  With the formal models statistical estimates of reserves, that 
is both mean estimates and the associated model standard errors, can be calculated.  
The basic chain ladder is deterministic and produces point estimates of reserves.  

The purpose of this paper is to serve as a basic introduction to these methods for the 
practitioner.  To facilitate this a PC spreadsheet package is used to show how run-off 
models of the log-incremental payments can be identified and fitted in practice using 
multiple regression.  

The approach adopted considers the basic chain ladder technique first and shows how 
the intuitive chain ladder model can be made more formal.  The parameters of this 
model are then estimated and the implied underlying payment pattern compared with 
the chain ladder derived pattern.  Both models are used to fill in the square and the 
results compared.  In the case of the formal model it is also shown how the regression 
results are used to derive estimates of the individual future payments and their 
standard errors and how accident year and overall standard errors can be calculated.  

The simple example makes it easier to follow the calculations and is intended to allow 
the reader to focus on the more interesting modelling aspects of the later sections.  

A more realistic example is then analysed.  The data is first viewed graphically to 
identify an appropriate run-off model to fit.  The identified model is fitted and tested.  
The model is then redefined with fewer parameters and refitted.  The results, both 
future payments and their standard errors, from these models are calculated and 
compared.  

The data is then adjusted for inflation and for claim volume and a series of models are 
identified and tested.  Three of these are used to obtain estimates which are then 
compared.  

A degree of theory is assumed.  The model parameters are estimated using multiple 
regression and matrix operations are used to calculate the variance-covariance 
matrices.  All the computations and graphs are done in a PC spreadsheet package, 
Supercalc 5 in this case although Lotus 123 could have been used equally effectively. 
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The wide availability, ease of use and power of these packages makes these methods 
accessible to all.  Alternatively any programming language with matrix manipulation 
capabilities, such as APL or SAS, could be used for this work.  Programs have also 
been written in GLIM (see A Renshaw, 2).  

A. Introduction  

Almost all actuarial methods for estimating claims reserves have an underlying 
statistical model.  Obtaining estimates of the parameters is not always carried out in a 
formal statistical framework and this can lead to estimates which are not statistically 
optimal.  These traditional methods generally produce only point estimates.  

The models, such as the basic chain ladder, are often overparameterised and adhere 
too closely to the actual observed data.  This process can lead to a high degree of 
instability in values predicted from the model as the close adherence to the observed 
values results in parameter estimates which are very sensitive to small changes in the 
observed values.  A small change in an observed value, particularly in the south-west 
or north-east regions of the data triangle, can result in a large change in the predicted 
values.  In practice attempts may be made to achieve some stability in the results by 
using benchmark patterns, by selection of development factors and a number of other 
such techniques.  

Formal statistical models are used extensively in data analysis elsewhere to obtain a 
better understanding of the data, for smoothing and for prediction.  Explicit 
assumptions are made and the parameters estimated via rigorous mathematics.  
Various tests can then be applied to test the goodness of fit of the model and, once a 
satisfactory fit has been obtained, the results can be used for prediction purposes.  

This process allows us to focus on the model being fitted and should also highlight 
any inadequacies in the model.  The estimates of the parameters, on the basis of the 
model, can be made statistically optimal.  Peculiarities in the data may be identified 
and often investigation of these can yield useful additional information to the 
modeller.  

All modelling, whether based on the traditional actuarial techniques such as the chain 
ladder or on more formal statistical models, requires a fair amount of skill and 
experience on the part of the modeller.  All these models are attempting to describe 
the very complex claims process in relatively simple terms and often with very little 
data.  The advantage of the more formal approach is that the appropriateness of the 
model can be tested and its shortcomings, if any, identified before any results are 
obtained.  
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B. The basic chain ladder technique and the underlying stochastic model  

The following simple example considers a 4 by 4 triangle of cumulative payments:  

CUMULATIVE PAID CLAIMS  

DEVELOPMENT YEAR   

ACC YR  0  1  2  3 

 

0  11073

  

17500

  

19339

  

20105

  

1  14799

  

24156

  

26500

    

2  15636

  

26159

      

3  16913

        

The usual (weighted) basic chain ladder development factors are (see Vol 1 Section 
E8):  

0 to 1 1 to 2 2 to 3  

1.633781 1.100418 1.039609  

where 1.633781 = (17500 + 24156 + 26159)/(11073 + 14799 + 15636) etc.  

Using these factors the square can be completed in the usual way:  

CUMULATIVE PAID CLAIMS  

DEVELOPMENT YEAR   

ACC YR  0  1  2  3 

 

0  11073

  

17500

  

19339

  

20105

  

1  14799

  

24156

  

26500

  

27550

  

2   15636

  

26159

  

28786

  

29926

  

3  16913

  

27632

  

30407

  

31611

  

The actual and fitted portions of the square have been separated for illustration.  It is 
assumed in this example that there are no payments beyond the 3rd development 
period so that the first (zero th) accident year is complete.  

The chain ladder produces successive cumulative losses from which the future 
incremental payments can be derived by subtraction.  It is therefore possible to split 
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the overall chain ladder derived reserve estimate for an accident year into its 
incremental or payment year values. 
The underlying model is better illustrated by these incremental payments which are 
shown in the table below.  

INCREMENTAL PAID CLAIMS  

DEVELOPMENT YEAR   

ACC YR  0  1  2  3  0/S 

 

0  11073

  

6427

  

1839

  

766

     

1  14799

  

9357

  

2344

  

1050

  

1050

  

2  15636

  

10523

  

2627

  

1140

  

3767

  

3  16913

  

10719

  

2775

  

1204

  

14698

          

Total

  

19515

  

The accident year projected future payments and the overall estimate are shown in the 
last column.  The chain ladder estimate of future payments to development period 3 
for all accident years is 19515.  

Dividing each of these incremental amounts by the final, or ultimate, accident year 
value gives the following:   

PERCENTAGE PAID CLAIMS   

DEVELOPMENT YEAR   

ACC YR  Ultimate

  

0  1  2  3 

 

0  20105

  

55.08  

 

31.97  

 

9.15

  

3.81

  

1  27550

  

53.72  

 

33.96  

 

8.51    

 

3.81    

 

2  29926

  

52.25  

 

35.16  

 

8.78    

 

3.81    

 

3  31611

  

53.50  

 

33.91  

 

8.78    

 

3.81    

 

The basic chain ladder has produced the following underlying incremental payment 
pattern:   

Development year  0  1  2  3 

 

Incremental paid %  53.50 33.91

 

8.78 3.81
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Note that this underlying pattern can be calculated directly from the development 
factors.  

The basic chain ladder assumptions can be restated as follows: 
a: Each accident year has its own unique level.  

b: Development factors for each period are independent of accident year or, 
equivalently, there is a constant payment pattern.  

These assumptions can now be used to define the model more formally.  

Let:  

Ai  be the ultimate (cumulative) payments for the i-th accident year.  

Bj  be the percentage of ultimate claims paid during the j-th development 
period.  

Pij  be the incremental paid claims for accident year i paid during development 
period j  

The chain ladder model can thus be described by the following equations  

Pij = Ai 

 

Bj  for i,j from 0 to 3  

and the condition  

 

Bj = 1  where j is summed from 0 to 3  

The next section considers how these equations may be solved and estimates of the 
parameters obtained.  

C. Estimating the parameters of the formal chain ladder model  

As the main set of relations involves products the usual approach is first to make 
these linear by taking logarithms and then use multiple regression to obtain estimates 
of the parameters in log-space.  It will eventually be necessary to reverse this 
transformation to get back to the original data space.  

Dealing with the main set of equations is relatively easy.  Taking logarithms (natural 
logarithms will be assumed throughout and denoted by ln) gives  

ln (Pij) = ln Ai + ln Bj  

Unfortunately taking logarithms of the second condition does not produce a linear 
equation as   

ln( Bj) 

  

(ln Bj)  
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It is possible to obtain estimates of these parameters using iterative procedures but 
this is not pursued here.  It is more convenient to drop the condition and concentrate 
initially on obtaining the parameter estimates from the remaining, now linear, set of 
equations. 
Dropping the condition gives rise to a singularity and so it is necessary to introduce a 
new condition in order to obtain the parameter estimates.  This does not affect the 
eventual results but it does change the interpretation of the parameters.  

For ease of reference the parameters are now redefined (ln Ai = ai etc) and an error 
term introduced.  

ln(Pij) = Yij = ai + bj + eij  

where eij is some error term.  

As indicated above without some restriction these equations are singular.  Note for 
example that a3 appears only in one equation which involes b0 and an error term.  An 
infinite number of combinations of a3 and b0 are possible as long as they sum to the 
same view.  

For convenience in this example b0 is set to zero.  Another approach is to set both a0 

and b0 equal to zero and introduce a constant, k, into the model.  The chain ladder 
assumes each accident year has a unique level so the model to be fitted below will 
follow the former description.  The alternative definition is considered later in Section 
H and the advantages of this choice outlined.  

The predictions obtained by either approach will be the same so the restriction can be 
chosen at the convenience of the modeller.  

The model to be fitted is described by:  

ln(Pij) = Yij = ai + bj + eij  

where i and j go from 0 to 3 and b0 = 0  

The model has seven parameters to be estimated, the same number as the basic chain 
ladder model.  
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The following table is in the form most convenient for the regression facility of any of 
the popular spreadsheet packages.   

Y-variate         Design Matrix X  

  
i  j  Pij  Yij    a0  a1  a2  a3  b1  b2  b3

  
0 
0 
0 
0 
1 
1 
1 
2 
2 
3  

0 
1 
2 
3 
0 
1 
2 
0 
1 
0  

11073

 

6427

 

1839

 

766

 

14799

 

9357

 

2344

 

15636

 

10523

 

16913

  
9.31226

 

8.76826

 

7.51698

 

6.64118

 

9.60231

 

9.14388

 

7.75961

 

9.65733

 

9.26132

 

9.73584

    
1 
1 
1 
1 
0 
0 
0 
0 
0 
0  

0 
0 
0 
0 
1 
1 
1 
0 
0 
0  

0 
0 
0 
0 
0 
0 
0 
1 
1 
0  

0 
0 
0 
0 
0 
0 
0 
0 
0 
1  

0 
1 
0 
0 
0 
1 
0 
0 
1 
0  

0 
0 
1 
0 
0 
0 
1 
0 
0 
0  

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

 

Each row corresponds to a data value and its representation by the model parameters. 
 The last but one row, for example, describes the accident year 2, development year 1, 
value in log-space as the sum of the a2 and b1 parameters.  The coefficients of the 
other parameters are zero for this data value.  

The resulting matrix of parameter coefficients, made up of ones and zeros in this case, 
will be referred to as the model design matrix X.  It is governed by the model chosen.  

Within the class of log-linear models changing the model just involves changing 
the design matrix.  

The regression takes the ln(Pij) or Yij values as the dependent variable and each of the 
columns of the matrix X as the independent variables.  

The spreadsheet regression command, which requires a columm for the dependent 
values and a range for the independent values (i.e. the design matrix) is then used to 
carry out the regression and output the result.  It is necessary to specify that the fit is 
without a constant and to define a results or output range.  This is quite 
straightforward in practice and the results are produced almost instantly.  

The spreadsheet output in this case will be:  

Regression Output: 
Constant        0  
Std Err of Y Est     .0524 
R Squared(Adj,Raw) .9976 .9992 
No. of Observations    10 
Degrees of Freedom    3   

Coefficient(s) 
Std Err of Coef.

  

9.288 
.0400  

9.591 
.0400  

9.692 
.0428  

9.736 
.0524  

.4661

 

.04277

  

1.801

 

.05015

  

2.647 
.06591 
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A brief description of this fairly standard spreadsheet regression output will be found 
in Appendix 2.  

The results can also be obtained by matrix manipulation.  An indication of how this 
can be done is given in Section D.  

The coefficients are the parameter estimates and are in the same order as the columns 
of the design matrix.  

So the model estimate for a0 is 9.288, for a1 it is 9.591 and so on until b3 which is 
estimated as 2.647.  

The payment pattern can be derived from this output.  This is done by exponentiating 
the development year parameters bj s, remembering to bring in the b0 which was set 
to 0, and scaling so that the exponentiated values add up to the required 100%.  

A formal proof of this is beyond the scope of this paper and the interested reader is 
referred to Verrall s paper (5) Chain Ladder and Maximum Likelihood .  The table 
below, and the comparison with the basic chain ladder result, may be sufficient to 
satisfy the majority of practitioners.  

The following table shows these basic calculations     

Parameter  b0  b1  b2  b3   

       

Coefficient 
exp (bj) 
Payment %  

0 
1 
53.67  

.4662 
0.6274 
33.67  

1.8015 
0.1651 
8.86  

2.6472 
0.0709 
3.80  

sum 
1.8634 
100 

This is very close to the basic chain ladder derived pattern.     

BCL Payment %  53.50  33.91   8.78  3.81   

 

The slight differences arise from the way the parameter estimates are derived.  The 
same underlying model is assumed in both cases.  Unfortunately however a fair 
amount of further manipulation is necessary to obtain estimates of ultimate values for 
each accident year.  These cannot be derived simply from the accident year regression 
coefficients.  

In order to progress further it is now necessary to go back and consider what 
assumptions were made by the spreadsheet in deriving the parameter estimates.  This 
requires a more detailed consideration of the formal model and in particular the 
structure of the assumed error term. 
These aspects are considered in the following section.  

D. Fitting assumptions and error terms  
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The spreadsheet regression is fitted by least squares.  That is by minimizing the sum 
of the squares of the error terms eij.  

It is usual and convenient to assume that the error values eij are identically and 
independently distributed with a normal distribution whose mean is zero and variance 
some fixed 2.  

i.e. eij = IID N(0, 2)  

In matrix form it can be shown that, under these assumptions, the parameter estimates 
are given by  

(XTX) 1 XTY  

where X is the design matrix and XT its transpose and Y is the data vector.  The 
standard errors can also be calculated in matrix form.  

These assumptions can be tested by analysis of the residual (error) terms, by plots and 
other diagnostic tests.  Residual plots are shown and discussed later.  

Recalling that the original payments were transformed by taking logarithms the error 
normality assumption in log-space implies that the data in the original space are log-
normally distributed.  

The IID assumption estimates are also the maximum likelihood estimates in this case 
and it can be shown that the parameter estimates so obtained are unbiased.  Since 
maximum likelihood estimates are invariant under transformation Verrall (5) shows in 
Chain Ladder and Maximum Likelihood how maximum likelihood estimates of 

development factors can be obtained by direct substitution.  

As the log-normal distribution is skewed with a tail to the right some extreme high 
values are to be expected.  This is sometimes a feature of incremental claims payment 
triangles.  The cause is usually a large claim payment in later development periods, 
the settlement perhaps of a particularly large claim, when the overall level of 
payments is low.  

These assumptions are not claimed to be theoretically justified for log-incremental 
claims payments.  They have an intuitive appeal and are chosen primarily for 
convenience.  Alternative assumptions, which may well be more generally applicable 
to claim payments, can be made and results obtained.  These tend to require more 
complex computations or iterative procedures which generally necessitate the use of 
specially written software.  

Further comments on the error terms are to be found in the final section of this paper 
which also includes some suggestions for dealing with negative incremental 
payments.  

E. Predicting future payments and their standard errors  
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In order to derive estimates of the model parameters it was convenient to take 
logarithms and work in log-space.  To obtain results in the original space it is 
necessary to reverse this transformation.  

Obtaining the parameter estimates in log-space is relatively straightforward.  To 
revert back to the original space is not so simple and it is necessary to use the 
relationships between the parameters of the log-normal distribution and the 
underlying normal distribution.  

Again for simplicity the easiest approach is adopted here.  This approach is also used 
by Zehnwirth and by Renshaw and again the justification can be found in their papers. 
 These estimates, in the original space, are not necessarily unbiased especially where 
a small number of data points are being fitted.  Verrall (6) shows how it is possible to 
obtain unbiased estimates but the calculations are more complicated.  

The estimates to be used here are given by the following  

The future values ijP s are calculated from the estimates obtained in the log-space 

ijY  as follows  

a) ijP = exp( ijY  + 0.5 var( ijY ))  

Their standard errors are given by  

b) s.e.( ijP ) = ijP  sqrt(exp(var( ijY )) 1)  

So the first step is to derive the predicted values and their standard errors in log-
space.  

The predicted values in log-space are obtained from the estimates of the parameters 
produced by the regression.  

For example the first future value to be predicted is for accident year 1 development 
year 3 and this is given by  

13Y

 

= a1 + b3 

= 9.591  2.647 
= 6.944  

To obtain the variance of this, and the other estimates, it is necessary to calculate the 
variance-covariance matrix. 
This matrix is given by  

2 Xf (X
TX) 1 Xf

T  

where 2 is the model variance (scalar) and depends on the data  

Xf is the design matrix of the future values and 
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Xf
T is its transpose and  

(XTX) 1 is the model information matrix  

with X the design matrix and XT its transpose.  

In a spreadsheet a small macro can be written to carry out this calculation.  The 
results of each stage of this calculation for the simple example above are to be found 
in Appendix 1.  

Note that changing data values in the original triangle only affects the scalar factor 2 

and so the lengthy matrix calculation only need be done once for a given size model.  

The usual practice therefore is to calculate the matrix product  

Xf (X
TX) 1 Xf

T  

and multiply by the specific data 2 as necessary.  

A library of these matrices could be built up for the models to be used, to cater for 
different sizes of triangles for instance, and stored for future use.  

The design matrix of future values Xf, following the same format as the original 
design matrix, is as follows:       

Future Design Matrix X  

  

i  j  a0  a1  a2  a3  b1  b2  b3 

 

1 
2 
2 
3 
3 
3  

3 
2 
3 
1 
2 
3  

0 
0 
0 
0 
0 
0  

1 
0 
0 
0 
0 
0  

0 
1 
1 
0 
0 
0  

0 
0 
0 
1 
1 
1  

0 
0 
0 
1 
0 
0  

0 
1 
0 
0 
1 
0  

1 
0 
1 
0 
0 
1 
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The matrix  

Xf (X
TX) 1 Xf

T  

in this case is (see Appendix 1)   

1.66667

 

.00000

 

1.33333

 

.00000

 

.00000

 

1.33333

   
.00000

 

1.25000

 

.75000

 

.00000

 

.75000

 

.25000

  
1.33333

 

.75000

 

1.91667

 

.00000

 

.25000

 

1.41667

  
.00000

 

.00000

 

.00000

 

1.66667

 

1.33333

 

1.33333

  
.00000

 

.75000

 

.25000

 

1.33333

 

1.91667

 

1.41667

  
1.33333

 

.25000

 

1.41667

 

1.33333

 

1.41667

 

2.58333

 

The variance-covariance matrix of future values is calculated from the above by just 
multiplying through by the model 2 which in this case is  

.05242 = .002744  

The variance-covariance matrix is then   

.00457

 

.00000

 

.00366

 

.00000

 

.00000

 

.00366

  

.00000

 

.00343

 

.00206

 

.00000

 

.00206

 

.00069

  

.00366

 

.00206

 

.00526

 

.00000

 

.00069

 

.00389

  

.00000

 

.00000

 

.00000

 

.00457

 

.00366

 

.00366

  

.00000

 

.00206

 

.00069

 

.00366

 

.00526

 

.00389

  

.00366

 

.00069

 

.00389

 

.00366

 

.00389

 

.00709

  

Note that these matrices are square and symmetric with each side equal to the number 
of future values to be projected.  The diagonal elements contain the variances of each 
of these values and are in the same order as the future design matrix elements.  

To obtain the variances to be used for projecting future values we will follow 
common practice and add the model variance ( 2) to the variances calculated above.  
These two sources of error are the estimation and statistical errors.  These variances 
recognise that the parameter coefficients are estimates (and subject to error) as well as 
the inherent noise in the process or data.  We do not attempt to correct or estimate any 
specification or selection errors which may well be equally significant contributors to 
a total overall error term.  Our final example gives some indications of how projected 
values can be affected by the choice of model parameters.  For a more detailed 
explanation of these types of error the reader is referred to the paper by Taylor (3).  

The variances for the future values in log-space are the sum of the variance-
covariance matrix values obtained above and the model variance 2.  

So the variance for the first projected value which was estimated above, Y13, is  

1.66667  0.052382 + 0.052382 = .007317 
The following table shows the various values and their variances and standard errors 
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i  j  
ijY

  
Var( ijY )  ijP

  
var( ijP

)  

se( ijP ) 

 
1 
2 
2 
3 
3 
3  

3 
2 
3 
1 
2 
3  

6.94395 
7.89094 
7.04521 
9.26969 
7.93438 
7.08865  

.007317 

.006174 

.008003 

.007317 

.008003 

.009832

  
1041 
2681 
1152 

10650 
2803 
1204

  
7953 

44520 
10662 

833010 
63122 
14328

  
89 

211 
103 
913 
251 
120

  

We note here that the sum of the variances is 973595 which is a value that will be 
used later.  

F. Accident year and overall standard errors  

Calculating the variances or standard errors across accident years and in total requires 
one further step involving the covariances.  The information needed is in the last 
matrix above together with the values calculated for ijP s and their variances.  

The variance of the sum of two values A and B is given by  

Var(A+B) = Var(A) + Var(B) + 2Cov(A,B)  

and this extends to sums of more than two values by including all pairs of 
covariances.  Note that Cov(A,B) = Cov(B,A).  

A justification is given in Renshaw s paper that in the case of log-linear models the 
covariances can be calculated in the original space by the following convenient 
formula  

Cov( ijP  , klP ) = E( ijY ) E( klY ) (exp(Cov( ijY  , klY  ) 1)  

In practice this can be set up fairly easily in the spreadsheet once the individual values 
have been estimated and the variance-covariance matrix computed.  It does 
nevertheless involve a fair amount of computation.  To illustrate the calculation 
consider the standard error for the second accident year.  

Two values are involved 22P  and 23P , which were estimated as 2681 and 1152.  
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Their standard errors obtained above were 211 and 103 respectively.  The covariance, 
in log-space, for these estimates can be found in the variance-covariance matrix and is 
0.00206.  So the covariance in the original space is   

Cov( 22P , 23P ) = 2681  1152 (exp(.00206) 1) 

= 6363  

The required variance of the sum is then given by   

Var( 22P  + 23P  ) = 2112 + 1032 + 2  6363 = 67868  

So the estimated standard error of the total assumed outstanding claims for this year is 
261 or just under 7% of the estimated value of 3833 (2681 + 1152).  

This process can be applied to obtain the standard errors for any combination of 
values, for instance for each accident year or each payment year and more 
interestingly for the overall total reserve estimate.  

The total reserve estimate is the sum of all the projected values and so its variance 
calculation will include all possible combinations of covariances (of pairs) of values 
involved in the calculation.  This, surprisingly, makes the spreadsheet calculation 
easier as there is no need to exclude or select any values.  One simply sums a range.  

The calculations are as in the previous example and can be tabulated fairly easily to 
produce the following matrix of covariances.   

(i,j)  (1,3)  (2,2)  (2,3)  (3,1)  (3,2)  (3,3) 

 

(1,3) 
(2,2) 
(2,3) 
(3,1) 
(3,2) 
(3,3)  

 

0 
4394 

0 
0 

4593  

0 

 

6363 
0 

15481   

2216  

4394 
6363 

 

0 
2216 
5403   

0  
0  
0  

  

109410  

  

47006  

  

0 
15481 
 2216 

109410 

 

13145  

4593

 

2216

 

5403

 

47006

 

13145

 

  

           

Total =  420452

  

Note that the diagonal elements are left blank as the values here should be the 
variances which were estimated previously.  The matrix is symmetric, as is to be 
expected, and so summing the range produces the sum of covariances of all possible 
pairs of values.  This sum of all pairs of covariances is 420452.  

The sum of the variances of the projected values obtained earlier was 973595 and so 
the overall variance, which is the sum of these two values, is 1394047.  

The overall standard error, which is the square root of this value, is therefore 
estimated as 1181 or just 6% of the overall reserve estimate of 19531.  The overall 
error is relatively small in this simple example.  In practice, with real data involving 



 
REGRESSION MODELS BASED ON LOG-INCREMENTAL PAYMENTS     

09/97 D5.15 

more accident and development years, the percentage errors tend to be higher.  The 
table below summarizes the results.  

Project values and their standard errors:       

D e v e l o p m e n t   P e r i o d   

 
Acc Yr    0  1  2  3  Tot Acc Yr 

 

1  Amount 
s error    

    

1041

 

89

  

1041

 

89

  

2  Amount 
s error    

  

268
1

 

211

  

1152

 

103

  

3833

 

261

  

3  Amount 
s error    

10650

 

913

  

280
3

 

251

  

1204

 

120

  

14657

 

1118

          

Overall Total 
Standard Error  

19531

 

1181

   

The chain ladder overall estimate was 19515.  The individual values obtained by the 
two methods are also close but the chain ladder estimates are point estimates whereas 
the regression based estimates are statistical estimates with both a mean and a 
standard error estimate.  

All the usual information that can be produced from the traditional chain ladder can 
be derived from the regression chain ladder including estimates of development 
factors.  The stochastic approach as shown above can produce additional information, 
based on the model assumptions, such as standard errors of parameters and reserve 
estimates, that the traditional approach does not.  The statistical estimates obtained by 
the regression approach also facilitate stability comparisons across companies and 
classes.  

This completes our consideration of the regression chain ladder.  The technique does 
not require that we have a complete triangle of data and can work with almost any 
shape data as long as there are sufficient points from which to obtain estimates of the 
parameters.  

In the next section a log-linear regression model is fitted which is motivated by the 
run-off shape of the data.  This model has fewer parameters as the development 
parameters are subject to some curve fitting.  This is used to project values outside the 
original triangle shape, that is a tail is projected.  The computation approach is 
identical to the above.  The only differences are that there are now more data points to 
be fitted and the design, and future design matrices are different.  
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G. Identifying and fitting a regression model  

1. Preliminary analysis: Identifying the model.  

We will now consider a new data set and attempt to identify and fit an appropriate 
log-linear model to this data.  

The first stage is a visual examination of the data.  As a spreadsheet is being used it is 
very easy to plot the values and look at the resulting line charts rather than attempt to 
visualize these by looking at the data triangles.  

The cumulative claims payments, which are from a UK Motor Non-Comprehensive 
account, are as follows:   

    

Development Year 

   

Acc Yr  0  1  2  3  4  5  6 

   

0 
1 
2 
3 
4 
5 
6  

3511

 

4001

 

4355

 

4295

 

4150

 

5102

 

6283

  

6726

 

7703

 

8287

 

7750

 

7897

 

9650

  

8992

 

9981

 

10233

 

9773

 

10217

  

10704

 

11161

 

11755

 

11093

  

11763

 

12117

 

12993

  

12350

 

12746

  

12690

  

The graph below shows these figures as line charts. 
This is a useful presentation but it is hard to identify from this alone an appropriate 
model to use.  Part of the problem arises from the fact that cumulative payments are 
clearly not independent.  The incremental payments are expected to eventually 
decline but it is not easy to see any pattern or trend from this cumulative plot alone.  
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For these reasons the incremental data are now considered.  

The incremental payments are   

    
Development Year 

   
Acc Yr  0  1  2  3  4  5  6 

   

0 
1 
2 
3 
4 
5 
6  

3511

 

4001

 

4355

 

4295

 

4150

 

5102

 

6283

  

3215

 

3702

 

3932

 

3455

 

3747

 

4548

   

2266

 

2278

 

1946

 

2023

 

2320

  

1712

 

1180

 

1522

 

1320

  

1059

 

956

 

1238

  

587

 

629

  

340

  

Even before these values are plotted a more promising trend can be detected across 
the development direction.  Plotting these values we have: 
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Finally taking logarithms (base e) of these values and plotting as before produces the 
following line chart:  

Looking at the accident year lines the first four or five look fairly bunched together 
and the last two (the last one is only a single point) appear to be at a higher level.  
From development year one the lines look reasonably straight and to have the same 
slope.  These observations indicate that incremental payments from development year 
1 on are decaying exponentially, as their logarithms appear to lie approximately on a 
straight line.  

The first model to be fitted is based on these observations and will assume that each 
accident year has its own parameter or level.  Development year zero will be assumed 
to have its own parameter and in line with the observation above the development 
parameters from d1 on will be assumed to be linearly related or to lie along a straight 
line with some slope to be determined.  

This is a start to the modelling process for this data set.  The model is not expected to 
be the final or best for the data but is being used to illustrate various aspects of the 
modelling process.  Note in particular that the plotted log-incremental data has been 
used to identify an appropriate model to start the process.  

The techniques here can be applied in exactly the same way to more complex 
situations.  As an example a different decay rate can be assumed for each accident 
year if the plot indicates that there is support for such a hypothesis.  The model will 
then be very similar to the one described by Ajne in the second article of this volume. 
 The only difference, apart from the decay rates, is that he fits the first two 
development periods before curve fitting whereas the example here curve fits from 
development one as this appears to be supported by the data.  

The use of spreadsheets with their comprehensive graphics capabilities enables the 
modeller to carry out the initial stages of the data analysis phase very quickly as the 
above charts illustrate.  Graphical presentation can also enhance reserving reports to 
management who may be less actuarially inclined than the writers of such reports. 
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H. Defining the model  

The first model as identified above will now be defined more formally. There is a 
unique level for each accident year and a unique value for the zero development 
period.  The parameters for development periods 1 to 6 are assumed to follow some 
linear relationship (straight line) with the same slope or parameter s.  

Using the terminology developed earlier we have  

Yij = ai + dj + eij  for i, j from 0 to 6  

where d0 = d, dj = s  j for j > 0  

and eij is the error term assumed iid normal with zero mean.  
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Following the previous example, the spreadsheet table and design matrix are as 
shown below.  

Table 1: Regression Table for the Full Parameter Model          

 
design matrix 

  
i  j  Pij  Yij  a0  a1  a2  a3  a4  a5  a6  d

  
s 

 

0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
5 
5 
6  

0 
1 
2 
3 
4 
5 
6 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
0 
1 
2 
3 
0 
1 
2 
0 
1 
0  

351
1 

321
5 

226
6 

171
2 

105
9 

587 
340 
400

1 
370

2 
227

8 
118

0 
956 
629 
435

5 
393

2 
194

6 
152

2 
123

8 
429

5 
345

5 
202

3 
132

0 
415

0  

8.164 
8.076 
7.726 
7.445 
6.965 
6.375 
5.829 
8.294 
8.217 
7.731 
7.073 
6.863 
6.444 
8.379 
8.227 
7.574 
7.328 
7.121 
8.365 
8.148 
7.612 
7.185 
8.331 
8.229 
7.749 
8.537 
8.422 
8.746  

1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0  

0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
0 
0 
0 
0 
0 
0  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
0 
0 
0  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 
1 
0  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1  

1 
0 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
0 
1 
0 
0 
0 
0 
1 
0 
0 
0 
1 
0 
0 
1 
0 
1

  

0 
1 
2 
3 
4 
5 
6 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
0 
1 
2 
3 
0 
1 
2 
0 
1 
0 
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374
7 

232
0 

510
2 

454
8 

623
8

  

The regression output for this model is given below.  For ease of reference two extra 
lines have been inserted in this output.  Firstly the parameter labels are shown above 
the parameter coefficient estimates and secondly the T-Ratios are shown.  

Regression output: 
Constant        0 
Std Err of Y Est     .1139 
R squared(Adj,Raw)  .9762 .9832 
No. of Observations    28 
Degrees of Freedom    19     

a0  a1  a2  a3  a4  a5  a6  d  s 

 

Coefficient(s) 
Std Err of Coef.

 

T-ratios  

8.57
3

.076
113.

3

 

8.574
.072

119.9 

8.665
.069

124.9

 

8.554
.070

121.8 

8.637
.076

113.8

 

8.846
.091
97.6 

9.042
.134
67.6

 

.296

.070
4.2 

.435

.018
23.5

 

The development parameters, d and s are significantly different from zero as their T-
Ratios (parameter estimate divided by its standard error estimate) are  4.2 and 23.5 
respectively which are well outside the usual 95% confidence interval (critical) range 
of 2 to 2.  

The accident year parameters are also all significantly different from zero, as they 
surely have to be with this model's assumptions (all accident year levels are 
significantly above zero), but they do look close to one another.  In order to test 
whether these are distinct it is necessary to redefine the model by dropping the a0 

parameter and replacing it with a constant.  The only change to the design matrix is 
that the first column is now made up of ones.  

The regression output of the redefined model is almost identical:  

Regression Output: 
Constant        0 
Std Err of Y Est     .1139 
R Squared (Adj,Raw) .9762 .9832 
No. Of Observations    28 
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Degrees of Freedom    19     

k  a1  a2  a3  a4  a5  a6  d  s 

 
Coefficient(s) 
Std Err of Coef. 
T-ratios  

8.573
.076

113.3

 
.001
.064

.0

 
.092
.069
1.3

 
.019
.075

.2 

.064

.084
.8

 
.273
.098
2.8

 
.469
.132
3.6

 
.296
.070
4.2

 
.435
.018
23.5

 

The output clearly shows a much better definition of the same model as it identifies 
that the accident years 1,2,3 and 4 parameters are not significantly different from zero 
or, in comparison to the previous definition, significantly different from the zero th 
accident year parameter which has now become the constant level value k.  Based on 
this definition the model parameters for accident years 0,1,2,3 and 4 can be set to zero 
and be effectively estimated by a new common value k.  This new constant of the 
reduced parameter model should now be an average value for the five accident years 
whose individual parameters have been dropped from the model.  

A theoretically more appealing approach for inducing a partition in the accident year 
parameters, based on the multicomparison t-criterion test, can be found in Renshaw 
(2).  

Setting a0 to a4 to zero reduces the model parameters to just the five parameters k, a5, 
a6, d and s which we expect to be significant. 
The design matrix is now simpler as can be seen from Table 2 below.  

Table 2: Regression Table for the Reduced Parameter Model           

  design matrix  

  

i  j  Pij  Yij  k  a
5

  

a6  d

  

s 

 

0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2  

0 
1 
2 
3 
4 
5 
6 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3  

3511 
3215 
2266 
1712 
1059 
587 
340 

4001 
3702 
2278 
1180 
956 
629 

4355 
3932 
1946 
1522  

8.164 
8.076 
7.726 
7.445 
6.965 
6.375 
5.829 
8.294 
8.217 
7.731 
7.073 
6.863 
6.444 
8.379 
8.277 
7.574 
7.328  

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1  

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

 

0

  

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0  

1

 

0

 

0

 

0

 

0

 

0

 

0

 

1

 

0

 

0

 

0

 

0

 

0

 

1

 

0

 

0

 

0

  

0 
1 
2 
3 
4 
5 
6 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
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2 
3 
3 
3 
3 
4 
4 
4 
5 
5 
6 

4 
0 
1 
2 
3 
0 
1 
2 
0 
1 
0 

1238 
4295 
3455 
2023 
1320 
4150 
3747 
2320 
5102 
4548 
6283 

7.121 
8.365 
8.148 
7.612 
7.185 
8.331 
8.229 
7.749 
8.537 
8.422 
8.746 

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 

1

 

1

 

0

 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
1 

0

 
1

 
0

 
0

 
0

 
1

 
0

 
0

 

1

 

0

 

1

 
4 
0 
1 
2 
3 
0 
1 
2 
0 
1 
0 

 

The regression output for this reduced parameter model is  

Regression Output: 
Constant        0 
Std Err of Y Est     .1119 
R Squared(Ajd,Raw) .9770 .9804 
No. of Observations    28 
Degrees of Freedom    23       

k

 

a5

 

a6 d

 

s

   

Coefficient(s) 
Std Err of Coef. 
T-ratio  

8.608
.052

167.1

 

.244

.085
2.9

 

.441

.122
3.6 

.303

.068
4.5 

.440

.017
26.4

 

As expected the constant has now changed as it is an average value for the first five 
accident years.  The other parameters have also changed slightly.  

All the parameters are now significantly different from zero, with t-ratios exceeding 
absolute 2, as expected.  The quality of fit is still good and the number of parameters 
has been reduced from nine to five.  The model looks reasonable enough to warrant 
further investigation.  

The next section considers some basic testing using residual analysis plots of the first 
(all parameter) model and this reduced parameter model.  

Projections from both these models will be calculated and compared after this 
analysis.  

I. Testing the models by residual analysis plots  

The parameter estimates from the regressions can now be used to calculate the model 
estimates, in log-space, which can then be compared with the observed values in log-
space.  It is usual to use standardized residuals, defined as the difference between 
observed and fitted values divided by the model standard error, and considering these 
in graphical form.  Under the IID assumptions used to derive the model estimates 
these residuals should exhibit a fair degree of randomness. 
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Testing now turns to the analysis of these standardized residuals.  In practice these are 
plotted against development, accident and payment year and also against the fitted 
values.  Working in a spreadsheet makes this process very easy as each chart can be 
defined as an X-Y chart with Y the standardized residuals and X the other variable in 
turn.  

Table 3 below shows the actual values, their logarithms and the model fitted values in 
log-space for the full parameter model as defined in Table 1.  The residuals are just 
the differences between the observed and fitted values in log-space and the 
standardized residuals are the residuals divided by the model standard error, which 
was .1139 for this model.  
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Table 3: Residuals Table for the Full Parameter Model.   

Acc 

 
i  

Dev 

 
j  

Pay  
i+j   Pij   Yij   ijY

   
Resid  

Stand 
Resid 

 
0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
5 
5 
6  

0 
1 
2 
3 
4 
5 
6 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
0 
1 
2 
3 
0 
1 
2 
0 
1 
0  

0 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
2 
3 
4 
5 
6 
3 
4 
5 
6 
4 
5 
6 
5 
6 
6  

3511 
3215 
2266 
1712 
1059 

587 
340 

4001 
3702 
2278 
1180 

956 
629 

4355 
3932 
1946 
1522 
1238 
4295 
3455 
2023 
1320 
4150 
3747 
2320 
5102 
4548 
6283

  
8.164 
8.076 
7.726 
7.445 
6.965 
6.375 
5.829 
8.294 
8.217 
7.731 
7.073 
6.863 
6.444 
8.379 
8.277 
7.574 
7.328 
7.121 
8.365 
8.148 
7.612 
7.185 
8.331 
8.229 
7.749 
8.537 
8.422 
8.746

  
8.277 
8.138 
7.703 
7.268 
6.833 
6.398 
5.963 
8.278 
8.139 
7.704 
7.269 
6.834 
6.399 
8.369 
8.230 
7.795 
7.360 
6.925 
8.258 
8.119 
7.684 
7.249 
8.340 
8.202 
7.767 
8.549 
8.411 
8.746

  
.113 
.062 
.023 
.177 
.132 
.023 
.134 
.017 
.078 
.027 
.196 
.029 
.045 
.010 
.047 
.221 
.032 
.196 
.107 
.028 
.072 
.064 
.010 
.027 
.017 
.012 
.012 
.000

  
.991 
.547 
.201 

1.557 
1.159 
.202 

1.177 
.147 
.683 
.239 

1.717 
.253 
.396 
.091 
.412 

1.943 
.283 

1.722 
.942 
.249 
.631 
.560 
.084 
.237 
.153 
.104 
.104 
.000

  

To produce the residual plots in X-Y chart form the standardized residuals column is 
defined as the Y-variate and the first three columns in turn as the X-variate for the 
accident year, development year and payment year plots.  For the final plot the fitted 
values column is picked instead.  

The various residual plots from this model are shown below in Charts 4 to 7. 
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The residuals for the Reduced Parameter Model, which is defined in Table 2 
(common level value for the first five accident years), are shown in Table 4 below.  

Table 4: Residuals Table for the Reduced Parameter Model.   

Acc 

 

i  
Dev 

 

j  
Pay  
i+j   Pij   Yij   ijY

   

Resid  
Stand 
Resid 

 

0 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
3 
3 
3 
3 
4 
4 
4 
5 
5 
6  

0 
1 
2 
3 
4 
5 
6 
0 
1 
2 
3 
4 
5 
0 
1 
2 
3 
4 
0 
1 
2 
3 
0 
1 
2 
0 
1 
0  

0 
1 
2 
3 
4 
5 
6 
1 
2 
3 
4 
5 
6 
2 
3 
4 
5 
6 
3 
4 
5 
6 
4 
5 
6 
5 
6 
6  

3511 
3215 
2266 
1712 
1059 

587 
340 

4001 
3702 
2278 
1180 

956 
629 

4355 
3932 
1946 
1522 
1238 
4295 
3455 
2023 
1320 
4150 
3747 
2320 
5102 
4548 
6283

  

8.164 
8.076 
7.726 
7.445 
6.965 
6.375 
5.829 
8.294 
8.217 
7.731 
7.073 
6.863 
6.444 
8.379 
8.277 
7.574 
7.328 
7.121 
8.365 
8.148 
7.612 
7.185 
8.331 
8.229 
7.749 
8.537 
8.422 
8.746

  

8.304 
8.168 
7.729 
7.289 
6.849 
6.410 
5.970 
8.304 
8.168 
7.729 
7.289 
6.849 
6.410 
8.304 
8.168 
7.729 
7.289 
6.849 
8.304 
8.168 
7.729 
7.289 
8.304 
8.168 
7.729 
8.548 
8.412 
8.746

  

.141 

.093 

.003 

.156 

.116 

.035 

.141 

.010 

.048 

.002 

.216 

.013 

.035 

.075 

.109 

.155 

.039 

.272 

.061 

.021 

.116 

.104 

.026 

.060 

.021 

.011 

.011 

.000

  

1.259 
.828 
.025 

1.398 
1.035 

.309 
1.260 

.091 

.432 

.022 
1.927 

.121 

.309 

.667 

.971 
1.386 

.347 
2.431 

.543 

.185 
1.039 

.925 

.236 

.540 

.185 

.095 

.095 

.000
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The various residual plots from this model are shown below in Charts 8 to 11.  

This reduced parameter model has a standardized residual for accident year 2, 
development period 4, of 2.431 as the maximum (absolute) standardized residual 
value.  The full parameter model had a lowest standardized residual of 1.943 (i=2, 
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j=2).  The second model has a slightly smaller standard error of .1119 compared to 
the .1139 of the full parameter model.  There is however little difference overall 
between these models detectable from the above tables.  Both seem to fit the data 
fairly well.  

The next stage is to consider these residuals in graphic form to examine whether any 
unmodelled trends are detectable.  

In all these residual plots, according to the model error assumptions, we expect a set 
of fairly random points bounded in about 95% of cases within the 2 to 2 range.  

As Table 3 and Table 4 above indicate, all the standardized residuals for the full 
parameter model are just in this range (Table 3) with just one value outside the range 
in the case of the reduced parameter model (Table 4).  Values outside this range will 
sometimes occur and often identify outliers that may warrant further investigation.  

The development year plots (Charts 4 and 8) will generally be the most interesting 
and particularly where, as in these cases, it has been assumed that there is some 
relationship connecting the development parameters.  A particular feature worth 
looking out for in these plots is any tendency for the residuals to spread or fan out 
with development.  This is not too noticeable in these examples.  Note however that 
the residuals for development periods 4 to 6 in both cases do not appear very random. 
 There are however only a few values involved and these may well be impacted by the 
outlier identified earlier (i=2, j=4).  We have used a very simple shape to describe the 
run-off from development period 1 and these residual plots are quite reasonable in the 
circumstances.  

The accident year residual plots are shown in Chart 5 for the full parameter model and 
in Chart 9 for the reduced model.  Considering the former first, as each accident year 
has its own parameter in this model, the plot should be boringly predictable with the 
residuals balanced about the zero horizontal.  Chart 5 shows this quite clearly.  

The reduced model accident year residuals, Chart 9, look very similar although here 
the first five accident years have effectively been fitted by a single parameter.  The 
only visible differences are the accident 4 residuals which are all greater than zero.  In 
a fuller analysis this parameter should be added back to the reduced model and tested 
for significance.  It is possible that it may become more significant if measured 
against the average for accident years 0 to 3 although this turns out not to be the case 
in this instance.  

In both cases the accident year residuals appear to get closer to the zero horizontal 
line, with increasing accident year, resulting in the left half of both charts diverging 
from this line.  This is due, at least in part, to over-parameterisation.  In the extreme 
right, for example, as only one point is fitted and with its own parameter a perfect fit 
is obtained and the residual has to be zero.  For accident year 5 two points are fitted 
and so the accident year parameter is again effective in ensuring a close fit.  The 
values in these late accident years are also relatively large, as they are from earlier 
development periods when payments tend to be higher, and they may be relatively 
more stable.  This is considered later.  
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The payment year residuals (Charts 6 and 10) can be interesting but more difficult to 
interpret.  Inflationary forces are expected to operate along this direction but as 
accident year levels have been assumed independent this may mask any such 
influences.  The plots for both models look very similar, which is not very surprising, 
as neither model considers this direction in its definition.  Both these charts appear to 
show a definite non-random shape for the early payment years and this would warrant 
further investigation.  Changes in claims inflation rates during the period concerned, 
which are not incorporated in the model, may well be the cause.  This is not pursued 
here.  The regression analysis at least identifies areas that would warrant further 
investigation in practice.  

It was indicated earlier that higher values, generally in earlier development periods, 
may be relatively more stable than later, generally lower, values.  This can be tested 
by plotting residuals against fitted values as is shown in Charts 7 and 11.  In both 
these charts the last few residuals on the extreme right look close to the horizontal 
zero line but these points are the same points identified earlier as the last two or three 
accident year values.  The residuals show a tendency to increase (in absolute terms) as 
values decrease.  This effect, generally known as heteroscedasticity, is also detectable 
from the development year plots as incremental payments eventually decrease with 
development.  No attempt is made here to overcome any heteroscedasticity.  

The error term normality assumption can also be tested more formally within the 
spreadsheet if required.  It is possible for instance to use the Data Distribution 
command to calculate and tabulate a frequency distribution of the residuals and 
compare values in this table with preset values calculated from the standard normal 
distribution.  

The residual analysis indicates that these models have some weakness along the 
payment year direction and there are sufficient reasons to doubt some of the model 
assumptions.  A full analysis would follow these up.  In particular some inflation 
adjustment should be made to the data and the modelling process repeated to see 
whether this adjustment removes the non-random look of these residuals along the 
payment year direction.  However for the time being it will be assumed that both 
these models are satisfactory and the regression results will be used in the next 
section to project the future payments and their standard errors from these two 
models.  

A later section will consider a model with inflation and claim volume adjustment to 
see if a better model can be found.  

J. Using the models to project future payments and standard errors  

When the basic chain ladder model with independent development parameters is fitted 
it is not possible to extend the projections beyond the latest development contained in 
the triangle without resorting to some form of external curve fitting of development 
factors such as the Sherman inverse power curve for example.  

In these examples as a curve (straight line) has been fitted to the development 
parameters it is possible to extend the model projections to development periods 
beyond those contained in the data triangle. 
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The model has a natural stop as the payments are decaying exponentially and so 
become small relatively quickly.  So we could simply sum the implied geometric 
series or take the values to some development period beyond which we would expect 
no more payments in practice.  

In what follows it is assumed that there are no payments beyond development 12, as 
this is sufficient for purposes of illustration and cuts down the values to be projected.  
In practice this will need to be decided on the merits of each case and knowledge of 
the likely run-off period of the particular class being investigated.  

The data triangle contained 28 values and our completed rectangle has a total of 91 
data points (7 13).  There are therefore 63 individual payments and their standard 
errors to calculate.  

The design and future design matrices are first produced and these are used to 
produce the variance-covariance matrix of the future values.  This is now a 63  63 
matrix and should be within the capability of a reasonable spreadsheet.  Both Lotus 
123 Version 2.2 and SuperCalc5 Version 5.0 can handle square matrices of around 89 

 89.  

For producing the future values and their associated (individual) standard errors only 
the diagonal elements of this matrix are needed.  The calculations from here are fairly 
simple and are shown in the Tables 5 and 7 below.  These tables are set in the way 
one would normally produce them in a spreadsheet.  The values are arranged by 
accident year first, as this is how the future design matrix was set out.  The accident 
year order was adopted here as this order facilitates the computation of the accident 
year standard errors.  

The second table in each set (Tables 6 and 8) show the projected values and standard 
errors in a more traditional format and also include accident year and overall totals for 
both values and standard errors.  These calculations are also set out in the spreadsheet 
as explained in Section F.  In view of the size of the matrices involved they have not 
been shown here.  

The various matrix products needed to calculate the variance-covariance matrix (as 
set out in Appendix 1 for the earlier chain ladder example) took under two minutes on 
a 12MHz PC fitted with a maths co-processor.  
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Table 5: Projection for the Full Parameter Model: Part a   

i  j  
ijY

  
var ijY

  
ijP

  
se ijP

  
% error 

 
0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5 
5 
5 
5  

7

 
8

 
9

 

10

 

11

 

12

 

6

 

7

 

8

 

9

 

10

 

11

 

12

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 

12

 

4

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 

12

 

3

 

4

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 

12

 

2

 

3

 

4

 

5

 

6

  
5.528

 
5.093

 
4.658

 

4.223

 

3.788

 

3.353

 

5.964

 

5.529

 

5.094

 

4.659

 

4.224

 

3.789

 

3.354

 

6.490

 

6.055

 

5.620

 

5.185

 

4.750

 

4.315

 

3.880

 

3.445

 

6.814

 

6.379

 

5.944

 

5.509

 

5.074

 

4.639

 

4.205

 

3.770

 

3.335

 

7.332

 

6.897

 

6.462

 

6.027

 

5.592

 

5.157

 

4.722

 

4.287

 

3.852

 

3.417

 

7.976

 

7.541

 

7.106

 

6.671

 

6.236

  
.0195

 
.0223

 
.0258

 

.0301

 

.0350

 

.0405

 

.0185

 

.0210

 

.0241

 

.0280

 

.0325

 

.0377

 

.0436

 

.0179

 

.0199

 

.0227

 

.0261

 

.0302

 

.0350

 

.0405

 

.0467

 

.0177

 

.0193

 

.0216

 

.0246

 

.0283

 

.0327

 

.0378

 

.0435

 

.0499

 

.0181

 

.0193

 

.0212

 

.0237

 

.0269

 

.0308

 

.0354

 

.0407

 

.0466

 

.0532

 

.0202

 

.0208

 

.0220

 

.0240

 

.0266

  
254

 
165

 
107

 

69

 

45

 

29

 

393

 

255

 

165

 

107

 

69

 

45

 

29

 

664

 

431

 

279

 

181

 

117

 

76

 

49

 

32

 

919

 

595

 

386

 

250

 

162

 

105

 

68

 

44

 

29

 

1542

 

999

 

647

 

419

 

272

 

176

 

114

 

74

 

48

 

31

 

2939

 

1903

 

1232

 

798

 

518

  
36

 
25

 
17

 

12

 

8

 

6

 

54

 

37

 

26

 

18

 

13

 

9

 

6

 

89

 

61

 

42

 

29

 

21

 

14

 

10

 

7

 

123

 

83

 

57

 

39

 

27

 

19

 

13

 

9

 

7

 

209

 

139

 

95

 

65

 

45

 

31

 

22

 

15

 

11

 

7

 

420

 

276

 

184

 

124

 

85

  
14.0%

 
15.0%

 
16.2%

 

17.5%

 

18.9%

 

20.3%

 

13.7%

 

14.6%

 

15.6%

 

16.8%

 

18.2%

 

19.6%

 

21.1%

 

13.4%

 

14.2%

 

15.2%

 

16.3%

 

17.5%

 

18.9%

 

20.3%

 

21.9%

 

13.3%

 

14.0%

 

14.8%

 

15.8%

 

17.0%

 

18.2%

 

19.6%

 

21.1%

 

22.6%

 

13.5%

 

14.0%

 

14.6%

 

15.5%

 

16.5%

 

17.7%

 

19.0%

 

20.4%

 

21.8%

 

23.4%

 

14.3%

 

14.5%

 

14.9%

 

15.6%

 

16.4%
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5 
5 
5 
5 
5 
5 

7

 
8

 
9

 
10

 
11

 
12

 
5.801

 
5.366

 
4.931

 
4.496

 
4.061

 
3.626

 
.0298

 
.0338

 
.0385

 
.0438

 
.0498

 
.0565

 
336

 
218

 
141

 
92

 
59

 
39

 
58

 
40

 
28

 
19

 
13

 
9

 
17.4%

 
18.5%

 
19.8%

 
21.2%

 
22.6%

 
24.1%
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Table 5: Projection for the Full Parameter Model: Part b   

i  j  
ijY

  
var ijY

  
ijP

  
se ijP

  
% error 

 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6  

1

 
2

 
3

 

4

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 

12

  
8.607

 
8.172

 
7.737

 

7.302

 

6.867

 

6.432 

 

5.997

 

5.562

 

5.127

 

4.692

 

4.257

 

3.822

  
.0296 

 
.0290

 
.0290

 

.0298

 

.0313

 

.0334

 

.0362

 

.0397

 

.0439

 

.0487

 

.0543

 

.0605

  
5550

 
3592

 
2325

 

1506

 

975

 

632

 

410

 

266

 

172

 

112

 

73

 

47

  
962

 
616

 
399

 

262

 

174

 

116

 

79

 

53

 

36

 

25

 

17

 

12

  
17.3% 

 
17.1%

 
17.2%

 

17.4%

 

17.8%

 

18.4%

 

19.2%

 

20.1%

 

21.2%

 

22.4%

 

23.6%

 

25.0%

                

TOTAL = 34377  

Table 6: Projected values and Standard Errors.  

Full Parameter Model.      

D e v e l o p m e n t   Y e a r   

 

Yr 

    

1

  

2

  

3

  

4

  

5

  

6

  

7

  

8

  

9

  

10

  

11

  

12

  

Total

  

0     

        

£ 
se  

            

254

 

36

  

165

 

25

  

107

 

17

  

69

 

12

  

45

 

8

  

29

 

6

  

669

 

79

  

1  £ 
se  

          

393

 

54

  

255

 

37

  

165

 

26

  

107

 

18

  

69

 

13

  

45

 

9

  

29

 

6

  

1063

 

119

  

2  £ 
se  

        

664

 

89

  

431

 

61

  

279

 

42

  

181

 

29

  

117

 

21

  

76

 

14

  

49

 

10

  

32

 

7

  

1830

 

196

  

3   £ 
se  

      

919

 

123

  

595

 

83

  

386

 

57

  

250

 

39

  

162

 

27

  

105

 

19

  

68

 

13

  

44

 

9

  

29

 

7

  

2559

 

265

  

4  £ 
se  

    

1542

 

209

  

999

 

139

  

647

 

95

  

419

 

65

  

272

 

45

  

176

 

31

  

114

 

22

  

74

 

15

  

48

 

11

  

31

 

7

  

4324

 

443

  

5  £ 
se  

  

2939

 

420

  

1903

 

276

  

1232

 

184

  

798

 

124

  

518

 

85

  

336

 

58

  

218

 

40

  

141

 

28

  

92

 

19

  

59

 

13

  

39

 

9

  

8274

 

890

  

6  £ 
se  

5550

 

962

  

3592

 

616

  

2325

 

399

  

1506

 

262

  

975

 

174

  

632

 

116

  

410

 

79

  

266

 

53

  

172

 

36

  

112

 

25

  

73

 

17

  

47

 

12

  

15659

 

2158

                        

Overall Total 34377 
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Standard Error 2742 
Percent. Error 7.98 

 
Table 7: Projection for the Reduced Parameter Model: Part a   

i  j  
ijY

  
var ijY

  
ijP

  
se ijP

  
% error 

 

0 
0 
0 
0 
0 
0 
1 
1 
1 
1 
1 
1 
1 
2 
2 
2 
2 
2 
2 
2 
2 
3 
3 
3 
3 
3 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
5  

7

 

8

 

9

 

10

 

11

 

12

 

6

 

7

 

8

 

9

 

10

 

11

 

12

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 

12

 

4

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 

12

 

3

 

4

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 

12

 

2

 

3

  

5.530

 

5.091

 

4.651

 

4.211

 

3.772

 

3.332

 

5.970

 

5.530

 

5.091

 

4.651

 

4.211

 

3.772

 

3.332

 

6.410

 

5.970

 

5.530

 

5.091

 

4.651

 

4.211

 

3.772

 

3.332

 

6.849

 

6.410

 

5.970

 

5.530

 

5.091

 

4.651

 

4.211

 

3.772

 

3.332

 

7.289

 

6.849

 

6.410

 

6.970

 

5.530

 

5.091

 

4.651

 

4.211

 

3.772

 

3.332

 

7.972

 

7.532

  

.0182

 

.0209

 

.0241

 

.0279

 

.0322

 

.0371

 

.0161

 

.0182

 

.0209

 

.0241

 

.0279

 

.0322

 

.0371

 

.0146

 

.0161

 

.0182

 

.0209

 

.0241

 

.0279

 

.0322

 

.0371

 

.0136

 

.0146

 

.0161

 

.0182

 

.0209

 

.0241

 

.0279

 

.0322

 

.0371

 

.0132

 

.0136

 

.0146

 

.0161

 

.0182 

 

.0209

 

.0241

 

.0279

 

.0322

 

.0371

 

.0195

 

.0199

  

255

 

164

 

106

 

68

 

44

 

29

 

395

 

255

 

164

 

106

 

68

 

44

 

29

 

612

 

395

 

255

 

164

 

106

 

68

 

44

 

29

 

950

 

612

 

395

 

255

 

164

 

106

 

68

 

44

 

29

 

1474

 

950

 

612

 

395

 

255

 

164

 

106

 

68

 

44

 

29

 

2927

 

1886

  

35

 

24

 

17

 

11

 

8

 

6

 

50

 

35

 

24

 

17

 

11

 

8

 

6

 

74

 

50

 

35

 

24

 

17

 

11

 

8

 

6

 

111

 

74

 

50

 

35

 

24

 

17

 

11

 

8

 

6

 

170

 

111

 

74

 

50

 

35

 

24

 

17

 

11

 

8

 

6

 

411

 

267

  

13.6% 

 

14.5%

 

15.6%

 

16.8%

 

18.1%

 

19.4%

 

12.8%

 

13.6%

 

14.5%

 

15.6%

 

16.8%

 

18.1%

 

19.4%

 

12.1%

 

12.8%

 

13.6%

 

14.5%

 

15.6%

 

16.8%

 

18.1%

 

19.4%

 

11.7%

 

12.1%

 

12.8%

 

13.6%

 

14.5%

 

15.6%

 

16.8%

 

18.1%

 

19.4%

 

11.5%

 

11.7%

 

12.1%

 

12.8%

 

13.6%

 

14.5%

 

15.6%

 

16.8%

 

18.1%

 

19.4%

 

14.0%

 

14.2%
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5 
5 
5 
5 
5 
5 
5 
5 
5 

4

 
5

 
6

 
7

 
8

 
9

 
10

 
11

 

12

 
7.093

 
6.653

 
6.213

 
5.774

 
5.334

 
4.894

 
4.455

 
4.015

 

3.575

 
.0208

 
.0224

 
.0244

 
.0270

 
.0302

 
.0340

 
.0382

 
.0431

 

.0485

 
1216

 
784

 
506

 
326

 
210

 
136

 
88

 
57

 

37

 
176

 
118

 
79

 
54

 
37

 
25

 
17

 
12

 

8

 
14.5%

 
15.0%

 
15.7%

 
16.6%

 
17.5%

 
18.6%

 
19.7%

 
21.0%

 

22.3%
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Table 7: Projection for the Reduced Parameter Model: Part b   

i  j  
ijY

  
var ijY

  
ijP

  
se ijP

  
% error 

 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6 
6  

1

 
2

 
3

 

4

 

5

 

6

 

7

 

8

 

9

 

10

 

11

 

12

  
8.609

 
8.170

 
7.730

 

7.290

 

6.851

 

6.411 

 

5.971

 

5.532

 

5.092

 

4.652

 

4.213

 

3.773

  
.0285 

 
.0279

 
.0279

 

.0284

 

.0295

 

.0311

 

.0333

 

.0361

 

.0394

 

.0432

 

.0476

 

.0526

  
5562

 
3582

 
2308

 

1487

 

959

 

618

 

399

 

257

 

166

 

107

 

69

 

45

  
946

 
603

 
388

 

252

 

166

 

110

 

73

 

49

 

33

 

23

 

15

 

10

  
17.0% 

 
16.8%

 
16.8%

 

17.0%

 

17.3%

 

17.8%

 

18.4%

 

19.2%

 

20.0%

 

21.0%

 

22.1%

 

23.2%

                

TOTAL = 33847  

Table 8: Projected values and Standard Errors  

Reduced Parameter Model.      

D e v e l o p m e n t   Y e a r   

 

Yr 

    

1

  

2

  

3

  

4

  

5

  

6

  

7

  

8

  

9

  

10

  

11

  

12

  

Total

  

0     

        

£ 
se  

            

255

 

35

  

164

 

24

  

106

 

17

  

68

 

11

  

44

 

8

  

29

 

6

  

666

 

75

  

1  £ 
se  

          

395

 

50

  

255

 

35

  

164

 

24

  

106

 

17

  

68

 

11

  

44

 

8

  

29

 

6

  

1060

 

106

  

2  £ 
se  

        

612

 

74

  

395

 

50

  

255

 

35

  

164

 

24

  

106

 

17

  

68

 

11

  

44

 

8

  

29

 

6

  

1672

 

146

  

3   £ 
se  

      

950

 

111

  

612

 

74

  

395

 

50

  

255

 

35

  

164

 

24

  

106

 

17

  

68

 

11

  

44

 

8

  

29

 

6

  

2622

 

200

  

4  £ 
se  

    

1474

 

170

  

950

 

111

  

612

 

74

  

395

 

50

  

255

 

35

  

164

 

24

  

106

 

17

  

68

 

11

  

44

 

8

  

29

 

6

  

4096

 

275

  

5  £ 
se  

  

2927

 

411

  

1886

 

267

  

1216

 

176

  

784

 

118

  

506

 

79

  

326

 

54

  

210

 

37

  

136

 

25

  

88

 

17

  

57

 

12

  

37

 

8

  

8173

 

851

  

6  £ 
se  

5562

 

946

  

3582

 

603

  

2308

 

388

  

1487

 

252

  

959

 

166

  

618

 

110

  

399

 

73

  

257

 

49

  

166

 

33

  

107

 

23

  

69

 

15

  

45

 

10

  

15558

 

2101

                        

Overall Total 33847 
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Standard Error  2545 
Percent. Error  7.52 

 
K. Overall standard error and accident year standard errors  

The calculations necessary to produce the accident year and overall standard errors 
shown in Tables 6 and 8 above are a repeat of those shown in Section G.  The only 
complication is that in the above cases there are more values to project (63 rather than 
6) so there is a lot more to calculate.  

The results are very close.  The full model produces estimated future payments of 
34377 with a standard error of 2742 or 7.98%.  The reduced parameter model 
produces estimated future payments of 33847 with a standard error of 2545 or 7.52%. 
 The two estimated values are not significantly different but the second model has a 
proportionately smaller standard error.  This is purely due to the smaller number of 
parameters used in defining this model.  The second model may therefore be 
considered to have the slight advantage over the first.  

The closeness of these results is not particularly surprising as the two models are very 
similar.  Most of the future payments relate to the last two accident years and here 
both models have assumed these years to have independent levels (just like the chain 
ladder model) and so any smoothing from the reduced parameter model affects only 
the earliest accident years where the projected future payment values are not so large.  

In fact assumptions about the most recent accident years are crucial to any reserve 
analysis.  The base data used in this example is unadjusted for inflation and claim 
volume and the levels for the various accident years are not normally expected to be 
as close as those of the first five accident years above.  

The next section will consider modelling the inflation and volume adjusted data.  

L. Adjusting for inflation and claim volumes  

It is possible to reduce the model parameters further by using an inflation index to 
bring all payments to current value and a claims volume adjustment or weight for 
each accident year so as to normalize these payments.  

The claim volume values to be used in this example are based on the number of 
claims reported by the end of the first development period.  They are scaled for 
convenience.     

Accident Year  0  1  2  3  4  5  6 

   

Claim Volume   1.43  1.45  1.52  1.35  1.29  1.47  1.91 

An earnings index for the relavant period will be used in this case to bring payment 
values to payment year 6 (the latest payment year) values.  In practice case is needed 
to ensure that the index used is the most appropriate index for the class of claims 
under investigation. 
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Payment year  0  1  2  3  4  5  6 

   
Index  1.55  1.41  1.30  1.23  1.13  1.05  1 

 
The inflation adjusted, volume normalized incremental payments (shown in integer 
format but calculated and used to many decimal places) are now as follows:   

    

Development Year 

   

Acc Yr

  

0

  

1

  

2

  

3

  

4

  

5

  

6

    

0 
1 
2 
3 
4 
5 
6  

3806

 

3891

 

3725

 

3913

 

3635

 

3644

 

3290

  

3170

 

3319

 

3182

 

2892

 

3050

 

3094

   

2060

 

1932

 

1447

 

1573

 

1798

  

1473

 

920

 

1051

 

978

  

837

 

692

 

814

  

431

 

434

  

238

  

Even before any further analysis is carried out it is clear from this triangle that there is 
a fair amount of consistency and stability in the adjusted data.  

Plotting the log-incremental adjusted data, as can be seen from Chart 12 below, 

appears to confirm this observation.  The various lines, each representing an accident 
year, look closely grouped together for at least the first couple of development 
periods. 
The chart indicates that accident year effects may have been reduced or eliminated 
and the first test will be to confirm whether this is the case.  As the shape of these 
lines is as before the same assumptions will be made in modelling the shape.  

The design matrix is initially exactly as in the previous example which assumed 
accident years 1 to 6 as independent variates and had an independent first 
development level (d) and then a linear trend with common slope s. 
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The regression output using the adjusted values and including the extra two lines as 
before is:  

Regression Output: Full Parameter Model. 
Constant        0  
Std Err of Y Est     .1153 
R Squared(Adj,Raw) 0.9788 .9851 
No. of Observations    28 
Degrees of Freedom    19       

k  a1  a2  a3  a4  a5  a6  d  s 

       

Coefficient(s) 
Std Err of Coef. 
T-Ratios  

8.627 
.077 
112.6  

.087 
.065 

1.3  

.114 
.070 

1.6  

.175 
.076 

2.3  

.120 
.085 

1.4  

.110 
.099 

1.1  

.237 
.133 

1.8  

.292 
.071 

4.1  

.505

 

.019 
27.0

 

Accident year 3 turns out to be the only one whose parameter has a T-ratio whose 
absolute value exceeds 2 and may be considered significant.  

So the next stage is to eliminate all the accident years with T-Ratios less than absolute 
2 and refit.  There are now four parameters namely  

k a3 d and s  

The regression output of this model is:  

Regression Output: 
Constant        0 
Std Err of Y Est     .1157 
R Squared(Adj,Raw) .9787 .9810 
No. Of Observations  28 
Degrees of Freedom  24       

k  a3  d  s 

       

Coefficient(s) 
Std Err of Coef. 
T-Ratios  

8.523 
.054 
157.2  

.088 
.063 

1.4  

.296 
.068 

4.3  

.493 
.017 
28.7 

The parameters of this model can still be reduced as the accident year three parameter 
is now not significant.  What has happened is that it is now being measured against 
the average of all the other accident year levels rather than just the first accident 
year level and this has been sufficient to make this last accident year parameter close 
enough to the average value.  Care needs to be taken to ensure that none of the other 
parameters have become significant in the new model.  

So this remaining accident year parameter will be dropped, leaving only three 
parameters, one for the common level k, and the two shape parameters d and s. 
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The regression output of this three parameter model is:  

Regression Output: 
Constant        0 
Std Err of Y Est     .1179 
R Squared(Adj,Raw) .9779 .9795 
No. Of Observations    28 
Degrees of Freedom    25        

k  d  s 

       

Coefficient(s) 
Std Err of Coef. 
T-Ratios  

8.501 
.053 

161.3  

.286 
.069 

4.1  

.489 
.017 
28.3 

This is an interesting stage.  There are now only three parameters and all are 
significant.  The model has a high R-squared value and appears to describe the data 
reasonably well.  It is now tempting to use this model to project future payments.  

The process is as before with the minor irritation of scaling the estimated values for 
claim volumes and using some future inflation index to take the projected payments to 
final values.  The inflation rate to be used here is 7.5% p.a. which is chosen as it is 
close to the average annual historic rate implied by the index used to adjust the 
historic payments and will facilitate the comparison of the results.  In practice a more 
appropriate prospective rate or rates will normally be utilized and a number of these 
used to obtain estimates.  

Table 10 below shows the results derived from the full parameter model and inflation 
at 7.5% p.a.  
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Table 10: Projected values and Standard Errors.  

Full Parameter Model with inflation at 7.5%       

D e v e l o p m e n t   Y e a r   

 
Yr 

    
1

  
2

  
3

  
4

  
5

  
6

  
7

  
8

  
9

  
10

  
11

  
12

  
Total

  

0     

        

£ 
se    

          

253

 

36

  

164

 

25

  

107

 

18

  

70

 

12

  

45

 

9

  

29

 

6

  

669

 

80

  

1  £ 
se    

        

389

 

54

  

253

 

37

  

164

 

26

  

107

 

18

  

70

 

13

  

45

 

9

  

29

 

6

  

1058

 

120

  

2  £ 
se    

      

658

 

89

  

427

 

61

  

278

 

43

  

181

 

30

  

117

 

21

  

76

 

15

  

50

 

10

  

32

 

7

  

1820

 

198

  

3   £ 
se    

    

911

 

123

  

592

 

84

  

384

 

58

  

250

 

40

  

162

 

28

  

106

 

19

  

69

 

14

  

45

 

10

  

29

 

7

  

2547

 

267

  

4  £ 
se    

  

1524

 

209

  

990

 

140

  

643

 

95

  

418

 

65

  

271

 

45

  

177

 

32

  

115

 

22

  

75

 

15

  

49

 

11

  

32

 

7

  

4292

 

445

  

5  £ 
se    

2910

 

421

  

1889

 

277

  

1226

 

185

  

797

 

126

  

518

 

86

  

336

 

59

  

219

 

41

  

142

 

29

  

93 
20

  

60

 

14

  

39

 

10

  

8229

 

896

  

6  £ 
se  

5544

 

972

  

3596

 

624

  

2334

 

406

  

1515

 

267

  

984

 

177

  

639

 

119

  

415

 

81

  

270

 

55

  

176

 

38

  

114

 

26

  

74

 

18

  

48

 

12

  

15709

 

2191

                        

Overall Total 34324 
Standard Error 2779 
Percent. Error 8.10 

  

The results are very close to those obtained earlier (Table 6) from the almost identical 
model without explicit inflation assumptions.  

Increasing the inflation rate to 8.5% p.a. increases the overall estimate to 35210 with 
a standard error of 2858.  So the one percentage change in the assumed future 
inflation rate impacts the estimated future payments by 2.6%.  

Turning now to the reduced parameter model, that is the three parameter model with 
no accident year effects apart from the common level we obtain the following results 
assuming future inflation at 7.5% p.a. 
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Table 11: Projected values and Standard Errors.  

Reduced Parameter Model with inflation at 7.5%.       

D e v e l o p m e n t   Y e a r   

 
Yr 

    
1

  
2

  
3

  
4

  
5

  
6

  
7

  
8

  
9

  
10

  
11

  
12

  
Total

  

0     

        

£ 
se  

            

249

 

36

  

165

 

25

  

109

 

18

  

72

 

13 

 

47

 

9

  

31

 

6

  

673

 

79

  

1  £ 
se  

          

412

 

55

  

272

 

39

  

179

 

27

  

118

 

19

  

78

 

14

  

52

 

10

  

34

 

7

  

1145

 

120

  

2  £ 
se  

        

703

 

90

  

464

 

62

  

306

 

44

  

202

 

31

  

134

 

22

  

88

 

16

  

58

 

11

  

39

 

8

  

1994

 

184

  

3   £ 
se  

      

1018

 

1125

  

671

 

86

  

443

 

59

  

292

 

42

  

193

 

29

  

127

 

21

  

84 
15

  

56

 

11

  

37

 

7

  

2921

 

235

  

4  £ 
se  

    

1585

 

192

  

1045

 

129

  

690

 

88

  

455

 

61

  

300

 

43

  

198

 

30

  

131

 

21

  

87

 

15

  

57

 

11

  

38

 

8

  

4586

 

323

  

5  £ 
se  

  

2945

 

358

  

1942

 

235

  

1280

 

158

  

845

 

108

  

557

 

75

  

368

 

52

  

243

 

37

  

160

 

26

  

106

 

19

  

70

 

13

  

46

 

9

  

8563

 

541

  

6  £ 
se  

6241

 

777

  

4114

 

500

  

2712

 

329

  

1788

 

220

  

1180

 

151

  

778

 

105

  

514

 

73

  

339

 

52

  

224

 

37

  

148

 

26

  

98

 

19

  

65

 

13

  

18201

 

1090

                        

Overall Total 38083 
Standard Error 1725 
Percent. Error 4.53 

  

The results now look, and are, different.  The overall estimate is significantly up on 
the previous estimates and the standard error is much reduced.  The reduction in the 
overall standard error is due to the smaller number of parameters left in the reduced 
model and reflects the increased degree of smoothing that this parameter reduction 
has produced.  

The increase in the overall projection, at just under 11%, is however too high to be 
explained by the derived standard errors.  The main contributor can be clearly 
identified from the tables as the last accident year.  This is not too surprising with 
hindsight.  There is only a single data point from which to project.  If it is assumed, as 
in the first case, that each year has an independent level then this point alone 
determines the level of the last accident year.  The accident year residual plot for the 
latter model (Chart 14) shows the standardized residual for accident year 6 at around 

1.  Although this will not generally be considered statistically significant its impact, 
in a reserving context, has become significant.  
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Assuming a common level (in the adjusted figures) substantially reduces the influence 
of this last data point on its accident year estimate of future payments.  As the 
adjusted triangle figures show, the one and only value for this last accident year is 
substantially below the corresponding values of the prior years.  Using the same 
average value for all accident years gives the last accident year an average value 
which is now just under 16% higher than the value estimated from its own single data 
point.  

Putting the last accident year back into the model will produce results which will 
broadly match the full model overall estimate but with a reduced standard error.  
These are shown below.  

Table 12: Projected values and Standard Errors.  

Reduced Parameter Model with Acc Yr 6, inflation at 7.5%.       

D e v e l o p m e n t   Y e a r   

 

Yr 

    

1

  

2

  

3

  

4

  

5

  

6

  

7

  

8

  

9

  

10

  

11

  

12

  

Total

  

0     

        

£ 
se  

            

249

 

35

  

165

 

25

  

109

 

18

  

72

 

13

  

47

 

9

  

31

 

6

  

673

 

79

  

1  £ 
se  

          

412

 

55

  

272 
39

  

179

 

27

  

118

 

19

  

78

 

14

  

52

 

10

  

34

 

7

  

1145

 

120

  

2  £ 
se  

        

703

 

90

  

464 
62 

 

306

 

44

  

202

 

31

  

134

 

22

  

88

 

15

  

58

 

11

  

39

 

8

  

1994

 

183

  

3   £ 
se  

      

1017

 

125

  

671

 

85

  

443

 

59

  

292

 

42

  

193

 

29

  

127

 

21

  

84

 

15

  

56

 

11

  

37

 

7

  

2921

 

234

  

4  £ 
se  

    

1585

 

192

  

1045

 

128

  

689

 

88

  

455

 

61

  

300

 

43

  

198

 

30

  

131

 

21

  

87

 

15

  

57

 

11

  

38

 

8

  

4585

 

322

  

5  £ 
se  

  

2945

 

357

  

1942

 

235

  

1280

 

157

  

845

 

108

  

557

 

75

  

368

 

52

  

243

 

37

  

160

 

26

  

106

 

19

  

70

 

13

  

46

 

9

  

8562

 

540

  

6  £ 
se  

5494

 

981

  

3621

 

639

  

2387

 

421

  

1574

 

280

  

1038

 

188

  

685

 

127

  

452

 

87

  

299

 

60

  

197

 

41

  

130

 

28

  

86

 

20

  

57

 

14

  

16021

 

2258

                        

Overall Total 35902 
Standard Error 2609 
Percent. Error  7.27 
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(NOTE HERE THE RESIDUAL FOR ACC YR 6) 

(IT RESULTS IN A 7.3% INCREASE IN THE OVERALL ESTIMATE)  

Both these models are reasonable.  They fit the data well and the standard errors are 
quite small.  The results are quite different and these differences are clearly not 
explained by the standard errors, and are primarily due to the choice of parameters.  
As we know little about the underlying account it will be very difficult to choose 
between these models.  In practice additional information, and informed views, will 
need to be sought to assist in this choice.  This can then be used directly in deciding 
which parameters are to be left in the model.  

A theoretically more appealing approach is to use some form of external or prior 
distribution and estimate in a Bayesian framework.  This is explained in more detail 
by Verrall (6).  It is possible to carry out the necessary calculations in the spreadsheet 
but more computation is necessary.  The Bayesian approach combines formal 
statistical theory and informed prior estimates (knowledge and expertise!) and would 
appear to represent almost an ideal combination of theory and practice for reserving 
work.  In practice more work is necessary in order to understand how sensitive the 
results are to these prior estimates, especially as these are made in log-space which, 
while convenient, are nevertheless somewhat alien from the immediate everyday 
experience of practitioners.  

M. Final comments  
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This section will briefly consider some other aspects of these models which were 
deliberately avoided in earlier sections as the main emphasis has been a practical 
rather than a theoretical one.  

a. Standard errors of reserve estimates  

In practice, and as an approximation, as long as a sufficiently large number of future 
values are being projected it may be assumed that the distribution of the overall 
estimate obtained is normal with mean and standard error as calculated above.  

That is we can use normal probability tables to establish approximate confidence 
intervals around the model reserve estimate.  In the last example shown in Table 12 
above for instance and under the conditions of the model, we have (approximately) a 
95% probability that the required reserve will be less than 40194 ( 35902 + 1.645 

 

2609).  Recall however that the error estimate may be incomplete and future inflation 
is assumed fixed reducing the possible error further.  

In practice the specific variability of a particular class reserve estimate may be less 
important to management than the variability of the overall company claims reserve 
Balance Sheet figure.  

The individual class standard errors may be used to obtain estimates of this overall 
variability. For example if mutual independence of reserve estimates by class is 
assumed the overall variance may be obtained as the sum of the individual variances.  
Under these circumstances the percentage error in the overall reserves can drop to low 
figures.  

Much work remains to be done in this area.  At least these methods provide a start 
point to such considerations.  

There will clearly be other factors, not incorporated into the model, that in practice 
will add to the error terms.  There was no attempt to explicitly adjust for inflation in 
the first examples although the models incorporated an implicit assumption which is 
then implicitly projected into the future.  

In the later examples values were adjusted for past inflation, using an index that may 
or may not have been the most appropriate, and projected values calculated using an 
assumed future rate of inflation, or more correctly claims cost escalation.  The 
examples assumed a future rate which was based on the average past inflation used in 
adjusting the data.  

Relatively small changes in these assumed future rates can lead to relatively large 
changes to the overall projected values.  These models can be used to produce a series 
of results, with varying future claims escalation assumptions, from which it may be 
possible to derive a measure of the additional variability that may arise from this 
source.  

These models do not attempt to allow for changes in the speed of settlement of 
claims.  Payment developments may appear stable due to a combination of 
accelerating costs counteracted by a slowdown in settlements.  Clearly under such 
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circumstances estimates from a regression model on log-incremental payments, or a 
chain ladder projection based on cumulative payments, are likely to produce estimates 
which may be seriously biased.  

Finally there will generally be a lot more information available to management than 
that used in fitting any statistical model.  It is just possible that a combination of 
statistical derived estimates with informed estimates based on specific and detailed 
knowledge of the particular business, its environment and claims, may produce final 
estimates that have reduced variability.  This will be however difficult to prove.  

b. Negative values in incremental data sets  

One particular problem with log-linear models is the occasional negative value in the 
original space.  

Negative values occur in practice especially in net of reinsurance incremental 
payments and in classes of business subject to large subrogation or salvage 
recoveries.  Various alternative approaches are available to the modeller to deal with 
negative values in practice.  One approach, adopted in a commercial package 
(ICRFS), is to add a sufficiently large constant to all the incremental values, so that 
they all become positive, before the logarithmic transformation and an adjustment 
made in the projected values.  

An alternative approach, that may be acceptable in practice, is to shift payments from 
one period to an adjacent one so as to eliminate a negative value.  This may be 
justified if it is known, or suspected, that the negative value is the result of some serial 
correlation, for example when preceded by a relatively large value.  Another 
possibility, which may be tried where the negative value is small is to ignore the value 
totally or to set it to some small positive value such as 1 (loge 1=0).  

No particular approach is recommended here as ideal for dealing with negative 
values.  In practice the reason for such negative values has to be investigated and this 
process often helps identify an appropriate approach to deal with the problem.  
Clearly one should not ignore a genuine feature of the data for the sake of 
convenience.  

c. Parsimony  

The chain ladder model is sometimes considered overparameterised as it involves a 
parameter for each accident year and each development period.  Too many parameters 
can lead to model instability.  Increasing the number of explanatory variables 
improves the quality of the fitted data but such slavish adherence to the data often 
results in unstable projections.  At the extreme one can always obtain a perfect fit by 
including enough parameters in the model.  Such a model fails to achieve any 
smoothing of the data and will be very poor for prediction purposes.  Parsimonious 
models, that is with fewer parameters are to be preferred for this reason.  This is 
explained in more detail in the first article in this Volume of the Manual.  

d. Serial Correlation and Heteroscedasticity  
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The triangular shaped incremental payments data tend to decrease as the development 
years increase and there is usually some serial correlation present in these payments 
for a particular accident year.  Such correlation may occur when a low payment 
period, due to administrative problems for example, is followed by a catching up high 
payment period or vice versa.  On net paid claims data this may happen when a gross 
payment is made in one period with the incoming associated reinsurance processed 
during the following period.  

The decline in values in the development direction tends to result in the residuals 
increasing with development period.  This characteristic is an example of 
heteroscedasticity.  In effect the IID assumption implies that the error terms in the 
original space are subject to the same percentage variation irrespective of their 
absolute values.  Experience with payments triangles indicates that as payments 
diminish in the tail the percentage variation of these payments tends to be much 
higher than that seen in the first few development periods when a greater volume of 
payments is usually being made.  This may be more pronounced in net rather than 
gross payments.  

Methods to overcome this are being developed.  One approach followed by Zehnwirth 
in the ICRFS package (Interactive Claims Reserving and Forecasting System) is to 
use weights.  Alternative error assumptions, which may well turn out to be more 
appropriate, are being investigated by others.  The main disadvantage of these 
approaches is the difficulty of obtaining the parameter estimates compared to the 
comparatively easy spreadsheet regression approach.  

e. The Hoerl run-off curves  

A particularly useful family of curves for run-off patterns is the Gamma family 
defined by  

Pij = Kj (1 + j)b exp(aj)  

Each curve has a level parameter Kj and two shape parameters b and a the latter being 
an exponential.  They have the immediate advantage of becoming linear in log-space 
and can be fitted simply by multiple regression using the techniques of this article.  
These curves form the start point in the ICRFS package.  

As the example above illustrated these curves do not always produce good fits for all 
development periods.  They can be particularly poor in fitting the first few 
development periods which clearly have a significant influence on the reserves 
projected for the most recent accident years where a substantial amount of the overall 
reserve is generally to be found.  

It is possible to use the simple techniques outlined in this article to fit mixed models 
where some shape is fitted for later development periods and independent parameters 
fitted for the earlier periods.  The example above fitted an independent first 
development parameter and an exponential decay curve thereafter.  Any shape that 
can be expressed linearly (in log-space) can be tried even if in practice restrictions in 
allowable shapes will inevitably be necessary to keep any package to reasonable 

size. 
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f. Conclusion  

Regression techniques are now beginning to dominate developments in claims 
reserving methodology.  The formal approach adopted, whether utilizing maximum 
likelihood and IID normal errors or any other error model, at least enables the 
modeller to test the reasonableness of the assumptions.  The model testing phase itself 
can often reveal interesting aspects of the data which may not be immediately obvious 
from looking at the cumulative payments.  

These models can be very useful for inter-company comparisons and for comparing 
the stability of run-off triangles.  Some results along these lines are to be found in 
Section E of the Claims Run-Off Patterns Working Party report presented to the 1989 
GISG (General Insurance Study Group) Conference in Brighton.  

This article is intended to give a practical introduction to these techniques and does 
not claim any original theoretical developments.  The writer is particularly grateful to 
Arthur Renshaw and Richard Verrall of City University for their invaluable and 
patient explanations on this subject.  The hope is that other practitioners can now 
begin to benefit by experimenting with these techniques.  
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Appendix 1  

Matrix calculations for the formal chain ladder example  

Design matrix X   

1 
1 
1 
1 
0 
0 
0 
0 
0 
0  

0 
0 
0 
0 
1 
1 
1 
0 
0 
0  

0 
0 
0 
0 
0 
0 
0 
1 
1 
0  

0 
0 
0 
0 
0 
0 
0 
0 
0 
1  

0 
1 
0 
0 
0 
1 
0 
0 
1 
0  

0 
0 
1 
0 
0 
0 
1 
0 
0 
0  

0 
0 
0 
1 
0 
0 
0 
0 
0 
0 

 

Design matrix X transposed XT   

1 
0 
0 
0 
0 
0 
0  

1 
0 
0 
0 
1 
0 
0  

1 
0 
0 
0 
0 
0 
1  

1 
0 
0 
0 
0 
0 
1  

0 
1 
0 
0 
0 
0 
0  

0 
1 
0 
0 
1 
0 
0  

0 
0 
1 
0 
0 
0 
0  

0 
0 
1 
0 
1 
0 
0  

0 
0 
0 
1 
0 
0 
0 

 

Product of XTX   

4 
0 
0 
0 
1 
1 
1  

0 
3 
0 
0 
1 
1 
0  

0 
0 
2 
0 
1 
0 
0  

0 
0 
0 
1 
0 
0 
0  

1 
1 
1 
0 
3 
0 
0  

1 
1 
0 
0 
0 
2 
0  

1 
0 
0 
0 
0 
0 
1 
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Inverse of XTX i.e. (XTX)-1   

.58333

 
.25000

 
.16667

 
.00000

 
.33333

 

.41667

 

.58333

  
.25000

 
.58333

 
.16667

 
.00000

 
.33333

 

.41667

 

.25000

  
.16667

 
.16667

 
.66667

 
.00000

 
.33333

 

.16667

 

.16667

  
.00000

 
.00000

 
.00000

 
1.00000

 
.00000

 

.00000

 

.00000

  
.33333

 
.33333

 
.33333

 
.00000

 
.66667

 

.33333

 

.33333

   
.41667

 
.41667

 
.16667

 
.00000

 
.33333

 

.91667

 

.41667

  
.58333

 
.25000

 
.16667

 
.00000

 
.33333

 

.41667

 

1.58333

 

Future design Xf   

0 
0 
0 
0 
0 
0  

1 
0 
0 
0 
0 
0  

0 
1 
1 
0 
0 
0  

0 
0 
0 
1 
1 
1  

0 
0 
0 
1 
0 
0  

0 
1 
0 
0 
1 
0  

1 
0 
1 
0 
0 
1 

 

Transpose of Future Design Matrix Xf
T   

0 
1 
0 
0 
0 
0 
1  

0 
0 
1 
0 
0 
1 
0  

0 
0 
1 
0 
0 
0 
1  

0 
0 
0 
1 
1 
0 
0  

0 
0 
0 
1 
0 
1 
0  

0 
0 
0 
1 
0 
0 
1 

 

Product of Future Design Xf and Inverse of XTX  

i.e Xf (X
TX )-1   

.33333

 

.25000

 

.41667

 

.33333

 

.41667

 

.58333

  

.33333

 

.25000

 

.08333

 

.33333

 

.41667

 

.25000

  

.00000

 

.50000

 

.50000

 

.33333

 

.16667

 

.16667

  

.00000

 

.00000

 

.00000

 

1.00000

 

1.00000

 

1.00000

  

.00000

 

.00000

 

.00000

 

.66667

 

.33333

 

.33333

  

.00000

 

.75000

 

.25000

 

.33333

 

.91667

 

.41667

  

1.33333

 

.25000

 

1.41667

 

.33333

 

.41667

 

1.58333
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Final product (Xf (X
TX) 1 ) and Xf

T  

i.e. Xf (X
TX) 1 Xf

T   

1.66667

 
.00000

 
1.33333

 

.00000

 

.00000

 

1.33333

  
.00000

 
1.25000

 
.75000

 

.00000

 

.75000

 

.25000

  
1.33333

 
.75000

 
1.91667

 

.00000

 

.25000

 

1.41667

  
.00000

 
.00000

 
.00000

 

1.66667

 

1.33333

 

1.33333

  
.00000

 
.75000

 
.25000

 

1.33333

 

1.91667

 

1.41667

  
1.33333

 
.25000

 
1.41667

 

1.33333

 

1.41667

 

2.58333

  

And finally the data specific Var-Cov matrix is derived from the above values by 
multiplying by 2.  

So the first entry is 1.66667  .05242 = .00457 etc.  

The Variance-Covariance matrix in this case is then  

i.e. 2 Xf (X
TX) 1 Xf

T   

.00457 

.00000 

.00366 

.00000 

.00000 

.00366  

.00000 

.00343 

.00206 

.00000 

.00206 

.00069  

.00366 

.00206 

.00526 

.00000 

.00069 

.00389  

.00000 

.00000 

.00000 

.00457 

.00366 

.00366  

.00000 

.00206 

.00069 

.00366 

.00526 

.00389  

.00366 

.00069 

.00389 

.00366 

.00389 

.00709 

 

Appendix 2  

Spreadsheet Regression Output tables  

The raw spreadsheet regression output table for the first example (4 4 chain 
ladder) was  

Regression Output: 
Constant        0 
Std Err of Y Est     .05238 
R Squared(Ajd,Raw) .99758 .99919 
No. of Observations    10 
Degrees of Freedom    3   

Coefficient(s)  9.2884  9.5911  9.6924  9.7358  .4662

  

1.801

  

2.647 

 

Std Err of Coef.  .0400  .0400  .0428  .0524  .0428  .0502  .0660 

 

This is very typical of all the spreadsheet regression output.  
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A brief description of this output is given below:  

a) Constant (=0)  

The spreadsheet regression command usually has an option of either fitting 
through the origin or calculating a constant.  In the case above the model was 
fitted through the origin so the constant calculated is zero.  In the models 
described in the article a parameter is used in place of this constant as this 
makes the analysis more convenient.  The calculated values will be the same 
but in the latter case the regression shows the standard error associated with 
this constant.  

b) Std Err of Y Est (0.0524)  

This is the estimated standard error of the residuals.  It is the square root of the 
estimated model variance 2.  

It is in other words the estimate of the standard deviation of the assumed 
underlying normal error term.  

This value plays a very significant role in the estimates of future values and 
their standard errors.  

c) R Squared (Adj, Raw) (0.9976   0.9992)  

This is a statistic ranging from 0 to 1 which indicates how much variation in 
the data is explained by the model.  The closer to 1, the more variation 
explained by the model.  The difference in the two values is from a correction 
for the degrees of freedom.  

In crude terms it indicates that the model explains 99.76% of the values, in the 
log-space.  

d) No of Observations (10)  

The 4 by 4 triangle contained ten values all of which were used in the fitting 
process.  

e) Degrees of Freedom (3)  

The model assumed 7 independent parameters (including the constant) and 
used 10 observations to estimate these.  The difference, ( 10-7 ), is the number 
of degrees of freedom.  

Note that in this case there are a lot of parameters in relation to the number of 
data values in the triangle.  This tends to produce a high quality of fit, i.e. a 
high R2 but forced adherence to the actual data by incorporating many 
parameters in the model can lead to a model with poor predictive qualities. 
f) Coefficient(s) (9.288 9.591 etc.)  
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These values are the estimates of the model parameter values.  They appear in 
the order defined by the Design Matrix one for each independent variable.  

Least squares are being used to calculate these values and the solution is given 
by  

(XTX) 1 XT Y where Y is the vector of data values.  

g) Std. Err of Coef. (0.0400 0.0400 etc...)  

These are the estimated standard errors of the coefficient estimates.  They are 
the square roots of the diagonal elements of the variance-covariance matrix of 
the coefficients  

2 (XTX) 1  

Changing values in the data triangle does not affect the design matrix X and 
only changes the scalar element or 2.  

So different data sets result in standard errors of the model coefficients which 
differ only by a constant factor which is equal to the ratio of the data specific 
model standard errors or s.   

<>  
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[D6]
MEASURING THE VARIABILITY OF CHAIN LADDER RESERVE

ESTIMATES
Contributed by T Mack

Abstract
The variability of chain ladder reserve estimates is quantified without assuming any
specific claims amount distribution function. This is done by establishing a formula for
the so-called standard error which is an estimate for the standard deviation of the
outstanding claims reserve. The information necessary for this purpose is extracted
only from the usual chain ladder formulae. With the standard error as a tool it is shown
how a confidence interval for the outstanding claims reserve and for the ultimate claims
amount can be constructed. Moreover, the analysis of the information extracted and of
its implications shows when it may be appropriate to apply the chain ladder method
and when it may not be.

Note
The original version of this paper was submitted to the prize paper competition
"Variability of Loss Reserves" held by the Casualty Actuarial Society and was awarded
a joint second prize. The present text differs from that paper in a few changes to the
text and a changed and more thorough test procedure in Appendix H. This paper is
included in the Claims Reserving Manual with the specific permission of the Casualty
Actuarial Society, which otherwise retains ownership and all rights to continue to
publish and disseminate this paper anywhere.
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1. Introduction and Overview

The chain ladder method is probably the most popular method for estimating
outstanding claims reserves. The main reason for this is its simplicity and the fact that it
is distribution-free, that is, it seems to be based on almost no assumptions. In this
paper, it will be seen that this impression is wrong and that the chain ladder algorithm
has far-reaching implications. These implications also allow it to measure the variability
of chain ladder reserve estimates. With the help of this measure it is possible to
construct a confidence interval for the estimated ultimate claims amount and for the
estimated reserves.

Such a confidence interval is of great interest for the practitioner because the estimated
ultimate claims amount can never be an exact forecast of the true ultimate claims
amount and therefore a confidence interval is of much greater information value. A
confidence interval also allows one to consider business strategy in conjunction with
the claims reserving process, using specific confidence probabilities. Moreover, there
are many other claims reserving procedures and the results of all these procedures can
vary widely. With the help of a confidence interval it can be seen whether the
difference between the results of the chain ladder method and any other method is
significant or not.

The structure of the paper is as follows. In section 2 a first basic assumption underlying
the chain ladder method is derived from the formula used to estimate the ultimate
claims amount. In section 3, the comparison of the age-to-age factor formula used by
the chain ladder method with other possibilities leads to a second underlying
assumption regarding the variance of the claims amounts. Using both of these derived
assumptions and a third assumption on the independence of the accident years, it is
possible to calculate the so-called standard error of the estimated ultimate claims
amount. This is done in section 4, where it is also shown that this standard error is the
appropriate measure of variability for the construction of a confidence interval. Section
5 illustrates how any given run-off triangle can be checked using some plots to
ascertain whether the assumptions mentioned can be considered to be met. If these
plots show that the assumptions do not seem to be met, the chain ladder method
should not be applied without adaptation. In section 6 the formulae and two statistical
tests (set out in Appendices G and H) are applied to a numerical example. For the sake
of comparison, the reserves and standard errors according to a well-known claims
reserving software package are also quoted. Complete and detailed proofs of all results
and formulae are given in the Appendices A–F.

The proofs are quite long and take up about one fifth of the paper. However, the
resulting formula for the standard error is very simple and can be applied directly after
reading the basic notations in the first two paragraphs of section 2. In the numerical
example, too, the formula for the standard error could be applied immediately to the
run-off triangle. Instead, an analysis of whether the chain ladder assumptions are met in
this particular case is made first. Because this analysis comprises many tables and plots,
the example takes up another two fifths of the paper (including the tests in Appendices
G and H).
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2. Notation and First Analysis of the Chain Ladder Method

Let Cik denote the accumulated total claims amount of accident year i, 1 ≤ i ≤ I, either
paid or incurred up to development year k, 1 ≤ k ≤ I. The values of Cik  for
i + k ≤ I + 1 are known to us (run-off triangle) and we want to estimate the values of
Cik  for i + k > I + 1, in particular the ultimate claims amount CiI  of each accident year
i = 2, ..., I. Then

R i  = C CiI i i− + −,I 1

is the outstanding claims reserve of accident year i as Ci i,I+ −1  has already been paid or
incurred up to now.

The chain ladder method consists of estimating the ultimate claims amounts CiI  by

(1) CiI  = Ci i,I ...+ − + − −⋅ ⋅ ⋅1 f fI 1 i I 1 ,     2 ≤ i ≤ I

where

(2) fk  = Σ Σ
j

I k

j k j

I k

jkC C
=

−

+ =

−

1 1 1, / ,  1 ≤ k ≤ I − 1

are the so-called age-to-age factors.

This manner of projecting the known claims amount Ci i,I+ −1  to the ultimate claims
amount CiI  uses for all accident years i ≥ I + 1 − k the same factor fk  for the increase
of the claims amount from development year k to development year k+1, although the
observed individual development factors C Ci k ik, /+1 of the accident years i ≤ I − k are
usually different from one another and from fk . This means that each increase from
Cik  to Ci k, +1  is considered a random disturbance of an expected increase from Cik  to
C fik k  where fk  is an unknown 'true' factor of increase which is the same for all
accident years and which is estimated from the available data by fk .

Consequently, if we imagine to be at the end of development year k we have to
consider C Ci k iI, , ...,+1  as random variables whereas the realizations of C Ci ik1, ...,  are
known to us and are therefore no longer random variables but scalars. This means that
for the purposes of analysis every Cik  can be a random variable or a scalar, depending
on the development year at the end of which we imagine to be but independently of
whether Cik  belongs to the known part i + k ≤ I + 1 of the run-off triangle or not.
When taking expected values or variances we therefore must always also state the
development year at the end of which we imagine to be. This will be done by explicitly
indicating those variables Cik  whose values are assumed to be known. If nothing is
indicated all Cik  are assumed to be unknown.
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What we said above regarding the increase from Cik  to Ci k, +1  can now be formulated
in stochastic terms as follows. The chain ladder method assumes the existence of
accident-year-independent factors f fI1 1, ..., −  such that, given the development
C Ci ik1, ..., , the realization of Ci k, +1  is 'close' to C fik k , the latter being the expected
value of Ci k, +1  in its mathematical meaning, that is

(3) E C C Ci k i ik( , ..., ), + 1 1  = C fik k ,    1 ≤ i ≤ I,  1 ≤ k ≤ I − 1

Here to the right of the '' those Cik  are listed which are assumed to be known.
Mathematically speaking, (3) is a conditional expected value which is just the exact
mathematical formulation of the fact that we already know C Ci ik1, ..., , but do not
know Ci k, +1 . The same notation is also used for variances since they are specific
expectations. The reader who is not familiar with conditional expectations should not
refrain from further reading because this terminology is easily understandable and the
usual rules for the calculation with expected values also apply to conditional expected
values. Any special rule will be indicated wherever it is used.

We want to point out again that the equations (3) constitute an assumption which is
not imposed by us but rather implicitly underlies the chain ladder method. This is based
on two aspects of the basic chain ladder equation (1). One is the fact that (1) uses the
same age-to-age factor fk  for different accident years i = I + 1 − k, ..., I. Therefore
equations (3) also postulate age-to-age parameters fk  which are the same for all
accident years. The other is the fact that (1) uses only the most recent observed value
Ci i,I+ −1  as basis for the projection to ultimate ignoring on the one hand all amounts
C Ci i i1, ..., ,I−  observed earlier and on the other hand the fact that Ci i,I+ −1  could
substantially deviate from its expected value.

Note that it would easily be possible to also project to ultimate the amounts
C Ci i i1, ..., ,I−  of the earlier development years with the help of the age-to-age factors
f f1 I 1, ..., −  and to combine all these projected amounts together with
Ci i,I ...+ − −⋅ ⋅1 f fI+1-i I 1  into a common estimator for CiI . Moreover, it would also easily be
possible to use the values C j i,I+ −1  of the earlier accident years j < i as additional
estimators for E Ci i( ),I+ −1  by translating them into accident year i with the help of a
measure of volume for each accident year.

These possibilities are all ignored by the chain ladder method which uses Ci i,I+ −1  as the
only basis for the projection to ultimate. This means that the chain ladder method
implicitly must use an assumption which states that the information contained in
Ci i,I+ −1  cannot be augmented by additionally using C Ci i i1, ..., ,I−  or
C Ci i i1 1 1 1,I ,I, ...,+ − − + − . This is very well reflected by the equations (3) which state that,
given C Ci ik1, ..., , the expected value of Ci k, +1  only depends on Cik .



PAPERS OF MORE ADVANCED METHODS

09/97 D6.6

Having now formulated this first assumption underlying the chain ladder method we
want to emphasize that this is a rather strong assumption which has important
consequences and which cannot be taken as met for every run-off triangle. Thus the
widespread impression that the chain ladder method would work with almost no
assumptions is not justified. In section 5 we will elaborate on the linearity constraint
contained in assumption (3). But here we want to point out another consequence of
formula (3). We can rewrite (3) in the form

E C C C Ci k ik i ik( / , ..., ), + 1 1  = fk

because Cik  is a scalar under the condition that we know C Ci ik1, ..., . This form of (3)
shows that the expected value of the individual development factor C Ci k ik, /+1  equals
fk  irrespective of the prior development C Ci ik1, ...,  and especially of the foregoing
development factor C Cik i k/ , −1 .

As is shown in Appendix G, this implies that subsequent development factors
C Cik i k/ , −1  and C Ci k ik, /+1  are uncorrelated. This means that after a rather high value
of C Cik i k/ , −1  the expected size of the next development factor C Ci k ik, /+1  is the same
as after a rather low value of C Cik i k/ , −1 .

We therefore should not apply the chain ladder method to a business where we usually
observe a rather small increase C Ci k ik, /+1  if C Cik i k/ , −1 is higher than in most other
accident years, and vice versa. Appendix G also contains a test procedure to check this
for a given run-off triangle.
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3. Analysis of the Age-to-Age Factor Formula: the Key to Measuring the
Variability

Because of the randomness of all realizations Cik  we can not infer the true values of
the increase factors f fI1 1, ..., −  from the data. They only can be estimated and the chain
ladder method calculates estimators f f1 I-1, ...,  according to formula (2). Among the
properties which a good estimator should have, one prominent property is that the
estimator should be unbiased, that is its expected value E( )fk  (under the assumption
that the whole run-off triangle is not yet known) is equal to the true value fk, in other
words E( )fk  = fk . Indeed, this is the case here as is shown in Appendix A under the
additional assumption that

(4) the variables { , ..., }C Ci iI1 and { , ..., }C Cj jI1  of different accident years i ≠ j are
independent

Because the chain ladder method neither in (1) nor in (2) takes into account any
dependency between the accident years we can conclude that the independence of the
accident years is also an implicit assumption of the chain ladder method. We will
therefore assume (4) for all further calculations. Assumption (4), too, cannot be taken
as being met for every run-off triangle because certain calendar year effects (such as a
major change in claims handling or in case reserving or greater changes in the inflation
rate) can affect several accident years in the same way and can thus distort the
independence. How such a situation can be recognized is shown in Appendix H.

A closer look at formula (2) reveals that

fk  = 
Σ

Σ
j

I k

j k

j

I k

jk

C

C

=

−

+

=

−
1 1

1

,
 = Σ

Σ
j

I k
jk

j

I k

jk

j k

jk

C

C

C
C=

−

=

−
+⋅

1

1

1,

is a weighted average of the observed individual development factors C Cj k jk, /+1 , for
1 ≤ j ≤ I − k, where the weights are proportional to C jk . Like fk  every individual
development factor C Cj k jk, / ,+1 1 ≤ j ≤ I − k, is also an unbiased estimator of fk

because

E C Cj k jk( / ), +1 = E E C C C Cj k jk j jk( ( / , ...,, + 1 1 )) (a)

 = E E C C C Cj k j jk jk( ( , ..., ) / ), + 1 1  (b)
= E C f Cjk k jk( / )  (c)
= E fk( )

 = fk   (d)

Here equality (a) holds due to the iterative rule E(X) = E(E(X|Y)) for expectations, (b)
holds because, given C j1  to C Cjk jk,  is a scalar, (c) holds due to assumption (3) and
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(d) holds because fk  is a scalar. (When applying expectations iteratively, e.g.
E(E(X|Y)), one first takes the conditional expectation E(X|Y) assuming Y being
known and then averages over all possible realizations of Y.)

Therefore the question arises as to why the chain ladder method uses just fk  as
estimator for fk  and not the simple average

1
1 1I k

C C
j

I k

j k jk− =

−

+Σ , /

of the observed development factors which also would be an unbiased estimator as is
the case with any weighted average

gk  = Σ
j

I k

jk j k jkw C C
=

−

+1 1, /  with Σ
j

I k

jkw
=

−

1
 = 1

of the observed development factors. (Here, w jk must be a scalar if C Cj jk1, ...,  are
known.)

Here we recall one of the principles of the theory of point estimation which states that
among several unbiased estimators preference should be given to the one with the
smallest variance, a principle which is easy to understand. We therefore should choose
the weights w jk  in such a way that the variance of gk  is minimal. In Appendix B it is
shown that this is the case if and only if (for fixed k and all j)

w jk  is inversely proportional to Var C C C Cj k jk j jk( / , ..., ), + 1 1

The fact that the chain ladder estimator fk  uses weights which are proportional to C jk

therefore means that C jk  is assumed to be inversely proportional to

Var C C C Cj k jk j jk( / , ..., ), + 1 1 , or stated the other way around, that

Var C C C Cj k jk j jk( / , ..., ), + 1 1  = αk jkC2 /

with a proportionality constant αk
2  which may depend on k but not on j and which

must be non-negative because variances are always non-negative.

Since here C jk  is a scalar and because generally Var(X/c) = Var X c( ) / 2  for any scalar
c, we can state the above proportionality condition also in the form

(5)   Var C C Cj k j jk( , ..., ), + 1 1  = C jk kα 2 ,  1 ≤ j ≤ I, 1 ≤ k ≤ I − 1

with unknown proportionality constants αk
2 , 1 ≤ k ≤ I − 1.
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As with assumptions (3) and (4), assumption (5) also has to be considered a basic
condition implicitly underlying the chain ladder method. Again, condition (5) cannot a
priori be assumed to be met for every run-off triangle. In section 5 we will show how
to check a given triangle to see whether (5) can be considered met or not. But before
doing so we turn to the most important consequence of (5): together with (3) and (4)
it enables us to quantify the uncertainty in the estimation of CiI  by CiI .
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4. Quantifying the Variability of the Ultimate Claims Amount

The aim of the chain ladder method and of every claims reserving method is the
estimation of the ultimate claims amount CiI  for the accident years i = 2, ..., I. The
chain ladder method does this by formula (1), that is

CiI = Ci i,I ...+ − + − −⋅ ⋅ ⋅1 f fI 1 i I 1

This formula yields only a point estimate for CiI  which will normally turn out to be
more or less wrong, that is there is only a very small probability for CiI  being equal to
CiI . This probability is even zero if CiI  is considered to be a continuous variable. We
therefore want to know in addition if the estimator CiI  is at least on average equal to
the mean of CiI  and how large on average the error is. Precisely speaking we first
would like to have the expected values E( )CiI  and E CiI( ) , 2 ≤ i ≤ I, being equal. In
Appendix C it is shown that this is indeed the case as a consequence of assumptions
(3) and (4).

The second thing we want to know is the average distance between the forecast CiI

and the future realization CiI . In Mathematical Statistics it is common to measure such
distances by the square of the ordinary Euclidean distance ('quadratic loss function').
This means that one is interested in the size of the so-called mean squared error

mse( )CiI  = E C DiI(( ) )− CiI
2

where D = { }C i k Iik + ≤ + 1 is the set of all data observed so far. It is important to
realize that we have to calculate the mean squared error on the condition of knowing
all data observed so far because we want to know the error due to future randomness
only. If we calculated the unconditional error E CiI( )− CiI

2 , which due to the iterative

rule for expectations is equal to the mean value E E C DiI( (( ) ))− CiI
2  of the

conditional mse over all possible data sets D, we also would include all deviations from
the data observed so far which obviously makes no sense if we want to establish a
confidence interval for CiI  on the basis of the given particular run-off triangle D.

The mean squared error is exactly the same concept which also underlies the notion of
the variance

 Var(X) = E X E X( ( ))− 2

of any random variable X. Var(X) measures the average distance of X from its mean
value E(X).
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Due to the general rule E X c( )− 2 = Var(X) + ( ( ) )E X c− 2  for any scalar c we have

 mse( )CiI  = Var C D E C DiI iI( ) ( ( ) ) +  − CiI
2

because CiI  is a scalar under the condition that all data D are known. This equation

shows that the mse is the sum of the pure future random error Var C DiI( )  and of the
estimation error which is measured by the squared deviation of the estimate CiI  from

its target E C DiI( ) . On the other hand, the mse does not take into account any future
changes in the underlying model, that is future deviations from the assumptions (3), (4)
and (5), an extreme example of which was the emergence of asbestos. Modelling such
deviations is beyond the scope of this paper.

As is to be expected and can be seen in Appendix D, mse( )CiI  depends on the
unknown model parameters fk  and αk

2 . We therefore must develop an estimator for
mse( )CiI  which can be calculated from the known data D only. The square root of
such an estimator is usually called 'standard error' because it is an estimate of the
standard deviation of CiI  in cases in which we have to estimate the mean value, too.
The standard error s e. .( )CiI  of CiI  is at the same time the standard error s e. .( )R i  of
the reserve estimate

R i  = CiI − + −Ci i,I 1

of the outstanding claims reserve

R i  = C CiI i i− + −,I 1

because

mse( )R i = E R Di(( ) )R i − 2  = E C DiI(( ) )CiI − 2  = mse( )CiI

and because the equality of the mean squared errors also implies the equality of the
standard errors. This means that

(6) s e. .( )R i  = s e. .( )CiI

The derivation of a formula for the standard error s e. .( )CiI  of CiI  turns out to be the
most difficult part of this paper; it is done in Appendix D. Fortunately, the resulting
formula is simple

(7) ( . .( ))s e CiI
2  = C

f CiI
k

k ik

2

1

1 2

2

1

1 1Σ
Σ

k I i

I

j

I k

jkC= + −

−

=

−⋅ +

F

H
GGG

I

K
JJJ

α
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where

(8) α k
2  = 1

1 1

1
2

I k
C

C
Cj

I k

jk
j k

jk− −
−

F
HG

I
KJ=

−
+Σ , fk , 1 ≤ k ≤ I − 2

is an unbiased estimator of αk
2  (the unbiasedness being shown in Appendix E) and

Cik = Ci i,I ...+ − ⋅ ⋅ ⋅1 f fI+1-i k-1 ,  k > I + 1 − i

are the amounts which are automatically obtained if the run-off triangle is completed
step by step according to the chain ladder method. In (7), for notational convenience
we have also set

Ci,I 1 i+ −  = Ci i,I+ −1

Formula (8) does not yield an estimator for α I−1  because it is not possible to estimate
the two parameters fI−1 and α I−1 from the single observation C C1 1 1,I ,I/ −  between
development years I − 1 and I. If fI 1−  = 1 and if the claims development is believed to
be finished after I − 1 years we can put α I 1−  = 0. If not, we extrapolate the usually
decreasing series α1 , α 2 , ..., α I 3− , α I 2−  by one additional member, for instance by
means of loglinear regression (see the example in section 6) or more simply by
requiring that

α αI 3 I 2− −/ =α αI 2 I 1− −/

holds at least as long asα αI 3 I 2− −>  .

This last possibility leads to

(9) α
I 1
2

−
 = min( / , min( , ))α α α αI 2

4
I 3 I 3 I 2− − − −
2 2 2

We now want to establish a confidence interval for our target variables CiI  and R i .
Because of the equation

CiI  = C Ri i i,I+ − +1

the ultimate claims amount CiI  consists of a known part Ci i,I+ −1 and an unknown part
R i . This means that the probability distribution function of CiI  (given the observations
D which include Ci i,I+ −1 ) is completely determined by that of R i . We therefore need to
establish a confidence interval for R i  only and can then simply shift it to a confidence
interval for CiI .
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For this purpose we need to know the distribution function of R i . Up to now we only
have estimates R i  and s e. .( )R i  for the mean and the standard deviation of this
distribution. If the volume of the outstanding claims is large enough we can, due to the
central limit theorem, assume that this distribution function is a Normal distribution
with an expected value equal to the point estimate given by R i  and a standard
deviation equal to the standard error s e. .( )R i . A symmetric 95%-confidence interval
for R i  is then given by

( . .( ), . .( ))R R R Ri i i i− ⋅ + ⋅2 2s e s e

But the symmetric Normal distribution may not be a good approximation to the true
distribution of R i  if this latter distribution is rather skewed. This will especially be the
case if s e. .( )R i  is greater than 50 % of R i . This can also be seen at the above Normal
distribution confidence interval whose lower limit then becomes negative even if a
negative reserve is not possible.

In this case it is recommended to use an approach based on the Lognormal
distribution. For this purpose we approximate the unknown distribution of R i  by a
Lognormal distribution with parameters µi  and σ i

2  such that mean values as well as
variances of both distributions are equal, so that

exp( / )µ σi i+ 2 2  = R i

exp( )(exp( ) )2 12 2µ σ σi i i+ −  = ( . .( ))s e R i
2

This leads to

(10) σ i
2 = ln( ( . .( )) / )1 2 2+ s e R Ri i

µi = ln( ) /R i − σ i
2 2

Now, if we want to estimate the 90th percentile of R i , for example, we proceed as
follows. First we take the 90th percentile of the Standard Normal distribution which is
1.28. Then exp( . )µ σi i+ 128  with µi  and σ i

2  according to (10) is the 90th percentile
of the Lognormal distribution and therefore also approximately of the distribution of
R i .

For instance, if s e. .( ) /R Ri i  = 1 then σ i
2  = ln(2) and the 90th percentile is

exp( . )µ σi i+ 128  = R i exp( . / )128 22σ σi i−  = R i exp(. )719  = 2 05. ⋅R i . If we had
assumed that R i has approximately a Normal distribution, we would have obtained in
this case R Ri i+ ⋅128. . .( )s e = 2 28. ⋅R i  as 90th percentile.

This may come as a surprise since we might have expected that the 90th percentile of a
Lognormal distribution always must be higher than that of a Normal distribution with
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same mean and variance. But there is no general rule, it depends on the percentile
chosen and on the size of the ratio s e. .( ) /R Ri i . The Lognormal approximation only
prevents a negative lower confidence limit. In order to set a specific lower confidence
limit we choose a suitable percentile, for instance 10%, and proceed analogously as
with the 90% before. The question of which confidence probability to choose has to be
decided from a business policy point of view. The value of 80% = 90% − 10% taken
here must be regarded merely as an example.

We have now shown how to establish confidence limits for every R i  and therefore
also for every CiI  = C Ri i i,I+ − +1 . We may also be interested in having confidence
limits for the overall reserve

R = R RI2 + +...

and the question is whether, in order to estimate the variance of R, we can simply add
the squares ( . .( ))s e R i

2  of the individual standard errors as would be the case with
standard deviations of independent variables. But unfortunately, whereas the R i ’s
themselves are independent, the estimators R i  are not because they are all influenced
by the same age-to-age factors fk , that is the R i ’s are positively correlated. In
Appendix F it is shown that the square of the standard error of the overall reserve
estimator

R = R R2 I+ +...

is given by

(11) ( . .( ))s e R 2  = Σ Σ Σ
Σ

i

I

j i

I

I k I i

I

n

I k

nk

s e

C
= = + = + −

−

=

−+
F
HG

I
KJ

R
S||
T||

U
V||
W||

2

2

1 1

1 2 2

1

2( . .( )) /R C C f
i iI j

k kα

Formula (11) can be used to establish a confidence interval for the overall reserve
amount R in quite the same way as it was done before for R i . Before giving a full
example of the calculation of the standard error, we will deal in the next section with
the problem of how to decide for a given run-off triangle whether the chain ladder
assumptions (3) and (5) are met or not.
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5. Checking the Chain Ladder Assumptions Against the Data

As has been pointed out, the three basic implicit chain ladder assumptions

(3) E C C Ci k i ik( ,..., ), + 1 1  = C fik k

(4) Independence of accident years
(5) Var C C Ci k i ik( , ..., ), + 1 1  = Cik kα 2

are not met in every case. In this section we will indicate how these assumptions can be
checked for a given run-off triangle. We have already mentioned in section 3 that
Appendix H develops a test for calendar year influences which may violate (4). We can
therefore concentrate in the following on assumptions (3) and (5).

First, we look at the equations (3) for an arbitrary but fixed k and for i = 1, ..., I.
There, the values of Cik , 1 ≤ i ≤ I, are to be considered as given non-random values
and equations (3) can be interpreted as an ordinary regression model of the type

Yi  = c x bi i+ + ε ,     1 ≤ i ≤ I

where c and b are the regression coefficients and ε i  the error term with E i( )ε  = 0,
that is E Yi( ) = c x bi+ . In our special case, we have c = 0, b = fk  and we have
observations of the dependent variable Yi  = Ci k, +1  at the points xi  = Cik  for
i = 1, ..., I − k. Therefore, we can estimate the regression coefficient b = fk  by the
usual least squares method

Σ
i

I k

i k ik kC C f
=

−

+ −
1 1

2( ), = minimum

 
If the derivative of the left hand side with respect to fk  is set to 0 we obtain for the
minimizing parameter fk  the solution

(12) fk0  = Σ Σ
i

I k

ik i k i

I k

ikC C C
=

−

+
=

−

1 1 1

2
, /

This is not the same estimator for fk  as according to the chain ladder formula (2). We
therefore have used an additional index '0' at this new estimator for fk . We can rewrite
fk0  as

fk0  = Σ
Σ

i

I k
ik

i

I k

ik

i k

ik

C

C

C
C=

−

=

−
+⋅

1

2

1

2

1,
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which shows that fk0  is the Cik
2 -weighted average of the individual development

factors C Ci k ik, /+1 , whereas the chain ladder estimator fk  is the Cik -weighted
average. In section 3 we saw that these weights are inversely proportional to the
underlying variances Var C C C Ci k ik i ik( / , ..., ), + 1 1 .

Correspondingly, the estimator fk0  assumes

Var C C C Ci k ik i ik( / , ..., ), + 1 1 being proportional to 1 2/ Cik

or equivalently

Var C C Ci k i ik( , ..., ), + 1 1  being proportional to 1

which means that Var C C Ci k i ik( , ..., ), + 1 1  is the same for all observations
i = 1, ..., I − k. This is not in agreement with the chain ladder assumption (5).

Here we remember that indeed the least squares method implicitly assumes equal
variances Var Yi( )  = Var i( )ε  = σ2  for all i. If this assumption is not met, that is if the
variances Var Yi( )  = Var i( )ε  depend on i, one should use a weighted least squares
approach which consists of minimizing the weighted sum of squares

Σ
i

I

i i iw Y c x b
=

− −
1

2( )

where the weights w i  are in inverse proportion to Var Yi( ) .

Therefore, in order to be in agreement with the chain ladder variance assumption (5),
we should use regression weights w i  which are proportional to 1/ Cik  (more precisely
to 1 2/ ( )Cik kα , but αk

2  can be amalgamated with the proportionality constant
because k is fixed).

Then minimizing

Σ
i

I k

i k ik k ikC C f C
=

−

+ −
1 1

2( ) /,

with respect to fk  yields indeed

fk1  = Σ Σ
i

I k

i k i

I k

ikC C
=

−

+
=

=

1 1 1, /

which is identical to the usual chain ladder age-to-age factor fk .
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It is tempting to try another set of weights, namely 1 2/ Cik  because then the weighted
sum of squares becomes

Σ
i

I k

i k ik k ikC C f C
=

−

+ −
1 1

2 2( ) /,  = Σ
i

I k
i k

ik
k

C
C

f
=

−
+ −

F
HG

I
KJ1

1
2

,

Here the minimizing procedure yields

(13) fk2  = 1
1

1

I k
C
Ci

I k
i k

ik− =

−
+Σ ,

which is the ordinary unweighted average of the development factors. The variance
assumption corresponding to the weights used is

Var C C Ci k i ik( , ..., ), + 1 1 being proportional to Cik
2

or equivalently

Var C C C Ci k ik i ik( / , ..., ), + 1 1 being proportional to 1

The benefit of transforming the estimation of the age-to-age factors into the regression
framework is the fact that the usual regression analysis instruments are now available
to check the underlying assumptions, especially the linearity and the variance
assumption. This check is usually done by carefully inspecting plots of the data and of
the residuals, as described below.

First, we plot Ci k, +1  against Cik , i = 1, ..., I − k, in order to see if we really have an
approximately linear relationship around a straight line through the origin with slope
fk = fk1 . Second, if linearity seems acceptable, we plot the weighted residuals

( ) /,C C Ci k ik ik+ −1 fk ,  1 ≤ i ≤ I − k,

(whose squares have been minimized) against Cik  in order to see if the employed
variance assumption really leads to a plot in which the residuals do not show any
specific trend but appear purely random. It is recommended to compare all three
residual plots (for i = 1, ..., I − k)

Plot 0: C C fi k ik k, + −1 0  against Cik

Plot 1: ( ) /,C C f Ci k ik k ik+ −1 1  against Cik

Plot 2: ( ) /,C C f Ci k ik k ik+ −1 2  against Cik
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and to find out which one shows the most random behaviour. All this should be done
for every development year k for which we have sufficient data points, say at least 6,
that is for k ≤ I − 6.

Some experience with least squares residual plots is useful, especially because in our
case we have only very few data points. Consequently, it is not always easy to decide
whether a pattern in the residuals is systematic or random. However, if Plot 1 exhibits
a non-random pattern, and either Plot 0 or Plot 2 does not, and if this holds true for
several values of k, we should seriously consider replacing the chain ladder age-to-age
factors fk1  = fk with fk0  or fk2  respectively.

The following numerical example will clarify the situation a bit more.
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6. Numerical Example

The data for the following example are taken from the 'Historical Loss Development
Study', 1991 Edition, published by the Reinsurance Association of America (RAA).
There, we find on page 96 the following run-off triangle of Automatic Facultative
business in General Liability (excluding Asbestos & Environmental):

Ci1 Ci2 Ci3 Ci4 Ci5 Ci6 Ci7 Ci8 Ci9 Ci10

i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10

5012
106

3410
5655
1092
1513
557

1351
3133
2063

8269
4285
8992

11555
9565
6445
4020
6947
5395

10907
5396

13873
15766
15836
11702
10946
13112

11805
10666
16141
21266
22169
12935
12314

13539
13782
18735
23425
25955
15852

16181
15599
22214
26083
26180

18009
15496
22863
27067

18608
16169
23466

18662
16704

18834

The above figures are cumulative incurred case losses in $1000. We have taken the
accident years from 1981 (i=1) to 1990 (i=10) which is enough for the sake of example
but does not mean that we believe to have reached the ultimate claims amount after 10
years of development.

We first calculate the age-to-age factors fk  = fk1  according to formula (2). The result
is shown in the following table together with the alternative factors fk0 according to
(12) and fk2  according to (13)

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

fk0
fk1
fk2

2.217
2.999
8.206

1.569
1.624
1.696

1.261
1.271
1.315

1.162
1.172
1.183

1.100
1.113
1.127

1.041
1.042
1.043

1.032
1.033
1.034

1.016
1.017
1.018

1.009
1.009
1.009

If one has the run-off triangle on a personal computer it is very easy to produce the
plots recommended in section 5 because most spreadsheet programs have the facility
of plotting X−Y graphs. For every k = 1, ..., 8 we make a plot of the amounts Ci k, +1

(y-axis) of development year k+1 against the amounts Cik  (x-axis) of development
year k for i = 1, ..., 10 − k, and draw a straight line through the origin with slope fk1 .

The plots for k = 1 to 8 are shown in the upper graphs of Figures 1 to 8, respectively.
(All figures are to be found at the end of the paper after the appendices.) The number
above each point mark indicates the corresponding accident year. (Note that the point
mark at the upper or right hand border line of each graph does not belong to the
plotted points ( , ),C Cik i k+1 , it has only been used to draw the regression line.) In the
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lower graph of each of the Figures 1 to 8 the corresponding weighted residuals
( ) /,C C Ci k ik ik+ −1  are plotted against Cik  for i = 1, ... ,10 − k.

The two plots for k = 1 (Figure 1) clearly show that the regression line does not
capture the direction of the data points very well. The line should preferably have a
positive intercept on the y-axis and a flatter slope. However, even then we would have
a high dispersion. Using the line through the origin we will probably underestimate any
future Ci2  if Ci1  is less than 2000 and will overestimate it if Ci1  is more than 4000.
Fortunately, in the one relevant case i = 10 we have Ci1  = 2063 which means that the
resulting forecast C10 2,  = C10 1, f2  = 2063·2.999 = 6187 is within the bulk of the data
points plotted. In any case, Figure 1 shows that any forecast of C10 2,  is associated with
a high uncertainty of about ±3000 or almost ±50% of an average-sized Ci2  which is
subsequently even larger when extrapolating to ultimate. If in a future accident year we
have a value Ci1  outside the interval (2000, 4000) it is reasonable to introduce an
additional parameter by fitting a regression line with positive intercept to the data and
using it for the projection to Ci2 . Such a procedure of employing an additional
parameter is acceptable between the first two development years in which we have the
highest number of data points of all years.

The two plots for k = 2 (Figure 2) are more satisfactory. The data show a clear trend
along the regression line and quite random residuals. The same holds for the two plots
for k = 4 (Figure 4). In addition, for both k = 2 and k = 4 a weighted linear regression
including a parameter for intercept would yield a value of the intercept which is not
significantly different from zero. The plots for k = 3 (Figure 3) seem to show a
curvature to the left but because of the few data points we can hope that this is
incidental. Moreover, the plots for k = 5 have a certain curvature to the right such that
we can hope that the two curvatures offset each other. The plots for k = 6, 7 and 8 are
quite satisfactory. The trends in the residuals for k = 7 and 8 have no significance in
view of the very few data points.

We need not look at the regression lines with slopes fk0  or fk2  as these slopes are
very close to fk  (except for k=1). But we should look at the corresponding plots of
weighted residuals in order to see whether they appear more satisfactory than the
previous ones. (Note that due to the different weights the residuals will be different
even if the slopes are equal.) The residual plots for fk0  and k = 1 to 4 are shown in
Figures 9 and 10. Those for fk2  and k = 1 to 4 are shown in Figures 11 and 12. In the
residual plot for f1 0,  (Figure 9, upper graph) the point furthest to the left is not an
outlier as it is in the plots for f1 1, = f1  (Figure 1, lower graph) and f1 2,  (Figure 11,
upper graph).

But with all three residual plots for k=1 the main problem is the missing intercept of
the regression line which leads to a decreasing trend in the residuals. Therefore the
improvement of the outlier is of secondary importance. For k = 2 the three residuals
plots do not show any major differences between each other. The same holds for k = 3
and 4. The residual plots for k = 5 to 8 are not important because of the small number
of data points. Altogether, we decide to keep the usual chain ladder method, that is the
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age-to-age factors fk  = fk,1 , because the alternatives fk,0  or fk,2  do not lead to a clear
improvement.

Next, we can carry through the tests for calendar year influences (see Appendix H) and
for correlations between subsequent development factors (see Appendix G). For our
example neither test leads to a rejection of the underlying assumption as is shown in
the appendices mentioned.

Having now finished all preliminary analyses we calculate the estimated ultimate claims
amounts CiI  according to formula (1), the reserves R i  = CiI − + −Ci i,I 1 and its standard

errors (7). For the standard errors we need the estimated values of α k
2 which

according to formula (8) are given by

k 1 2 3 4 5 6 7 8 9

α k
2 27883 1109 691 61.2 119 40.8 1.34 7.88

A plot of ln( )α k
2  against k is given in Figure 13 and shows that there indeed seems to

be a linear relationship which can be used to extrapolate ln( )α 9
2 . This yields α 9

2  =
exp(−.44) = .64. But we use formula (9) which is more easily programmable and in the
present case is a bit more on the safe side: it leads to α 9

2  = 1.34. Using formula (11)
for s.e.(R) as well we finally obtain

Ci,10 R i s e. .( )Ci,10  = s e. .( )R i s e. .( ) /R Ri i

i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10

16858
24083
28703
28927
19501
17749
24019
16045
18402

154
617

1636
2747
3649
5435

10907
10650
16339

206
623
747

1469
2002
2209
5358
6333

24566

134%
101%
46%
53%
55%
41%
49%
59%

150%

Overall 52135 26909 52%

(The numbers in the 'Overall'-row are R, s.e.(R) and s.e.(R)/R.) For i = 2, 3 and 10 the
percentage standard error (last column) is more than 100% of the estimated reserve
R i . For i = 2 and 3 this is due to the small amount of the corresponding reserve and is
not important because the absolute amounts of the standard errors are rather small.
But the standard error of 150% for the most recent accident year i = 10 might lead to
some concern in practice. The main reason for this high standard error is the high
uncertainty of forecasting next year's value C10 2,  as was seen when examining the plot
of Ci2  against Ci1 . Thus, one year later we will very likely be able to give a much
more precise forecast of C10 10, .
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Because all standard errors are close to or above 50% we use the Lognormal
distribution in all years for the calculation of confidence intervals. We first calculate the
upper 90%-confidence limit (or with any other chosen percentage) for the overall
outstanding claims reserve R. Denoting by µ and σ2  the parameters of the Lognormal
distribution approximating the distribution of R and using s.e.(R)/R = .52 we have
σ2  = .236 (cf. (10)) and, in the same way as in section 4, the 90th percentile is
exp(µ + 1.28σ) = R·exp(1.28σ − σ2 /2) = 1.655·R = 86298.

Now we allocate this overall amount to the accident years i = 2,..., 10 in such a way
that we reach the same level of confidence for every accident year. Each level of
confidence corresponds to a certain percentile t of the Standard Normal distribution
and — according to section 4 — the corresponding percentile of the distribution of R i

is R i exp( / )t i iσ σ− 2 2  with σ i
2 = ln( ( . .( )) / )1 2 2+ s e R Ri i . We therefore only have

to choose t in such a way that

Σ
i

I

i it
=

−
2

2 2R i .exp( / )σ σ  = 86298

This can easily be solved with the help of spreadsheet software (for example. by trial
and error, or by using a “Solver”) and yields t = 1.13208 which corresponds to the
87th percentile per accident year and leads to the following distribution of the overall
amount 86298:

R i s e. .( ) /R Ri i
σ i

2
upper confidence limit
R i exp( / )t i iσ σ− 2 2

i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10

154
617

1636
2747
3649
5435

10907
10650
16339

1.34
1.01
.46
.53
.55
.41
.49
.59

1.50

1.028
.703
.189
.252
.263
.153
.216
.303

1.182

290
1122
2436
4274
5718
7839

16571
17066
30981

Total 52135 86298

In order to arrive at the lower confidence limits we proceed completely analogously.
The 10th percentile, for instance, of the total outstanding claims amount is
R ⋅ − −exp( . / )128 22σ σ = .477·R = 24871. The distribution of this amount over the
individual accident years is made as before and leads to a value of t = −.8211 which
corresponds to the 21st percentile. This means that a 87% − 21% = 66% confidence
interval for each accident year leads to a 90% − 10% = 80% confidence interval for the
overall reserve amount. In the following table, the confidence intervals thus obtained
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for R i  are already shifted (by adding Ci i,I+ −1 ) to confidence intervals for the ultimate
claims amounts CiI  (for instance, the upper limit 16994 for i=2 has been obtained by
adding C2 9,  = 16704 and 290 from the preceding table):

Ci,10

confidence intervals
for 80% prob. overall empirical limits

i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10

16858
24083
28703
28927
19501
17749
24019
16045
18402

(16744, 16994)
(23684, 24588)
(28108, 29503)
(27784, 30454)
(17952, 21570)
(15966, 20153)
(19795, 29683)
(11221, 22461)
(5769, 33044)

(16858, 16858)
(23751, 24466)
(28118, 29446)
(27017, 31699)
(16501, 22939)
(14119, 23025)
(16272, 48462)
(8431, 54294)

(5319, 839271)

The column "empirical limits" contains the minimum and maximum size of the ultimate
claims amount resulting if, in formula (1), each age-to-age factor fk  is replaced with
the minimum (or maximum) individual development factor observed so far. These
factors are defined by

 fk,min  = min { / },C C i I ki k ik+  ≤ ≤ −1 1

 fk,max  = max{ / }, ,C C i I ki k i k+  ≤ ≤ −1 1

and can be taken from the table of all development factors which can be found in
Appendices G and H. They are

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9

fk,min

fk,max

1.650
40.425

1.259
2.723

1.082
1.977

1.102
1.292

1.009
1.195

0.993
1.113

1.026
1.043

1.003
1.033

1.009
1.009

In comparison with the confidence intervals, these empirical limits are narrower in the
earlier accident years i ≤ 4 and wider in the more recent accident years i ≥ 5. This was
to be expected because the small number of development factors observed between the
late development years only leads to a rather small variation between the minimum and
maximum factors. Therefore these empirical limits correspond to a confidence
probability which is rather small in the early accident years and becomes larger and
larger towards the recent accident years. Thus, this empirical approach to establishing
confidence limits does not seem to be reasonable.

If we used the Normal distribution instead of the Lognormal we would obtain a 90th
percentile of R + 1.28·R·(s.e.(R)/R) = 1.661·R (which is almost the same as the
1.655·R with the Lognormal) and a 10th percentile of R − 1.28·R·(s.e.(R)/R) = .34·R
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(which is lower than the .477·R with the Lognormal). Also, the allocation to the
accident years would be different.

Finally, we compare the standard errors obtained to the output of the claims reserving
software package ICRFS by Ben Zehnwirth.

This package is a modelling framework in which the user can specify his own model
within a large class of models. But it also contains some predefined models, inter alia
also a 'chain ladder model'. But this is not the usual chain ladder method, instead, it is a
log-linearized approximation of it. This is very similar to the model described in the
paper, Regression Model Based on Log-Incremental Payments by S.Christofides, see
Section D5, Volume 2 of the Claims Reserving Manual.

The slight difference in the results is due to a different estimator for the variance, σ2 .
Therefore, the estimates of the outstanding claims amounts differ from those obtained
here with the usual chain ladder method. Moreover, it works with the logarithms of the
incremental amounts C Ci k ik, + −1  and one must therefore eliminate the negative
increment C C2 7 2 6, ,− . In addition, C2 1, was identified as an outlier and was eliminated.
Then the ICRFS results were quite similar to the chain ladder results as can be seen in
the following table

est. outst. claims amount R i standard error

chain ladder ICRFS chain ladder ICRFS

i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9
i=10

154
617

1636
2747
3649
5435

10907
10650
16339

387
674

1993
2602
4097
5188

12174
15343
27575

206
623
747

1469
2002
2209
5358
6333

24566

528
624

1435
1688
2476
3156
7685

11158
28333

Overall 52135 70032 26909 33637

Even though the reserves R i  for i=9 and i=10 as well as the overall reserve R differ
considerably they are all within one standard error and therefore not significantly
different. But it should be remarked that this manner of using ICRFS is not intended by
Zehnwirth because any initial model should be further adjusted according to the
indications and plots given by the program. In this particular case there were strong
indications for developing the model further but then one would have to give up the
'chain ladder model'.
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7. Final Remarks

This paper develops a complete methodology of how to attack the claims reserving
task in a statistically sound manner on the basis of the well-known and simple chain
ladder method. However, the well-known weak points of the chain ladder method
should not be concealed. These are the fact that the estimators of the last two or three
factors f f fI I I, ,− −1 2  rely on very few observations and the fact that the known claims
amount CI1  of the last accident year (sometimes CI−1 2, , too) forms a very uncertain
basis for the projection to ultimate.

This is most clearly seen if CI1  happens to be 0: Then we have CiI = 0, R I = 0 and
s e. .( )R I  = 0 which obviously makes no sense. (Note that this weakness can often be
overcome by translating and mixing the amounts Ci1  of earlier accident years i < I into
accident year I with the help of a measure of volume for each accident year.)

Thus, even if the statistical instruments developed do not reject the applicability of the
chain ladder method, the result must be judged by an actuary and/or underwriter who
knows the business under consideration. Even then, unexpected future changes can
make all estimations obsolete. But for the many normal cases it is good to have a
sound and simple method. Simple methods have the disadvantage of not capturing all
aspects of reality but have the advantage that the user is in a position to know exactly
how the method works and where its weaknesses are. Moreover, a simple method can
be explained to non-actuaries in more detail. These are important advantages of simple
models over more sophisticated ones.
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Appendix A: Unbiasedness of Age-to-Age Factors

Proposition: Under the assumptions

(3) There are unknown constants f fI1 1, ..., − with

E C C Ci k i ik( , ..., ), + 1 1  = C fik k ,      1 ≤ i ≤ I, 1 ≤ k ≤ I − 1

(4) The variables { , ..., }C Ci iI1 and { , ..., }C Cj jI1 of different accident years i ≠ j are
independent

the age-to-age factors f , . . . , f1 I 1−  defined by

(2) fk  = Σ Σ
j

I k

j k j

I k

jkC C
=

−

+ =

−

1 1 1, / ,      1 ≤ k ≤ I − 1

are unbiased, that is we have E( )fk = fk ,      1 ≤ k ≤ I − 1

Proof: Because of the iterative rule for expectations we have

(A1) E( )fk  = E E Bk( ( ))fk 

for any set Bk of variables Cij  assumed to be known. We take

Bk = { , }C i j I j kij + ≤ + ≤1 ,      1 ≤ k ≤ I-1

According to the definition (2) of fk  and because C jk , 1 ≤ j ≤ I − k, is contained in
Bk and therefore has to be treated as scalar, we have

(A2)   E Bk( )fk  = Σ Σ
j

I k

j k k j

I k

jkE C B C
=

−

+ =

−


1 1 1

( ) /,

Because of the independence assumption (4) conditions relating to accident years other
than that of C j k, +1  can be omitted, that is we get

(A3)  E C Bj k k( ), + 1 = E C C Cj k j jk( , ..., ), + 1 1  = C fjk k

using assumption (3) as well.
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Inserting (A3) into (A2) yields

(A4) E Bk( )fk  = Σ Σ
j

I k

jk k j

I k

jkC f C
=

−

=

−

1 1
/  = fk

Finally, (A1) and (A4) yield E( )fk  = E fk( )  = fk  because fk  is a scalar.
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Appendix B: Minimizing the Variance of Independent Estimators

Proposition: Let T TI1, ...,  be independent unbiased estimators of a parameter t, that is
with

E Ti( )  = t ,      1 ≤ i ≤ I

then the variance of a linear combination

T = Σ
i

I

i iw T
=1

under the constraint

(B1) Σ
i

I

iw
=1

 = 1

(which guarantees E(T) = t) is minimal iff the coefficients w i  are inversely
proportional to Var Ti( ) , that is iff

w i  = c Var Ti/ ( ) ,      1 ≤ i ≤ I

Proof: We have to minimize

Var(T) =  Σ
i

I

i iw Var T
=1

2 ( )

(due to the independence of T TI1, ..., ) with respect to wi under the constraint (B1).

A necessary condition for an extremum is that the derivatives of the Lagrangian are
zero, that is

(B2) ∂
∂

λ
w

w Var T w
i i

I

i i i

I

iΣ Σ
= =

+ −
F
HG

I
KJ

F
HGG

I
KJJ1

2

1
1( )  = 0,      1 ≤ i ≤ I

with a constant multiplier λ whose value can be determined by additionally using (B1).
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(B2) yields

 2w Var Ti i( ) − λ  = 0

or

w i = λ / ( ( ))2 ⋅ Var Ti

These weights w i  indeed lead to a minimum as can be seen by calculating the extremal
value of Var(T) and applying Schwarz's inequality.

Corollary: In the chain ladder case we have estimators Ti  = C Ci k ik, /+1 , 1 ≤ i ≤ I − k,
for fk  where the variables of the set

Ak = { , ..., }C Ci ik
i

I k
1

1=

−
U

of the corresponding accident years i = 1, ..., I − k up to development year k are
considered to be given. We therefore want to minimize the conditional variance

Var w T A
i

I k

i i kΣ
=

−


F
HG

I
KJ1

From the above proof it is clear that the minimizing weights should be inversely
proportional to Var T Ai k( ) . Because of the independence (4) of the accident years,
conditions relating to accident years other than that of Ti  = C Ci k ik, /+1  can be omitted.
We therefore have

Var T Ai k( )  = Var C C C Ci k ik i ik( / , ..., ), + 1 1

and arrive at the result that the minimizing weights should be inversely proportional to

Var C C C Ci k ik i ik( / , ..., ), + 1 1
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Appendix C: Unbiasedness of the Estimated Ultimate Claims Amount

Proposition: Under the assumptions

(3) There are unknown constants f fI1 1, ... , −  with

E C C Ci k i ik( , ..., ), + 1 1  = C fik k ,      1 ≤ i ≤ I, 1 ≤ k ≤ I-1

(4) The variables { , ..., }C Ci iI1 and { , ..., }C Cj jI1  of different accident years i ≠ j are
independent

the expected values of the estimator

(1) CiI  = Ci i,I ...+ − + − −⋅ ⋅1 f fi 1 i I 1

for the ultimate claims amount and of the true ultimate claims amount CiI  are equal,
that is we have E( )CiI = E CiI( ) , 2 ≤ i ≤ I.

Proof: We first show that the age-to-age factors fk  are uncorrelated. With the same
set

Bk = { Cij  i + j ≤ I + 1, j ≤ k },      1 ≤ k ≤ I − 1

of variables assumed to be known as in Appendix A we have for j < k

E( )f fj k = E E Bk( ( ))f fj k  (a)

  = E E Bk( ( ))f fj k  (b)
 = E fk( )f j (c)
 = E fk( )f j (d)
 =  f fj k (e)

Here (a) holds because of the iterative rule for expectations, (b) holds because f j  is a
scalar for Bk  given and for j < k, (c) holds due to (A4), (d) holds because fk  is a
scalar and (e) was shown in Appendix A.

This result can easily be extended to arbitrary products of different fk 's, that is we
have

(C1) E( ... )f fI 1 i I 1+ − −⋅ ⋅  = f fi i I+ − −⋅ ⋅1 1...
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This yields

E( )CiI = E E C Ci i i( ( , ..., )),ICiI + −1 1  (a)

 = E E C C Ci i i i i( ( ... , ..., )),I ,I+ − + − − + −⋅ ⋅ 1 1 1f fI 1 i I 1  (b)

 = E C E C Ci i i i i( ( ... , ..., )),I ,I+ − + − − + −⋅ ⋅ 1 1 1f fI 1 i I 1  (c)
 = E C Ei i( ( ... )),I+ − + − −⋅ ⋅1 f fI 1 i I 1  (d)
 = E C Ei i( ) ( ... ),I+ − + − −⋅ ⋅ ⋅1 f fI 1 i I 1  (e)
 = E C f fi i I i I( ) ...,I+ − + − −⋅ ⋅ ⋅1 1 1   (f)

Here (a) holds because of the iterative rule for expectations, (b) holds because of the
definition (1) of CiI , (c) holds because Ci i,I+ −1  is a scalar under the stated condition,
(d) holds because conditions which are independent from the conditioned variable
f fI 1 i I 1+ − −⋅ ⋅...  can be omitted (observe assumption (4) and the fact that f fI 1 i I 1+ − −, ...,
only depend on variables of accident years ≤ i), (e) holds because E( , ..., )f fI 1 i I 1+ − −  is
a scalar and (f) holds because of (C1).

Finally, repeated application of the iterative rule for expectations and of assumption (3)
yields for the expected value of the true reserve CiI

 E CiI( ) = E E C C CiI i i( ( , ..., )),I −1 1

 = E C fi I( ),I− −1 1

 = E C fi I( ),I− −1 1

 = E E C C C fi i I I( ( , ..., )),I− − −1 1 2 1

= E C f fi I I( ),I− − −2 2 1

 = E C f fi I I( ),I− − −2 2 1

= and so on
 = E C f fi i I i I( ) ...,I+ − + − −⋅ ⋅1 1 1

 = E( )CiI
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Appendix D: Calculation of the Standard Error of CiI

Proposition: Under the assumptions

(3) There are unknown constants f fI1 1, ..., − with

 E C C Ci k i ik( , ..., ), + 1 1  = C fik k ,      1 ≤ i ≤ I, 1 ≤ k ≤ I − 1

(4) The variables { , ..., }C Ci iI1 and { , ..., }C Cj jI1  of different accident years i ≠ j are
independent

(5) There are unknown constants α α1 1, ..., I− with

Var C C Ci k i ik( , ..., ), + 1 1  = Cik kα 2 ,      1 ≤ i ≤ I, 1 ≤ k ≤ I − 1

the standard error s.e. ( )CiI  of the estimated ultimate claims amount
CiI  = Ci i,I ...+ − + − −⋅ ⋅1 f fI 1 i I 1  is given by the formula

( . .( ))s e CiI
2  = C

f CiI
k

k ik

2

1

1 2

2

1

1 1Σ
Σ

k I i

I

j

I k

jkC
= + −

−

=

−+

F

H
GGGG

I

K
JJJJ

F

H

GGGG

I

K

JJJJ
α

where Cik  = Ci i,I ...+ − + − −1 f fI 1 i k 1 , k > I + 1 − i, are the estimated values of the future
Ci k,  and Ci,I 1 i+ − = Ci i,I+ −1 .

Proof: As stated in section 4, the standard error is the square root of an estimator of
mse( )CiI  and we have also seen that

(D1) mse( )CiI = Var C D E C DiI iI( ) ( ( ) ) +  − CiI
2

In the following, we use the abbreviations

E Xi ( )  = E X C Ci i i( , ..., ),I + −1 1

Var Xi ( )  = Var X C Ci i i( , ..., ),I + −1 1

Because of the independence of the accident years we can omit in (D1) that part of the
condition D = {C i kik  + ≤ I + 1} which is independent from CiI , that is we can write

(D2) mse( )CiI  = Var C E Ci iI i iI( ) ( ( ) )+ − CiI
2
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We first consider Var Ci iI( ) . Because of the general rule Var(X) = E X E X( ) ( ( ))2 2−
we have

(D3) Var Ci iI( )  = E C E Ci iI i iI( ) ( ( ))2 2−

For the calculation of E Ci iI( )  we use the fact that for k ≥ I + 1 − i

(D4) E Ci i k( ), +1  = E E C C Ci i k i ik( ( , ..., )), + 1 1

= E C fi ik k( )
 = E C fi ik k( )

Here, we have used the iterative rule for expectations in its general form
E(X|Z) = (E(X|Y)|Z) for {Y} ⊃ {Z} (mostly {Z} is the empty set). By successively
applying (D4) we obtain for k ≥ I + 1 − i

(D5) E Ci i k( ), +1 = E C f fi i i I i k( ) ...,I+ − + − ⋅ ⋅1 1

= C f fi i I i k,I ...+ − + − ⋅ ⋅1 1

because Ci i,I+ −1  is a scalar under the condition 'i'.

For the calculation of the first term E Ci iI( )2 of (D3) we use the fact that for
k ≥ I + 1 − i

(D6) E Ci i k( ), +1
2 = E E C C Ci i k i ik( ( ) , ..., ), + 1

2
1 (a)

 = E Var C C C E C C Ci i k i ik i k i ik( ( , ..., ) ( ( , ..., )) ), ,+ + + 1 1 1 1
2 (b)

= E C C fi ik k ik k( ( ) )α 2 2+  (c)
= E C E C fi ik k i ik k( ) ( )α 2 2 2+

Here, (a) holds due to the iterative rule for expectations, (b) due to the rule
E X( )2  = Var X E X( ) ( ( ))+ 2  and (c) holds due to (3) and (5). Now, we apply (D6)
and (D5) successively to get

(D7) E Ci iI( )2  = E C E C fi i I i i I( ) ( ),I ,I− − − −+1 1
2

1
2

1
2α  (D6)

 = C f fi i I i I I,I+ − + − − −⋅⋅⋅ +1 1 2 1
2α  (D5)

 + +− − −E C fi i I I( ),I 2 2
2

1
2α (D6)

+ − − −E C f fi i I I( ),I 2
2

2
2

1
2
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= C f fi i I i I I,I+ − + − − −⋅⋅⋅ +1 1 2 1
2α

 + ⋅⋅⋅ ++ − + − − − −C f f fi i I i I I I,I 1 1 3 2
2

1
2α  (D5)

 + +− − − −E C f fi i I I I( ),I 3 3
2

2
2

1
2α  (D6)

+ − − − −E C f f fi i I I I( ),I 3
2

3
2

2
2

1
2

 = and so on

= C f f f fi i k I i

I

I i k k k I,I+ −
= + −

−

+ − − + −⋅⋅⋅ ⋅⋅⋅1 1

1

1 1
2

1
2

1
2Σ α

+ ⋅ ⋅+ − + − −C f fi i I i I,I ...1
2

1
2

1
2

where in the last step we have used E Ci i i( ),I+ −1  = Ci i,I+ −1  and

E Ci i i( ),I+ −1
2  = Ci i,I+ −1

2  because under the condition 'i' Ci i,I+ −1  is a scalar. Due to (D5)
we have

(D8) ( ( ))E Ci iI
2  = C f fi i I i I,I ...+ − + − −⋅ ⋅1

2
1

2
1
2

Inserting (D7) and (D8) into (D3) yields

(D9) Var Ci iI( )  = C f f f fi i k I i

I

I i k k k I,I+ −
= + −

−

+ − − + −⋅⋅⋅ ⋅⋅⋅1 1

1

1 1
2

1
2

1
2Σ α

We estimate this first summand of mse( )CiI  by replacing the unknown parameters
fk k, α 2 with their unbiased estimators fk  and α k

2 , that is by

(D10) Ci i k I i

I

,I+ −
= + −

−

+ − − + −⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅1 1

1
2 2 2Σ f f f fI 1 i k 1 k k 1 I 1α

= C
Ci i k I i

I

i i
,I

,I

/
+ − + − −

= + −

−

+ − + − −

⋅⋅⋅
⋅⋅⋅1

2 2 2

1

1 2 2

1
f f f

f fI 1 i I 1
k k

I 1 i k 1
Σ α

= C f
CiI

k k

ik

2

1

1 2 2

Σ
k I i

I

= + −

−
α /

where we have used the notation Cik  introduced in the proposition for the estimated
amounts of the future C k I ii k, , > + −1 , including Ci,I 1 i+ − = Ci i,I+ −1 .
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We now turn to the second summand of the expression (D2) for mse( )CiI . Because of
(D5) we have

 E Ci iI( )  = C f fi i I i I,I ...+ − + − −⋅ ⋅1 1 1

and therefore

(D11) ( ( ) )E Ci iI − CiI
2  = C f fi i I i I,I ( ... ... )+ − + − − + − −⋅ ⋅ − ⋅ ⋅1

2
1 1

2f fI 1 i I 1

This expression cannot simply be estimated by replacing fk  with fk  because this
would yield 0 which is not a good estimator because f fI 1 i I 1+ − −⋅ ⋅...  generally will be
different from f fI i I+ − −⋅ ⋅1 1...  and therefore the squared difference will be positive. We
therefore must take a different approach. We use the algebraic identity

F = f fI i I+ − −⋅ ⋅ − ⋅ ⋅1 1... ...f fI+1-i I-1

 = S SI i I+ − −+ +1 1...

with

Sk = f fI 1 i k 1+ − − + −⋅ ⋅ ⋅ ⋅ −... ...f f fk k I1 1
 − ⋅ ⋅ ⋅ ⋅+ − − + −f f fI 1 i k 1 k... ...f fk I1 1

= f f fI 1 i k 1 k+ − − + −⋅ ⋅ − ⋅ ⋅... ( ) ...f f fk k I1 1

This yields

F2 = ( ... )S SI i I+ − −+ +1 1
2

= Σ Σ
k I i

I

k j k j kS S S
= + −

−

<
+

1

1
2 2

where in the last summation j and k run from I + 1 − i to I − 1. Now we replace Sk
2

with E S Bk k( )2  and S Sj k , j < k, with E S S Bj k k( ) . This means that we approximate

Sk
2  and S Sj k by varying and averaging as little data as possible so that as many values

Cik  as possible from data observed are kept fixed. Due to (A4) we have

E f Bk k( )− fk  = 0 and therefore E S S Bj k k( )  = 0 for j < k because all fr , r < k, are
scalars under Bk .
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Because of

(D12) E f Bk k(( ) )− fk
2  = Var Bk( )fk 

= Σ Σ
j

I k

j k k j

I k

jkVar C B C
=

−

+
=

−


F
HG

I
KJ1 1 1

2

( ) /,

= Σ Σ
j

I k

j k j jk j

I k

jkVar C C C C
=

−

+
=

−


F
HG

I
KJ1 1 1 1

2

( , ..., ) /,

= Σ Σ
j

I k

jk k j

I k

jkC C
=

−

=

−F
HG

I
KJ1

2

1

2

α /

= αk j

I k

jkC2

1
/ Σ

=

−

we obtain

E S Bk k( )2  = f fI 1 i k 1+ − − + − =

−

⋅⋅⋅ ⋅⋅⋅2 2 2
1

2
1

2

1
αk k I j

I k

jkf f C/ Σ

Taken together, we have replaced F2  = ( )ΣSk
2  with Σk k kE S B( )2  and because all

terms of this sum are positive we can replace all unknown parameters fk , αk
2  with

their unbiased estimators fk k, α 2 .  Altogether, we estimate
F2  = ( ... ... )f fI i I+ − −⋅ ⋅ − ⋅ ⋅1 1

2f fI+1-i I-1  by

Σ Σ
k I i

I

j

I k

jkC
= + −

−

+ − − −
=

−

⋅⋅⋅ ⋅ ⋅ ⋅⋅⋅
F
HG

I
KJ1

1
2 2 2 2 2

1
f f f fI 1 i k 1 k k 1 I 1α + /  = f f f

I 1 i I 1
k k

+ − −
= + −

−

=

−⋅ ⋅2 2

1

1 2 2

1

... /Σ
Σ

k I i

I

j

I k

jkC

α
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Using (D11), this means that we estimate ( ( ) )E Ci iI − CiI
2  by

(D13) C

C
i i k I i

I

j

I k

jk

,I ... /
+ − + − −

= + −

−

=

−⋅ ⋅1
2 2 2

1

1 2 2

1

f f f
I 1 i I 1

k kΣ
Σ

α

= C f
iI

k k2

1

1 2 2

1

Σ
Σ

k I i

I

j

I k

jkC
= + −

−

=

−
α /

From (D2), (D10) and (D13) we finally obtain the estimator ( . .( ))s e CiI
2  for mse( )CiI

as stated in the proposition.
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Appendix E: Unbiasedness of the Estimator α k
2

Proposition: Under the assumptions

(3) There are unknown constants f1, ..., fI−1  with

E C C Ci k i ik( , ..., ), + 1 1  = C fik k ,  1 ≤ i ≤ I, 1 ≤ k ≤ I − 1

(4) The variables { , ..., }C Ci iI1 and { , ..., }C Cj jI1  of different accident years i ≠ j are
independent.

(5) There are unknown constants α α1 1, ..., I− with

Var C C Ci k i ik( , ..., ), + 1 1  = Cik kα 2 ,  1 ≤ i ≤ I, 1 ≤ k ≤ I − 1

the estimators

α k
2 = 1

1 1

1
2

I k
C

C
Cj

I k

jk
j k

jk− −
−

F
HG

I
KJ=

−
+Σ , fk ,       1 ≤ k ≤ I − 2

of αk
2  are unbiased, that is we have

E( )αk
2  = αk

2 ,      1 ≤ k ≤ I − 2

Proof: In this proof all summations are over the index j from j = 1 to j = I − k. The
definition of α k

2  can be rewritten as

(E1) ( )I k− − 1 2α k = Σ( / ), ,C C C Cj k jk j k jk+ +− ⋅ +1
2

1
22 f fk k

 = Σ Σ( / ) ( ),C C Cj k jk jk+ −1
2 2fk

using ΣC j k, +1  = fkΣC jk  according to the definition of fk . Using again the set

Bk  = { Cij  | i + j ≤ I + 1, j ≤ k}

of variables Cij  assumed to be known, (E1) yields

(E2) E((I − k − 1) α k
2Bk )  = Σ ΣE C B C C E Bj k k jk jk k( ) / ( ), +  − 1

2 2fk

because C jk  is a scalar under the condition of Bk  being known.
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Due to the independence (4) of the accident years, conditions which are independent
from the conditioned variable can be omitted in E C Bj k k( ), + 1

2 , that is

(E3) E C Bj k k( ), + 1
2 = E C C Cj k j jk( , ..., ), + 1

2
1

= Var C C C E C C Cj k j jk j k j jk( , ..., ) ( ( , ..., )), ,+ + + 1 1 1 1
2

= C C fjk k jk kα 2 2+ ( )

where the rule E X( )2  = Var(X) + ( ( ))E X 2  and the assumptions (5) and (3) have also
been used.

From (D12) and (A4) we gather

(E4) E Bk( )fk
2  = Var B E Bk k( ) ( ( ))f fk k

2 2 + 

= αk jk kC f2 2/ Σ +

Inserting (E3) and (E4) into (E2) we obtain

E I k Bk(( ) )− − 1 2αk = Σ Σ Σ
j

I k

k jk k j

I k

jk k j

I k

jk jk kC f C C C f
=

−

=

−

=

−

+ − +
F
HG

I
KJ1

2 2

1

2

1

2( ) /α α

= ( )I k k k− −α α2 2  

= ( )I k k− − 1 2α  

From this we immediately obtain E Bk( )αk
2 = αk

2

Finally, the iterative rule for expectations yields

E( )αk
2  = E E Bk( ( ))αk

2  = E k( )α 2  = αk
2
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Appendix F: The Standard Error of the Overall Reserve Estimate

Proposition: Under the assumptions

(3) There are unknown constants f fI1 1, ..., −  with

E C C Ci k i ik( , ..., ), + 1 1  = C fik k ,      1 ≤ i ≤ I, 1 ≤ k ≤ I − 1

(4) The variables{ , ..., }C Ci iI1 and { , ..., }C Cj jI1 of different accident years i ≠ j are
independent.

(5) There are unknown constants α α1 1, ..., I−  with

Var C C Ci k i ik( , ..., ), + 1 1  = Cik kα 2 ,      1 ≤ i ≤ I, 1 ≤ k ≤ I − 1

the standard error s.e.(R) of the overall reserve estimate

R = R R2 I+ +...

is given by

( . .( ))s e R 2  = Σ Σ Σ
Σ

i

I

j i

I

k I i

I

n

I k

nk

se

C
= = + = + −

−

=

−+
F
HG

I
KJ

R
S||
T||

U
V||
W||

2

2

1 1

1 2 2

1

2( .( ) /R C C f
i iI jI

k kα

Proof: This proof is analogous to that in Appendix D. The comments will therefore be
brief. We first must determine the mean squared error mse(R) of R. Using again
D={ Cik  i + k ≤ I + 1} we have

(F1) mse
i

I

Σ
=

F
HG

I
KJ2

R i  = E R D
i

I

i

I

iΣ Σ
= =

−
F
HG

I
KJ

F
H
GG

I
K
JJ2 2

2

R i

= E C D
i

I

i

I

iIΣ Σ
= =

−
F
HG

I
KJ

F
H
GG

I
K
JJ2 2

2

CiI

= Var C D E C D
i

I

iI i

I

iI i

I

Σ Σ Σ
= = =


F
HG

I
KJ+ 

F
HG

I
KJ−

F
HGG

I
KJJ2 2 2

2

CiI
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The independence of the accident years yields

(F2) Var C D
i

I

iIΣ
=


F
HG

I
KJ2

 = Σ
i

I

iI i i iVar C C C
=

+ −
2 1 1( , ..., ),I

whose summands have been calculated in Appendix D, see (D9). Furthermore

(F3) E C D
i

I

iI i

I

Σ Σ
= =


F
HG

I
KJ−

F
HGG

I
KJJ2 2

2

CiI = Σ
I

I

iIE C D
=

 −
F
HG

I
KJ2

2

( ( ) )CiI

= Σ
2≤ ≤

 − ⋅  −
i j I iI jIE C D E C D
,

( ( ) ) ( ( ) )C CiI jI

= Σ
2 1 1 1≤ ≤ + − + −i j i i j j i jC C F F

, ,I ,I

= Σ Σ
i

I

i i i i j i i j j i jC F C C F F
= + − < + − + −+

2 1
2

1 12( ),I ,I ,I

with (as for (D11))

Fi  = f fI i I+ − − + − −⋅⋅⋅ − ⋅⋅⋅1 1 f fI 1 i I 1

which is identical to F of Appendix D but here we have to carry the index i, too. In
Appendix D we have shown (cf. (D2) and (D11)) that

mse( )R i = Var C C C C FiI i i i i i i( , ..., ) ( ),I ,I ++ − + −1 1 1
2

Comparing this with (F1), (F2) and (F3) we see that

(F4)   mse
i

I

Σ
=

F
HG

I
KJ2

R i  = Σ Σ
i

I

i j I i i j j i jmse C C F F
= ≤ < ≤ + − + −+ ⋅

2 2 1 12( ) ,I ,IR i

We therefore need only develop an estimator for F Fi j . A procedure completely

analogous to that for F2  in the proof of Appendix D yields for F F i ji j , ,<  the
estimator

Σ Σ
k I i

I

n

I k

nkC
= + −

−

+ − − + − − + −
=

−

1

1
2 2 2 2 2

1
f f f f f fI 1 j I i I 1 i k 1 k k 1 I 1... ... ... /α

which immediately leads to the result stated in the proposition.
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Appendix G: Testing for Correlations between Subsequent Development Factors

In this appendix we first prove that the basic assumption (3) of the chain ladder
method implies that subsequent development factors C Cik i k/ , −1and C Ci k ik, /+1  are not
correlated. Then we show how we can test if this uncorrelatedness is met for a given
run-off triangle. Finally, we apply this test procedure to the numerical example of
section 6.

Proposition: Under the assumption

(3) There are unknown constants f fI I, ..., −1 with

E C C Ci k i ik( , ..., ), + 1 1  = C fik k ,   1 ≤ i ≤ I,  1 ≤ k ≤ I − 1

subsequent development factors C Cik i k/ , −1  and C Ci k ik, /+1  are uncorrelated, that is
we have (for 1 ≤ i ≤ I, 2 ≤ k ≤ I − 1)

E C
C

C
C

ik

i k

i k

ik,

,

−

+⋅
F
HG

I
KJ1

1  = E C
C

E
C
C

ik

i k

i k

ik,

,

−

+F
HG

I
KJ⋅

F
HG

I
KJ1

1

Proof: For j ≤ k we have

(G1) E C Ci k ij( / ), +1 = E E C C C Ci k ij i ik( ( / , ..., )), + 1 1  (a)

 = E E C C C Ci k i ik ij( ( , ..., ) / ), + 1 1  (b)
  = E C f Cik k ij( / )  (c)

= E C C fik ij k( / )  (d)

Here equation (a) holds due to the iterative rule E(X) = E(E(X|Y)) for expectations,
(b) holds because, given C C Ci ik ij1, ..., ,  is a scalar for j ≤ k, (c) holds due to (3) and
(d) holds because fk  is a scalar.

From (G1) we obtain through the special case j = k

(G2) E C Ci k ik( / ), +1  = E C C fik ik k( / )  = fk

and through j = k − 1

(G3) E C
C

C
C

ik

i k

i k

ik,

,

−

+⋅
F
HG

I
KJ1

1  = E
C
C

i k

i k

,

,

+

−

F
HG

I
KJ

1

1
 (G1)

= E C
C

fik

i k
k

, −

F
HG

I
KJ1
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Inserting (G2) into (G3) completes the proof.

Designing the test procedure

The usual test for uncorrelatedness requires that we have identically distributed pairs of
observations which come from a Normal distribution. Both conditions are usually not
fulfilled for adjacent columns of development factors. (Note that due to (G2) the
development factors C Ci k ik, /+1 , 1 ≤ i ≤ I − k, have the same expectation but
assumption (5) implies that they have different variances.) We therefore use the test
with Spearman's rank correlation coefficient because this test is distribution-free and
because by using ranks the differences in the variances of C Ci k ik, /+1 , 1 ≤ i ≤ I − k,
become less important. Even if these differences are negligible the test will only be of
an approximate nature because, strictly speaking, it is a test for independence rather
than for uncorrelatedness. But we will take this into account when fixing the critical
value of the test statistic.

For the application of Spearman's test we consider a fixed development year k and
rank the development factors C Ci k ik, /+1  observed so far according to their size
starting with the smallest one on rank one and so on. Let rik , 1 ≤ i ≤ I − k, denote the
rank of C Ci k ik, /+1  obtained in this way, 1 ≤ rik  ≤ I − k. Then we do the same with the
preceding development factors  C Cik i k/ ,, −1  1 ≤ i ≤ I − k, leaving out
C CI k k I k k+ − + − −1 1 1, ,/  for which the subsequent  development factor has not yet been
observed. Let sik , 1 ≤ i ≤ I − k, be the ranks obtained in this way, 1 ≤ sik ≤ I − k. Now,
Spearman's rank correlation coefficient Tk  is defined to be

(G4) Tk  = 1 6
1

2 3− − − − +
=

−

Σ
i

I k

ik ikr s I k I k( ) / (( ) )

It can be seen that

−1 ≤ Tk  ≤ +1

and, under the null-hypothesis,

E Tk( )  = 0
Var Tk( ) = 1/(I − k − 1)

A value of Tk  close to 0 indicates that the development factors between development
years k − 1 and k and those between years k and k + 1 are not correlated. Any other
value of Tk  indicates that the factors are (positively or negatively) correlated.

For a formal test we do not want to consider every pair of columns of adjacent
development years separately in order to avoid an accumulation of the error
probabilities. We therefore consider the triangle as a whole. This also is preferable
from a practical point of view because it is more important to know whether
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correlations globally prevail than to find a small part of the triangle with correlations.
We therefore combine all values T2 , T3 , ..., TI−2  obtained in the same way like Tk .
(There is no T1  because there are no development factors before development year
k=1 and similarly there is also no TI ; even TI−1  is not included because there is only
one rank and therefore no randomness.)

According to Appendix B we should not form an unweighted average of
T TI2 2, ..., − but rather use weights which are inversely proportional to
Var Tk( )  = 1/(I − k − 1). This leads to weights which are just equal to one less than the
number of pairs ( , )r sik ik  taken into account by Tk  which seems very reasonable.

We thus calculate

(G5) T = Σ Σ
k

I

k k

I

I k T I k
=

−

=

−

− − − −
2

2

2

2

1 1( ) / ( )

= Σ
k

I

k
I k

I I
T

=

−
− −

− −2

2 1
2 3 2( )( ) /

E(T) = Σ
k

I

kE T
=

−

2

2

( )  = 0

(G6) Var(T) = Σ Σ
k

I

k k

I

I k Var T I k
=

−

=

−

− − − −
F
HG

I
KJ2

2
2

2

2 2

1 1( ) ( ) / ( )

= Σ Σ
k

I

k

I

I k I k
=

−

=

−

− − − −
F
HG

I
KJ2

2

2

2 2

1 1( ) / ( )

= 1
2 3 2( )( ) /I I− −

where for the calculation of Var(T) we used the fact that under the null-hypothesis
subsequent development factors and therefore also different Tk 's are uncorrelated.

Because the distribution of a single Tk  with I − k ≥ 10 is Normal in good
approximation and because T is the aggregation of several uncorrelated Tk 's (which all
are symmetrically distributed around their mean 0) we can assume that T has
approximately a Normal distribution and use this to design a significance test. Usually,
when applying a significance test one rejects the null-hypothesis if it is very unlikely to
hold, e.g. if the value of the test statistic is outside its 95% confidence interval. But in
our case we propose to use only a 50% confidence interval because the test is only of
an approximate nature and because we want to detect correlations already in a
substantial part of the run-off triangle. Therefore, as the probability for a
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Standard Normal variate lying in the interval (−.67, .67) is 50% we do not reject the
null-hypothesis of having uncorrelated development factors if

−
− −

≤ ≤ +
− −

0 67
2 3 2

0 67
2 3 2

.
(( )( ) / )

.
(( )( ) / )I I

T
I I

If T is outside this interval we should be reluctant with the application of the chain
ladder method and analyze the correlations in more detail. In such a case, an
autoregressive model of an order > 1 is probably more appropriate, for example by
replacing the fundamental chain ladder assumption (3) with

E C C Ci k i ik( , ..., ), + 1 1  = C f C gik k i k k+ −, 1

Application to the example of section 6:

We start with the table of all development factors:

F1 F2 F3 F4 F5 F6 F7 F8 F9

i=1
i=2
i=3
i=4
i=5
I=6
I=7
I=8
I=9

1.6
40.4
2.6
2.0
8.8
4.3
7.2
5.1
1.7

1.32
1.26
1.54
1.36
1.66
1.82
2.72
1.89

1.08
1.98
1.16
1.35
1.40
1.11
1.12

1.15
1.29
1.16
1.10
1.17
1.23

1.20
1.13
1.19
1.11
1.01

1.11
0.99
1.03
1.04

1.033
1.043
1.026

1.00
1.03

1.01

As described above we first rank column F1  according to the size of the factors, then
leave out the last element and rank the column again. Then we do the same with
columns F2  to F8 . This yields the following table:

ri1 si2 ri2 si3 ri3 si4 ri4 si5 ri5 si6 ri6 si7 ri7 si8 ri8

1
9
4
3
8
5
7
6
2

1
8
3
2
7
4
6
5

2
1
4
3
5
6
8
7

2
1
4
3
5
6
7

1
7
4
5
6
2
3

1
6
3
4
5
2

2
6
3
1
4
5

2
5
3
1
4

5
3
4
2
1

4
2
3
1

4
1
2
3

3
1
2

2
3
1

1
2

1
2
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We now add the squared differences between adjacent rank columns of equal length,
that is we add ( )s rik ik− 2  over i for every k,  2 ≤ k ≤ 8. This yields 68, 74, 20, 24, 6, 6
and 0. (Remember that we have to leave out k = 1 because there is no si1 , and k = 9
because there is only one pair of ranks and therefore no randomness.) From these
figures we obtain Spearman's rank correlation coefficients Tk  according to formula
(G4):

k 2 3 4 5 6 7 8

Tk
I − k −1

4/21
7

−9/28
6

3/7
5

−1/5
4

2/5
3

−1/2
2

1
1

The (I − k − 1)-weighted average of the Tk 's is T = .070 (see formula (G5)). Because
of Var(T) = 1/28 (see (G6)) the 50% confidence limits for T are ± .67/√28 = ±.127.
Thus, T is within its 50%-interval and the hypothesis of having uncorrelated
development factors is not rejected.
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Appendix H: Testing for Calendar Year Effects

One of the three basic assumptions underlying the chain ladder method was seen to be
assumption (4) of the independence of the accident years. The main reason why this
independence can be violated in practice is the fact that we can have certain calendar
year effects such as major changes in claims handling or in case reserving or external
influences such as substantial changes in court decisions or inflation. Note that a
constant rate of inflation which has not been removed from the data is extrapolated
into the future by the chain ladder method. In the following, we first generally describe
a procedure to test for such calendar year influences and then apply it to our example.

Designing the test procedure:

A calendar year influence affects one of the diagonals

D j  = { , , ..., , }, ,C C C Cj j j j1 1 2 2 1 1− − ,      1 ≤ j ≤ I

and therefore also influences the adjacent development factors

A j  = { / , / , ..., / }, , ,C C C C C Cj j j j j j2 1 1 3 1 2 1 1 1− − +

and

A j−1  = { / , / , ..., / }, , , , ,C C C C C Cj j j j j j− − − − −1 2 1 1 2 3 2 2 1 1 1

where the elements of D j  form either the denominator or the numerator. Thus, if due
to a calendar year influence the elements of D j  are larger (smaller) than usual, then the
elements of A j−1  are also larger (smaller) than usual and the elements of A j  are
smaller (larger) than usual.

Therefore, in order to check for such calendar year influences we only have to
subdivide all development factors into 'smaller' and 'larger' ones and then to examine
whether there are diagonals where the small development factors or the large ones
clearly prevail. For this purpose, we order for every k, 1 ≤ k ≤ I − 1, the elements of
the set

Fk  =  { /,C Ci k ik+ 1 1 ≤ i ≤ I − k}

that is of the column of all development factors observed between development years k
and k + 1, according to their size and subdivide them into one part LFk  of larger
factors being greater than the median of Fk  and into a second part SFk of smaller
factors below the median of Fk . (The median of a set of real numbers is defined to be a
number which divides the set into two parts with the same number of elements.) If the
number I − k of elements of  Fk  is odd there is one element of Fk  which is equal to the
median and therefore assigned to neither of the sets LFk  and SFk ; this element is
eliminated from all further considerations.
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Having done this procedure for each set Fk , 1 ≤ k ≤ I − 1, every development factor
observed is

- either eliminated (like e.g. the only element of FI−1)
- or assigned to the set L = LF1  + ... + LFI−2  of larger factors
- or assigned to the set S = SF1  + ... + SFI−2  of smaller factors

In this way, every development factor which is not eliminated has a 50% chance of
belonging to either L or S.

Now we count for every diagonal A j , 1 ≤ j ≤ I − 1, of development factors the number
L j  of large factors, that is elements of L, and the number S j  of small factors, that is
elements of S. Intuitively, if there is no specific change from calendar year j to calendar
year j + 1, A j  should have about the same number of small factors as of large factors,
that is L j  and S j  should be of approximately the same size apart from pure random
fluctuations. But if L j  is significantly larger or smaller than S j  or, equivalently, if

Z j  = min( , )L Sj j

that is the smaller of the two figures, is significantly smaller than ( ) /L Sj j+ 2 , then
there is some reason for a specific calendar year influence.

In order to design a formal test we need the probability distribution of Z j  under the
null-hypothesis that each development factor has a 50 % probability of belonging to
either L or S. This distribution can easily be established. We give an example for the
case where L Sj j+  = 5, that is where the set A j  contains 5 development factors
without counting any eliminated factor. Then the number L j  has a Binomial
distribution with n = 5 and p = .5, that is

prob L j(  = m) = 
n
m n
F
HG

I
KJ

1
2

 = 
5 1

25m
F
HG

I
KJ , m = 0, 1, ..., 5

Therefore

prob(S j  = 5) = prob( L j  = 0) = 1/32
prob(S j  = 4) = prob( L j  = 1) = 5/32
prob(S j  = 3) = prob( L j  = 2) = 10/32
prob(S j  = 2) = prob( L j  = 3) = 10/32
prob(S j  = 1) = prob( L j  = 4) = 5/32
prob(S j  = 0) = prob( L j  = 5) = 1/32

This yields
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prob( Z j  = 0) = prob( L j  = 0) + prob(S j  = 0) = 2/32
prob( Z j  = 1) = prob( L j  = 1) + prob(S j  = 1) = 10/32
prob( Z j  = 2) = prob( L j  = 2) + prob(S j  = 2) = 20/32

In this way we obtain very easily the following table for the cumulative probability
distribution function of Z j :

n prob Z j( )≤ 0 prob Z j( )≤ 1 prob Z j( ) ...≤ 2

≤4
5
6
7
8
9
10
11
...

>10%
6.25%
3.1%
1.6%
0.8%
0.4%
0.2%
0.1%

>10%
>10%
>10%
>10%
7.0%
3.9%
2.1%
1.2%

>10%
>10%
>10%
>10%
>10%
>10%
>10%
6.5%

Now, we use this table in the following way: Any realization Z j  = z j  with a
cumulative probability prob Z zj j( )≤  ≤ 10 %  indicates that the corresponding set
A j  = { / , / , ...}, ,C C C Cj j j j2 1 1 3 1 2− −  contains either significantly many "larger" or
significantly many "smaller" development factors. Then, the factors of the predominant
type (either the larger or the smaller factors of A j ) are assumed to be influenced by a
specific calendar year effect and are viewed to be outliers. Therefore, it seems to be
advisable to reduce their weight when calculating the age-to-age factors fk .

Specifically, it is proposed to reduce the weight of each of these outlying development
factors to 50 % of its original weight, that is to calculate

fk  = Σ Σ
i

I k

ik i k i

I k

ik ikw C w C
=

−

+
=

−

1 1 1, /

with w ik  = .5 if C Ci k ik, /+1  belongs to the factors of the predominant type (either
larger or smaller) of its corresponding set A i k+ −1  and if A i k+ −1  shows a significant
calendar year effect, that is if  prob ( )Z zi k i k+ − + −≤1 1  ≤ 10 %. In all other cases we put
w ik = 1 as usual. Strictly speaking, the formulae for α k

2  and for the standard error
must be changed analogously, if some w ik  < 1 are used.



PAPERS OF MORE ADVANCED METHODS

09/97 D6.50

As with every test procedure which is applied several times there is an accumulation of
the error probabilities, that is the danger increases that we find a significant case which
in reality is not extraordinary. But here, this will not cause any essential disadvantage
as we only change weights and do not discard anything entirely.

Application to the example of section 6:

We start with the triangle of all development factors observed:

F1 F2 F3 F4 F5 F6 F7 F8 F9

i=1
i=2
i=3
i=4
i=5
i=6
i=7
i=8
i=9

1.6
40.4
2.6
2.0
8.8
4.3
7.2
5.1
1.7

1.32
1.26
1.54
1.36
1.66
1.82
2.72
1.89

1.08
1.98
1.16
1.35
1.40
1.11
1.12

1.15
1.29
1.16
1.10
1.17
1.23

1.20
1.13
1.19
1.11
1.01

1.11
0.99
1.03
1.04

1.033
1.043
1.026

1.00
1.03

1.01

We have to subdivide each column Fk  into the subset SFk  of 'smaller' factors below
the median of Fk  and into the subset LFk  of 'larger' factors above the median. This can
be done very easily with the help of the rank columns rik  established in Appendix G:
The half of factors with small ranks belongs to SFk , those with large ranks to LFk  and
if the total number is odd we have to eliminate the mean rank. Replacing a small rank
with 'S', a large rank with 'L' and a mean rank with '*' we obtain the following picture:

j=1 j=2 j=3 j=4 j=5 j=6 j=7 j=8 j=9

j=1
j=2
j=3
j=4
j=5
j=6
j=7
j=8
j=9

S
L
S
S
L
*
L
L
S

S
S
S
S
L
L
L
L

S
L
*
L
L
S
S

S
L
S
S
L
L

L
*
L
S
S

L
S
S
L

*
L
S

S
L

*

We now count for every diagonal A j , 2 ≤ j ≤ 9, the number L j  of L's and the number
S j  of S's. We have left out A1  because it contains at most one element which is not
eliminated, and therefore Z1  is not a random variable but always = 0. With the
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notations s l zj j j, ,  for the realizations of the random variables S L Zj j j, ,  and with
n = s lj j+  as above, we obtain the following table:

j s j l j z j n prob Z zj j( )≤

2
3
4
5
6
7
8
9

1
3
3
1
1
2
4
4

1
0
1
3
3
4
4
4

1
0
1
1
1
2
4
4

2
3
4
4
4
6
8
8

>10%
>10%
>10%
>10%
>10%
>10%
>10%
>10%

According to the probabilities prob Z zj j( )≤  there does not seem to be any calendar
year effect. Therefore, there is no reason to change any weight in the calculation of the
age-to-age factors.

As a final check for calendar year effects we can plot all standardized residuals

( / ) / ,,C C C i k Ii k ik ik+ − ≤ + ≤1 2fk kα

against the calendar years j = i + k. For the data of our example, the resulting plot is
shown in Figure 14. There does not seem to be any specific trend or irregularity in the
pattern of these residuals. The fact that only positive residuals are absolutely larger
than 1.6 hints at a positive skewness of the distribution of the development factors.

<>
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Section E
PRÉCIS OF OTHER ACTUARIAL PAPERS

This section provides a series of précis of several other papers published since the first
edition of the Claims Reserving Manual was produced.  The intention is to give the
reader an overview of the paper, together with a description of the reserving model on
which the paper is based.  A few observations are also made about the applicability of
the model, what data are required, what level of statistical and computational ability is
needed, plus some thoughts on the strengths and weaknesses of the model.

The first three of these papers provide variations on the theme of regression models
based on log-incremental payments.  The paper by R J Verrall and Z Li gives a
suggestion to overcome the problem of negative incremental payments.  The paper by
R J Verrall uses the log-incremental regression model as a basis for allowing the
practitioner to enter prior information, or to estimate the parameters dynamically.  A
Bayesian method is used and the data are analysed recursively, using the Kalman filter.
Finally, the paper by B Zehnwirth sets out a framework based on the log-incremental
payments.  His models include systematic components by development year, accident
year and calendar year, as well as a random component.

The next two papers make use of more detailed claims information than just aggregate
claims payments.  The paper by T S Wright sets out a comprehensive approach using
Generalised Linear Models to fit Operational Time models.  These allow estimates of
reserves and different components of reserve variability to be produced.  The paper by
D H Reid extends the basic Operational Time concept to allow for sudden changes in
the nature and mix of business.

The paper by D M Murphy examines the standard link-ratio methods from the point of
view of classical regression theory, and considers the circumstances under which the
standard link-ratio methods may be considered optimal.

The final, brief, paper by D Gogol describes an approach to estimating loss reserves,
using recent loss experience and two probability distributions.  The distributions are of
the ultimate losses, based on prior experience and rate adequacy changes, and the ratio
of the estimator based on recent experience to the true ultimate loss.
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[E1]
NEGATIVE INCREMENTAL CLAIMS:

CHAIN LADDER AND LINEAR MODELS
By R J Verrall and Z Li

(13 pages)
Journal of the Institute of Actuaries, Vol. 120, p. 171 (1993)

Summary
One of the problems of many models based on log-incremental payments is the inability
to deal with negative incremental payments.  One approach to this problem is to add a
suitably large arbitrary constant to all the payments, and then subtract the constant
after the forecasts are made.

The paper shows that the addition of such a constant (a threshold parameter) is
equivalent to modelling the incremental payments by a three parameter log-normal
distribution, for which the choice of constant can be performed by maximum likelihood
estimation rather than arbitrarily.

Description of the model
The basic model, based on log-incremental payments (see for example the Christofides
paper in Section D5 of Volume 2), is adjusted as follows:

Log(Pij+c) = Yij = ai + bj + eij (eij are independent identically distributed normal 
random errors)

where Pij  are the incremental payments for accident year i, development period j, and c
is the threshold parameter.

Standard procedures for producing maximum likelihood estimates yield a set of
equations that can be solved iteratively for ai, bj and c.  The technique could also be
applied to other models for Yij.  The implications for the standard errors of the
estimated future payments are not discussed.

General comments
As for most models based on log-incremental payments, the technique is not restricted
to any particular class of business, and the only data required are incremental
payments.

The technique gives a theoretically sound solution to the problem of negative
incremental payments, rather than relying on arbitrary adjustments to the data.  The
user should, however, examine the sensitivity of the results to the level of threshold
parameter used.
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The paper requires a basic level of statistical knowledge.  The authors include a
worked example, but the steps in the iterative process to calculate the parameters are
not spelt out.  Familiarity with matrix manipulation and regression in a spreadsheet is
therefore essential.

<>
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[E2]
A STATE SPACE REPRESENTATION OF THE CHAIN LADDER MODEL

By R J Verrall
(21 pages)

Journal of the Institute of Actuaries, Vol. 116, p. 589 (1989)

Summary
The model treats the development triangle as a dynamic system, with development
taking place over time, t, in the direction of the diagonal (calendar year).  A recursive
relationship between the parameters at time t and t+1 is developed, with the ability to
enter prior information.  The recursive estimation of the parameters is based on a
process known as the Kalman Filter.

Description of the model
The basic model begins with the familiar:

Log(Xij) = Yij = µ + ai + bj + eij (eij are independent identically distributed Normal 
random errors)

where Xij are the incremental payments for accident year i, development period j.

The model then becomes quite unfamiliar as it defines:

The Observation equation, Yt = Ft  . θ t +  et

The System equation, θ t+1 = Gt . θ t + Ht . t  + wt

The bold symbols denote vectors.  For example, Yt is a vector of the Yij at time t, and
et is a vector of the eij at time t.  θt is known as the State vector, which is a vector of
the parameter estimates (that is estimates of ai and bj) at time t.  ut is a stochastic input
vector assumed to be independent of θt, and wt is a disturbance vector.  Ft, Gt and Ht

are matrices.  The Observation and System equations together comprise the "State
Space representation" of this particular chain ladder model.

When ut = wt = 0, the System equation reduces to θ t+1 = Gt.θt, and Gt can be defined
such that the parameters at times t and t+1 are equal.  This equates to least squares
estimation when the parameters are identical for each row and each column.

When wt = 0, and ut has the prior distribution of the new parameters, Bayesian
estimates are obtained with distinct parameters.

When wt ≠ 0, the parameters at times t and t+1 are related but not necessarily the
same.  This is known as dynamic parameter estimation, which in a sense lies in between
the two previous cases of identical and distinct parameter estimation.
The paper considers a specific case of the State Space system, where et, ut, wt and
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θt|t−1 are independent and normally distributed with defined means and variances, for
which the State vector, θt, can be calculated recursively by a series of matrix
manipulations.

General comments
The paper illustrates by way of examples how prior information and dynamic
estimation of parameters can enhance traditional chain ladder methods, and squeeze
the maximum amount of information from the available data.  The use of a Bayesian
approach should lead to greater parameter and predictor stability than ordinary chain
ladder models.

The standard of mathematics and computational ability is very high and may be beyond
the scope of most people.  Whilst numerical examples are given, the intermediate steps
in arriving at the results are not, so it may be tricky to replicate the examples.
Realistically, anyone wanting to use these methods may be best advised to do so using
commercially available software packages, although it is important to understand the
theory underlying the model when doing so.

One possible problem when using this type of model is that the assumptions and inputs
can become somewhat divorced from reality, including as they do estimates of the
variances of parameters of a model of the logs of incremental payments.  These are not
concepts that are readily translatable to ones knowledge of the payment of claims, and
it is not always easy to understand the implications for the future payments of changes
in these inputs to the model.

<>
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[E3]
PROBABILISTIC DEVELOPMENT FACTOR MODELS

WITH APPLICATION TO LOSS RESERVE VARIABILITY,
PREDICTION INTERVALS AND RISK BASED CAPITAL

By B Zehnwirth
(159 pages)

Casualty Actuarial Society Spring Forum, Vol. 2, p. 447 (1994)

Summary
The paper describes a statistical modelling framework.  Each model contained in the
framework has four components.  The first three components are the trends in the
development year, accident year and calendar year, and the fourth component is
random fluctuation (or distribution of the deviations) about the trends.  The emphasis
of the paper is to focus on the calendar year direction.

The modelling framework is relatively simple, allowing the testing of assumptions (for
example, looking at the stability of models) and the quantification of reserve variability.

Description of the model
The family of models includes:

 Log(Pij) = Yij = ai + bj + ck + eij (eij are independent identically distributed 
Normal random errors)

where Pij are the incremental payments for accident year i, development period j, and k
= i + j.

Models are fitted by using weighted least squares regression.  As a result of multi-
collinearity, principally due to the non-orthogonality of the calendar year direction with
the other two directions, varying parameter models are necessary and are also included
in the framework.  Other Bayesian approaches are included, which are of particular use
if estimates of certain parameters in a parsimonious model are subject to large
uncertainties.

General comments
This family of models is an extension of the type of model described by S Christofides
in Section D5 of Volume 2, and can be used for a variety of types of business or types
of incremental data.  Whilst the basic model can be easily programmed in a
spreadsheet, the more complex variations are probably beyond the means of most
programmers.

As for other models based on the logs of incremental payments, the models do not
work for negative incremental payments, and there is a limit in a spreadsheet to the
number of future payments that can be predicted.
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Most of the paper requires a basic level of statistical knowledge, whilst some of the
variations on the basic model require a more advanced level.  Familiarity with matrix
manipulation and regression in a spreadsheet is required to implement the models.

<>
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[E4]
STOCHASTIC CLAIMS RESERVING WHEN

PAST CLAIM NUMBERS ARE KNOWN
By T S Wright

(93 pages)
Proceedings of the Casualty Actuarial Society, Vol. 79, p. 255 (1992)

Summary
The model attempts to represent the underlying claims settlement process.

The starting premise is that the cost of settling claims and the order in which they are
settled are related — that is, typically, the longer the period to settlement, the greater
the final settlement cost is likely to be.  The method therefore develops a model of the
claim settlement cost as a function of the relative proportion of claims settled (this
time-frame is known as Operational Time).

The model is fitted using the theory of Generalised Linear Modelling (“GLMs”).
Because it is a statistical model, standard errors (as a measure of the variability of the
estimate) for the future incremental payments can be calculated, and statistical
techniques used to test the fit of the model.

Description of the model

Operational Time (τ) is the number of claims closed to date, expressed as a proportion
of the ultimate number of claims.  The mean claim size, m(τ), can be modelled by a
wide variety of different types of function of τ.  For example:

m(τ) = exp( +   +..... ) β β τ β τ0 1 n
n

Alternatives include polynomial functions of τ, or functions such as βnτ−n, or some
combination of these functions.  The parameters of the model are fitted using GLMs,
for example using the software package GLIM.

The modelling technique involves fitting a basic model that adheres closely to the data,
then examining alternative models.  The nature of the model means that familiar
measures of goodness of fit, such as “sums of squares”, are not appropriate.  An
alternative measure, deviance, is therefore considered, as well as other indications as to
the goodness of fit of the model.

Certain restrictive assumptions are made at the initial fitting stage, which are then
examined and may subsequently be relaxed.
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General comments
The method is likely to be of most use where the greatest cause of uncertainty in
predicting ultimate claims is due to individual claim costs — for example, classes
involving bodily injury claims.  It should also be of particular use when it is believed
that settlement rates are changing, as the model may be able to capture these changes
more effectively than traditional techniques.

It requires data on both the amount and number of claims settled.

The model is sensitive to the estimated future number of settled claims, and these
estimates need careful scrutiny.  Inflation is a parameter that may be modelled, and this
is also an area where close scrutiny is required.  The approach to comparing different
functions for m(τ) is open to some criticism, as the comparison of non-nested models
using deviances is not strictly valid — though the author recognises that this is a
pragmatic approach.

A high degree of statistical knowledge is required to implement and understand the
model, as well as considerable computer literacy.  Knowledge of a GLM software
package such as GLIM is essential.

<>
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[E5]
OPERATIONAL TIME AND A FUNDAMENTAL PROBLEM OF

INSURANCE IN A DATA-RICH ENVIRONMENT
By D H Reid

(13 pages)
Applied Stochastic Models and Data Analysis, Vol. 11, No. 3, Wiley (1995)

Summary
This paper is the latest in a series developing a particular approach to claims reserving
where relatively complete information on individual claims is available, and where past
years' claims patterns are relevant — albeit with modifications — to the development
of more recent years' experience.

Specifically, this paper addresses a problem which has arisen in recent years, where
relatively rapid changes in size and factor mix of the claims portfolio are taking place.
Most, if not all, previous claim reserving methodologies have implicitly assumed that
factors change relatively slowly, to such an extent that the effect of this trend on claim
development is not significant.

The present paper, by contrast, models the effect of factor trends explicitly, both on
the level of claim cost itself and on the development patterns.  By doing so, it proposes
an approach which may then be applied directly to the development of premium rates,
as well as reserves.

Description of the model
The model proposed is based upon that described in Section D4 of Volume 2, but
develops that model to allow for the incorporation of a rating factor or set of
classificatory factors into the analysis.  This is done by first elaborating the structure of
claim cost development for recent years as represented by the original model, and then
introducing an approach which makes the resulting complex picture more readily
comprehensible and, at the same time, statistically estimable.

General comments
Given that this methodology is intended for situations where significant resources are
available for claims modelling, and where it is important to achieve as close an
understanding of the claims development process as possible, the proposed
methodology is relatively flexible and can be adapted to a wide range of situations.

<>
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[E6]
UNBIASED LOSS DEVELOPMENT FACTORS

By D M Murphy
(60 pages)

Casualty Actuarial Society Spring Forum, Vol. 1, p. 183 (1994)

Summary
Standard link ratio methods are examined from the viewpoint of classical regression
theory.  The circumstances under which the standard link ratio methods could be
considered optimal are discussed.  Formulae for variances of, and confidence intervals
around, point estimates of ultimate loss and loss reserves are derived.  A triangle of
incurred losses is used to demonstrate the techniques.

A summary of a simulation study is presented which suggests that the performance of
the link ratio method, using least squares linear estimates, may approach that of the
Bornhuetter-Ferguson and Stanard-Bühlmann techniques in some situations.

Description of the model
The estimates of ultimate loss for n accident years are derived using recursion:

$ $ $

$ $ $ ( $ )
,

,

M a b x

M na b M xn n n n n n

1 1 1 0 0

1 1 1

= +

= + +− − −
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1

The variance is given by the sum of the parameter risk and the process risk.  Each are
defined for n=1, and then recursively for n>1, as follows:
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is the average "x value" and In = N − n + 1 (assuming a full column in the triangle) is
the number of data points in the regression estimate of the nth link ratio.

process risk

Var E1 1
2bg= σ

Var E n b Var En n n nb g b g= + −σ2 2
1

where Ei is an error term.

General comments
A modest level of mathematics is required to follow the paper.  Proofs of the theory
are relegated to a bulky appendix.  The example provided helps the reader to follow
the theory by showing practical application of the formulae.  The calculation of the
least squares estimates and their variances can readily be done in most spreadsheet
packages.

The use of the confidence intervals depends on whether the assumptions made
regarding the probability distribution of the error terms are appropriate.  The paper
does not address how these should be tested.

The Benjamin-Eagles paper in Section D3 of the Manual describes a method which is
the same as the least squares linear method described in this paper, but without the
mathematical rigour.

The Stanard-Bühlmann technique (also known as the "Cape Cod Method") is not
explained.  Reference would need to be made to the paper by J Stanard in the 1985
Proceedings of the CAS (Casualty Actuarial Society) for explanantion.

<>
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[E7]
USING EXPECTED LOSS RATIOS IN RESERVING

By D F Gogol
(3 pages)

Casualty Actuarial Society Fall Forum, p. 241 (1995)

Summary
The paper describes an approach to estimating loss reserves using the recent loss
experience and two probability distributions.  The first distribution is that of the
ultimate losses for the recent period, based on prior experience and rate adequacy
changes.  The second distribution is that of the ratio of the estimator based on recent
experience to the true ultimate loss.

Description of the model
The model is:

h x|y g(y|x)f(x) / g(y|x)f(x)dx
0

b g=
∞z

where, for losses in respect of an exposure period E:

f(x) is the probability density function of the distribution of ultimate losses for
exposure period E, prior to considering the losses for exposure period E.

g(y|x) is the probability density function of the distribution of y, the developed
losses at the point of time under consideration, for exposure period E, given that
the ultimate losses are x.

h(x|y) is the probability density function of the distribution of the ultimate losses,
given that the developed losses are y.

The functions f(x) and g(y|x) are estimated, and the mean of the distribution given by
h(x|y) is the estimate of ultimate losses.  For certain choices of f(x) and g(y|x), an
explicit formula for the mean of h(x|y) is known, for example when f(x) and g(y|x) are
both log-normal.

The paper compares the Bayesian estimate of the ultimate loss ratio with the actual
developed loss ratio and the Bornhuetter-Ferguson estimate of the ultimate loss ratio.

General comments
The model is particularly useful for recent accident years and for lines of business with
slow development.  The model should be capable of fairly easy implementation in most
spreadsheet packages.

A modest level of statistical knowledge is required.  One approach to estimating the
distributions given by f(x) and g(y|x) is to assume f(x) and g(y|x) are of a known type,
such as log-normal, and estimate their means and variances to obtain the parameters of
the distributions.  To do this, a certain amount of judgment may be needed, as the
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estimates will usually have to be based on somewhat limited information.  Thus,
although the model provides a rigorous way of incorporating prior information, some
of the information used in applying the model may be rather unreliable.

<>
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Section F
COMPUTERISED ILLUSTRATION OF VOLUME 2 PAPERS

Accompanying this revision of the Claims Reserving Manual is a disk illustrating the
application of two of the methods described in Volume 2.  The methods included are
those described in Sections E5 and E6 of Volume 2, by S Christofides and T Mack
respectively.

Both spreadsheet programs on this disk are solely for illustration, and are intended to
help the user understand better the mechanics of performing the methods described in
the papers.  They are designed to replicate exactly the calculations shown in those
papers.  This will allow the user to follow the intermediate steps, and assist in
understanding how the methods can be applied in practice.

Note that the spreadsheets are simply a mechanical reproduction of the particular
calculations illustrated in the two papers.  As such, they have not been designed to be
used as a generalised reserving tool on other data.  Readers should not, therefore,
attempt to substitute their own data into this software for practical reserving purposes.

<>
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[F1]
COMPUTERISED ILLUSTRATION (1)  —

REGRESSION MODEL BASED ON LOG-INCREMENTAL PAYMENTS
by S Christofides

The first file on the disk distributed with the Claims Reserving Manual demonstrates
the model described in the paper by S Christofides in Section D5 of Volume 2.  The
filename is crmsc.xls, and is written in Excel version 5.

The file illustrates step-by-step the “full parameter” example given in pages D5.16 to
D5.33 of the paper.  The paper sets out clearly all the steps involved.  Further brief
instructions are included on the disk as to the operation of the spreadsheet regression
analysis and matrix manipulation, so no further instructions are felt necessary here.

The spreadsheet also includes graphs of the various Residual analyses.

<>
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[F2]
COMPUTERISED ILLUSTRATION (2) —

MEASURING THE VARIABILITY OF CHAIN LADDER
RESERVE ESTIMATES

by T Mack

The Lotus version 3 file, crmmack.wk3, on the disk distributed with the Claims
Reserving Manual, demonstrates the model described in the paper by T Mack in
Section D6 of Volume 2.

The file illustrates the calculation of the standard errors of the reserve estimates, and
the use of a variety of diagnostics to test the assumptions made when using the model.

To make the calculation of the standard errors easier to follow, the calculations from
the example in Section D6, on pages D6.19 to D6.24, have been broken down into
small sections, for ease of reference.  This should assist the user in seeing how the
techniques can be applied in practice, as the formulae for calculating the standard
errors, whilst being quite simple, do look a bit daunting at first sight.

The examples of some of the diagnostic tests are also based on the examples included
in section 5 and Appendix H of Mack’s paper.  The diagnostics involve checking the
three assumptions made when using the model.  For a summary of the assumptions
made, see the précis of this paper given in Section C of Volume 2.

The checks of the three assumptions are briefly described and illustrated below.

Checking Assumption 1
One way of checking assumption 1 is simply to conduct a visual examination of the
data, to see if there is a consistent linear relationship between cumulative claims from
one period to the next.  A further way of checking the assumption is to use regression
diagnostics, as explained in the section on checking assumption 3.

The attached tables and graphs are reproduced from the spreadsheet, and illustrate a
visual examination of the data and the standardised residuals used to check assumption
1.  When checking the residuals, if the model holds good, one expects to see the
residuals randomly scattered, without any systematic patterns or distortions.

The diagnostic checks shown here correspond to those in Figure 1 of the paper.  They
differ slightly in that they plot incremental payments on the Y-axis, and examine the
standardised residuals.  Both types of diagnostic check are equally valid, and are just
two ways of looking at the same thing.
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Checking Assumption 2
One possible distortion that may invalidate assumption 2 is the presence of calendar
year influences in the data.  If there are such calendar year influences (for example,
increasing payments in just one calendar year due to a new type of tax), then
consecutive sets of development factors will be larger/smaller than expected.  It is
possible, however, to construct a statistical test to see whether there are diagonals with
a preponderance of "Large" or "Small" development factors.

For each development period, k, the development factors are ordered and described as
"L" or "S", depending on whether they are larger or smaller than the median.  Then,
for each of the j different diagonals, the numbers of L or S factors are counted.  The
actual median development factor, if we are looking at an odd-numbered set of factors,
is described as "M", and is excluded from the subsequent construction of the test
statistics.

In the absence of any calendar year effects, the number of L’s and S’s should be about
the same.  Similarly, the minimum of the number of L's and S's, described as Z j ,
should not be significantly different from the average number of L's plus S's.  The
paper shows how the distribution of Zj can be calculated and used for a significance
test.  Where this test indicates the presence of a calendar year effect, it is suggested
that the weights of the relevant outlying development factors are reduced.

Alternatively, one can construct a formula for the first two moments of Z j , which are:

E Z n
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m

n
2j ndi= −

−F
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I
KJ×

Var Z
n n 1

4
n 1
m

n n 1
2

E Z E Zj n j jdi b g b g di d ie j=
× −

−
−F

HG
I
KJ×

× −
+ −

2

Looking at individual diagonals may be misleading, so one considers
Z = Z2 + ... + ZI-1.  The expected value and variance of Z are just the sums of the
individual expectations and variances of the Zj's respectively (under the initial
assumptions, the Zj's are uncorrelated).  Assuming Z is Normal, it can be concluded
that there is no significant calendar year affect, at a 95% confidence level, if the actual
Z is within two standard errors of the expected Z.

Assumption 2 can also be checked by the use of Residual diagnostics, as described in
the section on checking assumption 3.  The following examples of some of these tests
are from the crmmack.wk3 spreadsheet.

The statistical test illustrates the alternative approach, based on the first two moments
of Zj.  Whilst the examples illustrate the application of these tests, they also show the
difficulties in applying statistical tests to the quite small volumes of data one is
invariably considering with such reserving exercises.
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In the diagnostics shown below, the triangle of “S” and “L” factors does not exhibit
any statistically significant calendar year effect, although some columns do show a
sharp change from “S” to “L”, and vice versa, as one runs down the accident years.

INSERT PAGE 22 OF THE PAPER
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Checking Assumption 3
The underlying assumptions described so far have been based on using the volume-
weighted chain-ladder.  The chosen estimate of the development factor is, as the name
implies, a weighted average of the actual development factors, where the weights are
the measures of claims volume — namely the cumulative claims to date at the relevant
points.  Other weights of the actual development factors could be used — indeed, any
set of weights that sums to one is applicable.  In each case, it can be shown that they
produce an unbiased estimator of the development factor.

Assumption 3 is derived by T Mack by noting that, out of a collection of unbiased
estimators, one prefers the estimator with the smallest variance.  Hence the weights are
chosen so that the variance is minimised — this can be shown to be the case if and only
if the weights are inversely proportional to Var(Ci,k+1/Ci,k|Ci1, ..., Cik).  So, as the
volume-weighted chain-ladder uses weights that are proportional to Cik, this
corresponds to assuming that Cik is inversely proportional to
Var(Ci,k+1/Ci,k|Ci1, ..., Cik).  Put the other way round, and noting that
Var(X/a) = Var(X)/a2, gives us our assumption 3, namely

Var(Ci,k+1|Ci1, ..., Cik) = Cikσk
2.

Other weights could just as easily be used to arrive at the development factors.  For
example, the simple average of the development factors could have been used.
Another alternative is the Cik

2-weighted average.  To distinguish the alternative
versions of the estimator of the development factors, the volume-weighted estimator is
denoted as f(k,1), the simple average as f(k,2) and the Cik

2-weighted average as f(k,0).
The results for the estimates of the variance of the reserves can be extended to
encompass these different ways of arriving at the development factors.

If the assumption about the variance is reasonable, one can look at the residuals for
different types of estimator of fk, and see which, if any, shows the most random
behaviour.  A check of this assumption involves plotting the residuals for the three
possible types of weight used for the different fk, for all k.  Examples of these plots are
given for k=1 on the spreadsheet, and are reproduced below.

With the small number of data points typically present when making chain-ladder
reserve estimates, it is hard to form any meaningful conclusions.  Nevertheless, if the
plots for f(k,1), corresponding to the volume-weighted chain-ladder used as the basis
for assumption 3, look non-random, and one of the plots for the alternative weights
does not, then one might question whether the variance assumption 3 is reasonable.
One might then consider using alternative weights when making our estimates of the
chain-ladder factors.

These diagnostic checks are illustrated on the attached extract from the crmmack.wk3
spreadsheet.  They correspond to the diagnostic checks described in section D5 of the
paper, and set out the intermediate steps necessary to calculate the Residual
diagnostics used to check assumption 3.

INSERT PAGE 25 OF THE PAPER
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APPENDIX — ACTUAL & MODELLED NUMBERS OF CLAIMS BY SIZE (ACTUAL DATA)

YEAR OF ORIGIN

1983 1984 1985 1986 1987

CLAIM
SIZE YEAR OF DEVELOPMENT YEAR OF DEVELOPMENT YEAR OF DEVELOPMENT

YEAR OF
DEVELOPMENT

YEAR OF
DEVELOP-

MENT

0 1 2 3 4 0 1 2 3 0 1 2 0 1 0

£0 39,052 14,006 964 192 76 43,971 16,561 1,299 280 51,167 18,919 1,712 58,257 21,218 62,522
£25 37,285 13,407 920 181 69 42,140 15,859 1,236 270 49,496 18,284 1,632 56,728 20,627 61,101
£100 20,991 10,066 792 168 62 24,616 12,086 1,071 245 30,599 14,356 1,437 36,973 16,883 42,290
£200 12,506 7,201 658 141 54 14,593 8,841 909 217 18,295 10,732 1,193 21,837 12,710 25,081
£500 5,097 3,735 442 113 46 6,114 4,625 600 170 7,696 5,730 828 8,878 6,714 9,772
£1,000 2,138 1,948 326 96 42 28 211 326 119 64 3,039 581 3,891 3,660 4,312
£1,500 1,235 1,248 261 83 38 1,456 1,546 334 120 1,916 1,966 457 2,298 2,422 2,520
£2,000 802 840 212 74 36 920 1,286 273 105 1,264 1,373 371 1,544 1,697 1,655
£3,000 340 414 138 62 32 417 541 187 83 613 760 247 867 949 908
£4,000 177 236 96 42 28 211 326 119 64 316 388 164 527 577 522
£5,000 88 140 67 34 24 123 204 84 48 206 231 122 336 356 344
£6,500 41 79 42 26 20 68 97 56 41 122 118 70 188 192 183
£8,000 29 43 31 22 16 37 60 42 31 61 69 49 109 106 95
£10,000 14 19 22 18 13 21 34 22 17 33 35 34 57 61 42
£15,000 5 6 11 9 9 4 9 7 8 9 12 10 20 14 15
£20,000 2 1 7 3 5 0 5 6 3 3 3 7 8 4 4
£25,000 1 0 5 3 3 0 3 4 2 2 1 3 4 2 3
£30,000 1 0 5 2 3 0 2 3 0 1 1 3 3 2 2
£40,000 0 0 2 0 2 0 1 2 0 0 1 2 1 1 0
£50,000 0 0 1 0 2 0 1 1 0 0 0 1 1 1 0
£65,000 0 0 0 0 2 0 0 1 0 0 0 1 1 1 0
£80,000 0 0 0 0 1 0 0 1 0 0 0 1 0 1 0
£100.000 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
£150,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
£200,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



APPENDIX — ACTUAL & MODELLED NUMBERS OF CLAIMS BY SIZE (MODELLED DATA)

YEAR OF ORIGIN

1983 1984 1985 1986 1987

CLAIM
SIZE YEAR OF DEVELOPMENT YEAR OF DEVELOPMENT YEAR OF DEVELOPMENT

YEAR OF
DEVELOPMENT

YEAR OF
DEVELOP-

MENT

0 1 2 3 4 0 1 2 3 0 1 2 0 1 0

£0 39,052 14,006 964 192 76 43,971 16,561 1,299 280 51,167 18,919 1,712 58,257 21,218 62,522
£25 37,239 13,336 910 181 73 41,972 15,793 1,228 265 48,906 18,080 1,625 55,712 20,304 59,823
£100 21,106 9,913 786 162 66 24,369 11,857 1,045 240 29,505 13,918 1,399 34,067 15,844 36,915
£200 13,014 7,228 666 138 59 15,260 8,786 871 212 18,962 10,642 1,195 22,088 12,336 24,071
£500 5,158 3,723 465 109 49 6,142 4,572 590 164 7,832 5,699 814 9,202 6,710 10,068
£1,000 2,103 1,948 329 91 42 2,540 2,408 405 133 3,321 3,067 558 3,934 3,653 4,316
£1,500 1,159 1,244 264 80 39 1,408 1,549 317 116 1,863 2009 433 2,214 2,417 2,427
£2,000 723 846 222 71 35 888 1,071 260 104 1,196 1,427 357 1,423 1,717 1,558
£3,000 306 425 155 58 29 391 550 175 84 555 766 250 675 962 753
£4,000 144 241 115 50 25 189 315 126 70 279 448 179 342 566 384
£5,000 72 140 88 42 22 96 192 95 61 146 283 135 183 361 208
£6,500 34 77 64 32 20 43 99 66 48 63 144 93 80 194 92
£8,000 20 47 51 24 17 25 63 51 39 36 91 69 45 115 50
£10,000 12 26 30 18 13 15 35 30 29 21 53 49 26 70 28
£15,000 5 8 12 11 9 7 12 11 16 9 18 19 11 24 12
£20,000 2 3 5 6 6 3 5 5 10 5 8 8 6 11 7
£25,000 1 2 3 4 5 1 2 3 6 2 3 5 3 5 3
£30,000 0 1 1 4 4 0 2 1 4 1 2 3 1 2 1
£40,000 0 0 1 3 2 0 1 1 4 0 1 1 0 2 0
£50,000 0 0 1 1 2 0 0 1 3 0 0 1 0 1 0
£65,000 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0
£80,000 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
£100,000 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
£150,000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
£200.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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