

The CMI Model and High Age Mortality

Presentation to the Highlights of Life Conference 2016

Tim Gordon Chair, CMI Mortality Projections Committee Steve Bale Chair, CMI High Age Mortality Working Party

14 and 28 March 2017

СМІ

CMI

- · Wholly owned by Institute and Faculty of Actuaries
- · Independent executive and management

Funded by subscription but free for academics and non-commercial research

Mission

To produce high-quality impartial analysis, standard tables and models of mortality and morbidity for long-term insurance products and pension scheme liabilities on behalf of subscribers and, in doing so, to further actuarial understanding.

Our vision is to be regarded across the world as setting the benchmark for the quality, depth and breadth of analysis of industry-wide insurance company and pension scheme experience studies

High Age Mortality

Steve Bale Chair, CMI High Age Mortality Working Party

Phase 1: Initial findings

- Working Paper 85 released October 2015
- Key areas of analysis:
 - Summary of recent research
 - Functional forms for closing mortality rate tables
 - Modelled impacts of late reporting and age mis-statement
 - Closed cohort mortality
- <u>https://www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation/cmi-working-papers/mortality-projections/cmi-wp-85</u>

Phase 2: Continued analysis

Focus today:

- · Does mortality decelerate at high ages?
- · Principles for closing off mortality tables
- · Population exposure modelling

Also in development:

- · Analysing high quality annuitant portfolio data for analysis
- Work in progress, provisional findings presented

14 and 28 March 2017 Highlights of Life 2016: The CMI Model and High Age Mortality

5

Does mortality decelerate at high ages?

Recent studies

Column title	Gavrilov & Gavrilova (2015)	Ouellette and Bourbeau (2014)	Rau et al (2016)
Data	International Database on Longevity 668 supercentenarians across 15 countries 1980-2007	Canadian church parish registers 2,198 French-Canadian Catholics born in Quebec between 1870 and 1896, dying between 1970 and 2009	HMD Data from seven large countries (France, West Germany, Italy, Japan, Spain, UK, USA) over 1980 - 2010
Age range focus	110-115	100-115	80-109
Conclusion	Gompertz good fit	Observe deceleration	Deceleration models fit μ_x plateau 0.8 for females and 1.2 for males
Features	Concerns with incomplete data Pre 1885 cohorts excluded No context from younger ages	Relatively clean data - match birth dates with baptismal certificate Low number of deaths No context from younger ages	Test model fit: Gompertz vs Gompertz Makeham (plus makehum variant)
14 and 28 March 2	017 Highlights of Life 2016: 1	The CMI Model and High Age Mortality	7

14 and 28 March 2017

Highlights of Life 2016: The CMI Model and High Age Mortality

Implications for mortality at the oldest old

Highlights of Life 2016: The CMI Model and High Age Mortality 14 and 28 March 2017

Closing mortality tables: Desirable features

Proposed framework: 1- Graduate portfolio data

Proposed framework: 2- Analyse convergence

Example: Analyse convergence

Evidence of convergence, % difference reducing by around x0.75 each 5 years

```
14 and 28 March 2017 Highlights of Life 2016: The CMI Model and High Age Mortality
```

13

Proposed framework: 3- Extend graduation

Sub-portfolios: 1- Analyse convergence

Sub-portfolios: 2- Extend graduation

Accuracy of official high age population estimates in England & Wales – ONS (2016)

Analysis	Findings	Implication
Validation of birth date information for lives 105-109 for 2000-2014 (excludes c10% born outside UK)	96% birth date match plus 1-2% close match	Reported age at death assumed to be accurate Choice of definition has
Analysis of high age death counts by occurrence vs registration	Number and distribution of deaths very similar	minimal impact on mid-year population estimates
Analysis of intra UK and international migration	Low intra UK migration (~0.03% of 90+ population) Low international migration (~0.07% of 90+ population)	Migration has a negligible impact on mid-year population estimates at high ages
Fit of KT estimates to 2002-2014 registers from Sweden and Finland Testing against synthetic populations under alternative mortality scenarios	KT estimates fit well up to age 94, but deviate thereafter Correction factor close to 1 when mortality doesn't vary, but deviates under mortality trend scenarios	Consider impact of mortality trend on KT methodology
Comparison of KT estimates against NHS Patient Register, DWP and Higher Education databases	Administrative dataset 2011 population estimates close to unconstrained KT estimates	Target minimal population estimate constraint
	Validation of birth date information for lives 105-109 for 2000-2014 (excludes c10% born outside UK) Analysis of high age death counts by occurrence vs registration Analysis of intra UK and international migration Fit of KT estimates to 2002-2014 registers from Sweden and Finland Testing against synthetic populations under alternative mortality scenarios Comparison of KT estimates against NHS Patient Register, DWP and Higher Education databases	Validation of birth date information for lives 105-109 for 2000-2014 (excludes c10% born outside UK) 96% birth date match plus 1-2% close match Analysis of high age death counts by occurrence vs registration Number and distribution of deaths very similar Analysis of intra UK and international migration Low intra UK migration (~0.03% of 90+ population) Fit of KT estimates to 2002-2014 registers from Sweden and Finland KT estimates fit well up to age 94, but deviate thereafter Testing against synthetic populations under alternative mortality scenarios Correction factor close to 1 when mortality doesn't vary, but deviates under mortality trend scenarios Comparison of KT estimates against NHS Patient Register, DWP and Higher Education databases Administrative dataset 2011 population estimates (Cose to unconstrained KT estimates

Variants considered

Variant	Description and Motivation
Mortality trend	Allow explicitly for the average recent trend in survivor ratios to continue into the next year in order to better capture local pattern of mortality improvements.
	ONS implementation of KT model currently uses $(k,m) = (5,5)$ where
	m = number of birth cohorts; and
Parameters k and m	k = number of past ages in each cohort over which deaths are summed.
	Decreasing these parameters means averaging over less data in the survivor
	ratio.
	Test the impact of reducing join age below 90 to seek more robust outcome. If
Join age	join age is N this means that the K-T method is extended down to age N (and
	constrained to the N+ population total).
	More sophisticated approach to determine 'age at 1 January' death counts from
Lexis adjustments to death data	the 'age at death' input data. May lead to greater accuracy and improve internal
	smoothness of population estimates.
	Adjust modelled population exposures for convexity and birth distribution (or
Exposure adjustments	apply pragmatic smoothing to similar effect). Aims to correct anomalies
	identified by Cairns et al arising from distributional effects.

14 and 28 March 2017

Highlights of Life 2016: The CMI Model and High Age Mortality

19

Life expectancy impact – ONS male data

Period life expectancy from 2011-2015

Period life expectancy from 2011-2015 mortality rates (age 90, males, ONS data)

Note: Impact on period life expectancy below age 85 is less than 0.5%

14 and 28 March 2017

Highlights of Life 2016: The CMI Model and High Age Mortality

Current Kannisto-Thatcher methodology

Join age

- KT method applied by ONS for ages 90+, with constraint applied to match official 90+ population total
- · Unadjusted published figures adopted below this age
- · Concerns with current join age of 90:
 - Several data consistency/accuracy issues noted in ONS December 2016 paper
 - Discontinuities at age 89/90 boundary also noted by ONS
 - Working Paper 85 indicated 90+ population overstated
- Expect reliability of census-based figures to improve at younger ages
 Population counts larger and less susceptible to recording issues
- Tested range of lower join ages against current ONS value of 90

Join age – Results (ONS male data)

Current Kannisto-Thatcher methodology

Trend variants – Results (synthetic data)

- Testing on synthetic populations population figures known to be "correct"
- Simple improvement / complex features / real experience regimes
- · Overall improvement in balancing factors and average adjustments

Lexis adjustments

- K-T method requires death counts based on 'age at 1 January' from 'age at death' input data
- Current ONS Lexis triangle approach assumes 50/50 split of deaths into ages
- Proposed refinements:
 - Rundown of exposure within a calendar year
 - Unequal cohort sizes
 - Mortality differential between adjacent ages
 - Uneven patterns of birth distribution
 - Seasonality of deaths
- Produces improved balancing factors and average adjustments

Exposure adjustments

- · Simplified method to smooth abnormal population exposures
- Measure log-linearity of death rates $C(x,t) = \log m_{x,t} - \frac{1}{2} \left(\log m_{x-1,t} + \log m_{x+1,t} \right)$

Next Steps

- · Working Paper scheduled for release in Q217 covering
 - Methodology for closing mortality rate tables
 - Population exposure modelling
- Large pension annuity dataset
 - Data collection underway for 2017 analysis

14 and 28 March 2017

Highlights of Life 2016: The CMI Model and High Age Mortality

29

Continuous Mortality Investigation

The CMI Model

Tim Gordon Chair, CMI Mortality Projections Committee

What's changed - big picture

Highlights of Life 2016: The CMI Model and High Age Mortality

32

Model log m_{xt}

- Definition of the model: $\log m_{xt} = \alpha_x + \beta_x(t \bar{t}) + \kappa_t + \gamma_{t-x}$
- Mortality improvement (reduction in $\log m_{xt}$) is:

$$MI_{xt} = \boxed{-\beta_x} + \underbrace{(\kappa_{t-1} - \kappa_t)}_{\text{Age}} + \underbrace{(\gamma_{t-x-1} - \gamma_{t-x})}_{\text{Cohort}}$$

• Fit by maximising log likelihood (or −½ deviance) less smoothness penalty:

$$\begin{split} & \left| \sum_{xt} (D_{xt} \log m_{xt} - n_{xt} m_{xt}) \right| \text{ Log likelihood} \\ & \left| -\frac{1}{2} 10^{S_{\alpha}} \sum_{x} (\Delta^{3} \alpha_{x})^{2} - \frac{1}{2} 10^{S_{\beta}} \sum_{x} (\Delta^{3} \beta_{x})^{2} - \frac{1}{2} 10^{S_{\gamma}} \sum_{b=t-x} (\Delta^{3} \gamma_{b})^{2} - \frac{1}{2} 10^{S_{\kappa}} \sum_{t} (\overline{\Delta^{2}} \kappa_{t})^{2} \right| \\ & \text{where } n_{xt} \text{ is exposure and } D_{xt} \text{ is deaths} \\ & \text{Smoothness prior} \\ \hline Plus \text{ identifiability'} - \text{ sometimes seen as a detail, but this is material} \end{split}$$

14 and 28 March 2017

Apparent direction of travel

Chart shows period components of mortality improvements from the (old) p-spline model fitted to male data for various 41-year periods

Apparent direction of travel

Apparent direction of travel

Chart shows period components of mortality improvements from the (old) p-spline model fitted to male data for various 41-year periods

Apparent direction of travel

Apparent direction of travel

Current shape of long-term rate (LTR)

Current shape of long-term rate (LTR)

- Under the current Core assumption, the LTR applies up to age 90, and tapers to zero at 120
- This implies a sharp rise in improvements for centenarians in future, which is out of line with past experience

Proposed shape of long-term rate (LTR)

14 and 28 March 2017

Male improvements (using data to end 2015)

Sex	Method	Age 35	Age 45	Age 55	Age 65	Age 75	Age 85	Age 95
Male	CMI_2013	-2.02%	-2.34%	-2.87%	-2.35%	-2.15%	-4.32%	-10.10%
	CMI_2014	-2.25%	-2.52%	-2.72%	-2.54%	-2.33%	-4.38%	-8.43%
	CMI_2015	-1.73%	-1.86%	-1.88%	-1.31%	-0.49%	-2.46%	-6.84%
Female	CMI_2013	-1.98%	-2.53%	-3.62%	-4.06%	-4.81%	-9.03%	-14.43%
	CMI_2014	-2.98%	-3.12%	-3.19%	-3.35%	-3.39%	-5.76%	-11.52%
	CMI_2015	-2.40%	-2.41%	-2.27%	-2.00%	-1.47%	-3.78%	-9.71%

CMI_2016 impact on life expectancies

Notes

- · Life expectancies are as at 1 January 2017.
- All projections are Core model with a long-term rate of 1.5% p.a.
- Base mortality is S1PxA for CMI_2013 and earlier and S2PxA for CMI_2014 and later.
- · Actual PV impact may differ because of e.g. non-zero net discount rate and contingent second life benefits

14 and 28 March 2017

Highlights of Life 2016: The CMI Model and High Age Mortality

46

Key issues in application

- 1. Blip vs trend?
- 2. Appropriateness for liabilities?

Male standardised mortality ratio (SMR)

Male standardised mortality ratio (SMR)

¹⁴ and 28 March 2017 Highlights of Life 2016: The CMI Model and High Age Mortality

Sex	Year	E&W	SAPS (Lives)	SAPS (Amounts)	Difference (Lives)	Difference (Amounts)
	2012	-0.9% (±0.7%)	-0.2% (±1.9%)	+1.4% (±3.9%)	+0.7% (±2.0%)	+2.3% (±4.0%)
	2013	+0.5% (±0.7%)	+2.0% (±2.1%)	+3.5% (±4.2%)	+1.5% (±2.2%)	+3.0% (±4.2%)
Male	2014	+3.7% (±0.7%)	+4.8% (±2.1%)	+3.3% (±4.6%)	+1.1% (±2.2%)	-0.4% (±4.6%)
	2015	-3.7% (±0.7%)	-2.0% (±4.2%)	-6.8% (±7.9%)	+1.7% (±4.3%)	-3.1% (±8.0%)
	Average	-0.1% (±0.4%)	+1.2% (±1.4%)	+0.4% (±2.7%)	+1.2% (±1.4%)	+0.5% (±2.7%)
Female	2012	-2.5% (±0.6%)	-1.2% (±1.9%)	-1.2% (±5.3%)	+1.2% (±2.0%)	+1.2% (±5.3%)
	2013	+0.2% (±0.6%)	+3.0% (±2.2%)	+2.8% (±5.2%)	+2.8% (±2.3%)	+2.6% (±5.3%)
	2014	+4.1% (±0.6%)	+5.6% (±2.2%)	+7.8% (±5.5%)	+1.6% (±2.3%)	+3.7% (±5.5%)
	2015	-5.7% (±0.6%)	-0.3% (±4.6%)	+0.8% (±9.2%)	+5.4% (±4.7%)	+6.5% (±9.3%)
	Average	-0.9% (±0.3%)	+1.8% (±1.5%)	+2.6% (±3.3%)	+2.8% (±1.5%)	+3.5% (±3.3%)

E&W vs SAPS observed improvements

14	and	28	March	201	7

Highlights of Life 2016: The CMI Model and High Age Mortality

50

All figures are provisional.

What's next?

CMI_2016 publication

- ETA is week ending 24 March 2017
- www.actuaries.org.uk/learn-and-develop/continuous-mortality-investigation
- Subscriber content

CMI/SIAS meeting at Staple Inn, London on 11 April 2017

- · Discuss/debate with (non-CMI) panel
 - mortality improvements over the next decade
 - applicability to liabilities
- sias.org.uk/events/upcoming-events/?ev=301

14 and 28 March 2017

Highlights of Life 2016: The CMI Model and High Age Mortality

52

Continuous Mortality Investigation

Continuous Mortality Investigation Limited Registered in England & Wales (Company number: 8373631) Registered Office: 7th floor, Holborn Gate, 326-330 High Holborn, London, WC1V 7PP

Correspondence address: Cheapside House, 138 Cheapside, London, EC2V 6BW, United Kingdom Email: info@cmilimited.co.uk Tel: +44 20 7776 3820

Website: www.cmilimited.co.uk (redirects to www.actuaries.org.uk)

Continuous Mortality Investigation Limited ('the CMI') is wholly owned by the Institute and Faculty of Actuaries.

Disclaimer: This document has been prepared by and/or on behalf of Continuous Mortality Investigation Limited (CMI). This document does not constitute advice and should not be relied upon as such. While care has been taken to ensure that it is accurate, up-to-date and useful, CMI will not accept any legal liability in relation to its contents.

© Continuous Mortality Investigation Limited

14 and 28 March 2017