The Actuarial Profession	
making financial sense of the future	
	1
Longevity risks	
Non-diversifiableNo traded markets in longevity risk, so price not	
directly observable Not easily hedged, though can be offset	
 Price for risk is calculated by purchasers (insurance companies) 	
]
The current position	
 Similarities with 1950s when interest rates very low and below rates used in pricing bases 	
 Precipitated move from non-profit to with-profit 	
 Issuers of long-term guarantees based on future longevity in similar position, but now have methods for measure of systemic risk 	
 Working Party believes a measure of uncertainty should be provided with projections of future mortality rates 	
 but users responsible for approach taken in their own circumstances 	

Agenda

- Reasons for new projections
- Considerations affecting those projections
- Modelling q(x) and what you can do as a result

Reasons for new projections

 Experience for 1999 generally lighter than that projected for 1999 under "92" tables, repeating past history of projections in mortality improvement being too low

	Age	
Key 34.2% 4.2% 3.6% 3.0% 2.4% 1.2% 0.6% 0% -0.6% -1.2% Δ	Past mortality improvements of pensioners and male assured lives	
	20 8 9 61 0.61 08 06 66 66 1	

Reasons for new projections

- Experience for 1999 generally lighter than that projected for 1999 under "92" tables, repeating past history of projections in mortality improvement being too low
- Advances in methodologies for projecting mortality
- Need to give some measure of uncertainty

Projection methodologies

- Process-based
- Explanatory-based
- Extrapolative

Process-based methodologies

- Model mortality rates from bio-medical perspective
- Processes causing death need to be understood
- Mathematical models need to be developed
- Not really practical at present....
- ...but could become more relevant in future

Explanatory-based methodologies

- Explanatory links need to be understood
- Underlying economic or environmental factors need to be modelled...
- ... not just for short term but for 50+ years
- May provide partial attempts for projecting minimum/maximum improvements (e.g. links with patterns of smoking)

Extrapolative methodologies

- Project historical trends into the future
- Include some subjective element
- Simple extrapolation only reliable to extent that conditions leading to changes in past mortality have similar impact in the future
- Can be invalidated by medical advances or emergence of new diseases

			_
			_
			_
			_
			_
			_
			_
			_

Extrapolative models

- Trend projection relationship between mortality at different ages often ignored
- Parametric methods e.g. fitting parameterised curves to past data and projecting trends in parameters forward
- Targeting approach interpolating between current mortality rates and targets assumed to hold at a given future date

Sources of uncertainty

- Model uncertainty
- Parameter uncertainty
- Stochastic uncertainty
- Measurement error
- Heterogeneity
- Past experience may not be good guide (e.g. change in business mix)

Quantifying uncertainty

- Estimates of parameter uncertainty can be made for regression and time series models, after model has been chosen
- For model uncertainty, can try different models and assess sensitivity of results, but
- no easy method for providing probabilistic statements on model risk
- A further question is what past data should be used

-		

Projections - conclusions so far

- Will use extrapolative parametric(?) methods
 - E.g. adjusted Lee-Carter and/or P-splines
 - Fitting difficult, over dispersion (shocks)
- Stochastic model(s) will be provided
- COD analyses may be used to "explain" results
- Model uncertainty ignored, problem too big
- Parameter uncertainty, reflected in ci's
- Data risk, use the largest data sets

The Actuarial Profession making financial sense of the future	
An example	
 Consider a £10,000 pa annuity Male age 60, PMA92(B=1944)mc, 0% 	
 traditional value = £261k 50% chance this is too big or too small – 100% chance that it is wrong 	
 but used to reserve, calc transfer values etc. 	
	1
Another way	
 What size fund will give me 99% certainty that the annuity can be paid? easy calc for one life 	
• For age 60 just find y such that $\frac{l_y}{l_{60}} = 0.01$	
 y = 103.8! Fund = (103.8 - 60) x £10k = £438k 	- <u></u>
 Note that y = 87.5 for 50% and, from the last slide, that a₆₀ @ 0% = 26.1 i.e. (87.5 – 60) ≈ 26.1 - Modes and medians 	
(01.0 00) ~ 20.1 - Modes and Medians	

So comparison is

- Pay £261k for the annuity and get 0% chance of insolvency with a 0% chance of surplus
- Or put £261k in fund => 50% chance of insolvency and a 50% chance of surplus
- Or put £438k in fund => 1% chance of insolvency and a 99% chance of surplus
- Call the difference "Risk Capital" = £177k or 68% of the annuity cost.

More lives?

- Need a different approach
- ... one is stochastic.

- Run this 1,000 times and order the results
- look for 50% (500th) and 99% (990th) percentiles
- Risk capital for 99th percentile is the difference

8

Trend v diversifiable risk

- So far, only dealt with diversifiable risks
- ... trend risk is same for all lives, cannot be diversified
- Use a stochastically generated set of q_{x,t}to examine one case (with many lives etc)
- Can then work on many sets of q_{x,t} to look at trend risks
- Stochastic models aggregate these risks

Implications of stochastic mortality modelling

- Diversifiable and non-diversifiable risks and their impact on risk capital
- Use a very simple model to illustrate issues
- Risk capital requirements
- Sources of uncertainty having highest impact
- Practical issues with nested stochastic models

A simple model allowing for trends

 $q_x(t)$ = probability of life aged x at start of year t dying in year t

Then
$$q_x(t) = q_x(t-1) * [1-Imp(t)]$$

$$Imp(t) = X(t) + Y_x(t)$$

Where X(t) is the trend and $Y_x(t)$ is variations by age

$$X(t) = X(t-1) + \sigma_x Z(t)$$

$$Y_x(t) = \sigma_Y Z_x(t)$$

Z(t) is a random variable distributed as N(0,1) and σ_x and σ_y are the sds in X(t) and $Y_x(t)$ respectively

Calibration of model

- $q_x(0) = PML92C1992$
- X(0) = 2.50%, (the initial trend)
- $\sigma_X = 0.25\%$, (the s.d. of the trend)
- $\sigma_{\rm Y}$ = 2.00%, (the s.d. of variation by age)

Start with non-diversifiable risk only

- Project mortality improvements
- Assume very large homogenous population
- Assume that annuity amounts are same for all annuitants

Introduce diversifiable risks

- Start with risk arising from small population
- Add risk from non-homogenous population
- Add risk from different annuity amounts
- Issue Nested models?
 - Can be avoided by assuming independence between diversifiable and non-diversifiable risks
 - Just do more un-nested simulations!

Introduce heterogeneity

- Assume 4 different sub-groups
- Average mortality of portfolio remains the same
- Assume that mortality improvements same for all the groups

	Group 1	Group 2	Group 3	Group 4
Proportion of portfolio by lives	10%	15%	35%	40%
Base mortality %PMA92C1992	67.5%	85.0%	110.0%	105.0%

The sub-groups

	Group 1	Group 2	Group 3	Group 4
Proportion of portfolio by lives	10%	15%	35%	40%
Base mortality %PMA92C1992	67.5%	85.0%	110.0%	105.0%
Average annuity amount £	13,000	11,000	6,500	4,000
Proportion of portfolio by £	19%	24%	33%	23%

Implications

- For smaller portfolios, the risk capital can be high
- Heterogeneity can be diversified away for large portfolios (perhaps)
- Need a portfolio of 20,000 plus lives to minimise costs of diversifiable risk – assuming that all sub-groups experience same improvements!
- Worthwhile for small to mid-size pension schemes to insure.

#