OUT 1981 1982 Mortality Investigation Reports

Number 2

Institute of Actuaries

RC

Faculty of Actuaries

Published by the Institute of Actuaries and the Faculty of Actuaries 1976

THE EXECUTIVE COMMITTEE OF THE CONTINUOUS MORTALITY INVESTIGATION BUREAU

as on March 16th 1976

Institute Representatives G.V. Bayley (President) J. Hamilton-Jones, M.A. E.A. Johnston, C.B., B.A. E.B.O. Sherlock, M.A. Faculty Representatives M.D. Thornton (President) J.A. Cairns C.G. Kirkwood A.D. Wilkie, M.A.

© 1976 Institutute of Actuaries and the Faculty of Actuaries

No part of this publication may be reproduced in any material form, whether by publication, translation, storage in a retrieval system or transmission by electronic, mechanical, photocopying, recording or other means, without the prior permission of the owners of the copyright.

INTRODUCTION

IN 1973 the Councils of the Institute and Faculty presented the first Number of *Continuous Mortality Investigation Reports*, which was prepared under the direction of the Joint Continuous Mortality Investigation Committee and published as a separate issue in place of the previous arrangement under which any such reports were published in both the *Journal* and the *Transactions*. The Councils now have pleasure in presenting this second number which includes the first reports prepared by the Permanent Health Insurance Sub-Committee of the Joint Committee, together with further reports on the experiences of immediate annuitants and of pensioners in the years 1967–70. Our special thanks are due to Mr J. Hamilton-Jones and his Sub-Committee for the preparation of the former, to Mr A. D. Wilkie for his extensive work in the graduations of the latter, and to the contributing offices for their continued support.

M. D. Thornton President The Faculty of Actuaries G. V. Bayley President The Institute of Actuaries

-- -

INVESTIGATION OF SICKNESS STATISTICS

INDIVIDUAL POLICIES 1972 AND 1973

1. INTRODUCTION AND GENERAL SURVEY OF THE COMMITTEE'S WORK TO DATE

1.1. In 1970 the Life Offices' Association and the Associated Scottish Life Offices invited the Continuous Mortality Investigation Bureau to undertake an investigation into the sickness rates experienced under Permanent Health Insurance Policies. The Councils of the Institute and Faculty considered the question and on 12 June 1970 they appointed a Sub-Committee to examine the proposal. The constitution of the Bureau was amended so as to extend its activities to the collection of morbidity statistics and to the investigation of permanent health insurance.

1.2. The first United Kingdom insurance company to provide sickness and accident cover commenced to issue policies in 1885 and two life offices have been transacting this type of business for over 85 years. But it was possible to obtain this kind of cover well over a hundred years before the life offices first started to offer it. It was the principal type of cover offered by the Friendly Societies which were part of a growing movement in those days. The State entered the business in 1911 in partnership with the Friendly Society movement but the partnership ended in 1946 with the passing of the National Insurance Act of that year. Since then several life offices have entered the market in competition with the two old established ones.

Throughout the nineteenth and twentieth centuries there has been a need to collect morbidity statistics to enable the various institutions to calculate rates of premium or contribution but there has not been a great deal of pooling of data. The classic data pools in the United Kingdom were assembled by the Independent Order of Oddfellows Manchester Unity Friendly Society for various investigations in the nineteenth century, reaching a climax in the experience of 1893–97 from which standard tables were constructed. These standard tables are still in use, amended if necessary to reflect the experience of the institution using them. During the twentieth century data pools have been assembled under the United Kingdom National Insurance Scheme and there is a large quantity of data from the United States and Canada. It is also believed that some of the larger institutions have made their own investigations but the consensus of opinion is that none of the material available accurately represents the current morbidity experience of Permanent Health Insurance policyholders in the United Kingdom.

1.3. Permanent Health Insurance contracts are issued as ordinary policies on individual lives, or under group policies arranged with the employer of the lives

1

concerned. The underwriting arrangements are different for group business. Benefits may be in the form of income during qualifying disability, lump sums on permanent disablement and waiver of premiums under life policies during disablement. Premiums may be level or varying annual premiums. In the case of group business the recurring single premium system ('current cost') method might be used.

1.4. The Sub-Committee has analysed the experience of individual policies in 1972 and 1973 and communicated the results to the contributing offices. Data for group business are being collected but results are not yet available.

1.5. When it first met, in the presence of Mr J. M. Denholm, the Chairman of the main C.M.I. Committee, the Sub-Committee comprised Messrs J. Hamilton-Jones (Chairman), P. H. Bayliss, D. B. Biggs, D. J. Bond, R. D. Clarke (Secretary), F. W. Eschrich and R. E. White. Unfortunately Mr R. E. White died on 11 February 1972; Mr D. B. Biggs retired from the Sub-Committee on 24 February 1972 and Mr R. D. Clarke retired from his position as Secretary later in 1972. Mr J. A. Cairns succeeded Mr Biggs and Mr R. E. Hayward, Assistant Secretary of the C.M.I., took over the position of Secretary to the Sub-Committee.

Five meetings were held between July 1970 and March 1971 to discuss the founding of the investigation. At the last of these meetings a draft Report was agreed and on 18 June it was submitted to the main C.M.I. Committee who discussed it in detail. After some amendments had been made the Report was circulated to offices in September 1971 with a covering letter inviting offices to comment and to state their estimate of the volume of new business they would be able to submit in 1972. They were also asked to say whether or not they would be able to contribute data for entrants prior to 1972 and whether any data they were able to submit would be on cards or magnetic tape.

The full text of this Report, as amended by subsequent instructions, is given in \S 5 of this note.

Draft cards for recording the data were enclosed with the Report and offices were asked to comment or to send a preliminary reply by 15 October 1971. The versions finally adopted are given in § 2 of this note.

The response was both prompt and encouraging. Seventeen offices offered to contribute data and a rough estimate was made that the total 'in-force' business at 1 January 1972 would be of the order of 120,000 individual policies and subsequent new business of about 42,000 policies per year. So the Sub-Committee met on 15 November 1971 to prepare and issue a circular dated December 1971 which contained a revised version of the 'in-force' card.

Further meetings were held on 24 February 1972 and 31 May 1972. Mr H. A. R. Barnett, a senior official of the C.M.I. Bureau, was present at the first of these meetings to present a memorandum on the coding of causes of sickness and this document was accepted as the basis for the instructions to offices which are also given in § 2. Mr G. T. Humphrey, F.I.A., a specialist independent data processing practitioner, was present at the second of these meetings and he presented a preliminary report on the computer system needed for processing the data

relating to individual policies. At this meeting a circular to be dated June 1972 was prepared to inform offices of the final version of the 'claims' card.

A meeting took place on 30 November 1972 and there were four meetings in 1973.

During the year 1973 the Sub-Committee was considering the computer systems which Mr Humphrey had submitted and a report outlining the problems of collecting data for group sickness schemes. Circulars were issued in March, July and October to amplify the instructions to offices and to give the instructions for submitting group business data. The climax of the year was the meeting of 12 December 1973 at which Mr Humphrey reported that he had received data for individual policies from nine offices for in-force at 31 December 1971 and claims in 1972 and from ten offices for in-force at 31 December 1972, and it was decided to run the programs and calculate the experience of these policies in 1972.

Before this could be done it was necessary to settle the precise nature of the exposed to risk formula and a meeting was held on 15 February 1974 for this purpose.

1.6. And so, on 3 July 1974, a draft Report on the experience of 1972 was presented. In its approved form it was circulated to all contributing offices in October 1974 and copies of their own results were sent to the offices which had contributed the data.

During 1974 and 1975 the experience of individual policies in 1973 was calculated, summarized and distributed. Meanwhile work is being continued on the collection of group data and it is hoped to issue a report in due course. A full description of the group investigation will also be published and it will include an explanation of the additional problems relating to that type of business.

2. METHOD OF COLLECTING THE DATA

2.1. It was decided to collect the data on 80 column punched cards or, by arrangement with the C.M.I. Bureau, on magnetic tapes with fields to match. A card was to be set up for each policy in force at the beginning of a record year and a card for each claim during the record year.

2.2. The following are the layouts of the in-force and claims cards finally adopted for individual business, incorporating all amendments to date and containing such instructions as are deemed to be necessary. These are followed by the instructions for coding the causes of sickness and, in § 3, by the report on the 1972 experience, in § 4 by the 1973 experience, in § 5 by an up-dated version of the original Report to Offices in 1971 giving the Plan for the Investigation and in § 6 by a description of the computer system as it was when the processing of the data for record year 1973 was completed. It is appropriate to mention here that the matters under discussion in this report are developing as the investigation goes on and as a result the Sub-Committee might change its views of the relative importance of those matters in later investigations.

- ----

2.3 Card layouts for individual business:

	•	
		(1) In-force Card
Field	Columns	Description
Blo	ock A	
1	1	Type of Record
-	-	1 = individual record
		(2 = group record)
2	2-4	Contributor's 'office number'
3		Record Year
		The last two digits of the calendar year to the end of which
		the record refers.
4	7	Geographical Location
		1 = United Kingdom
		2 = Republic of Ireland
		3 = Isle of Man
		4 = Channel Islands
		(No other countries outside the British Isles have yet been
		specified by offices. The Committee will supply further
_	0	codes on request.)
5	8	Please leave blank or code '0'
6	9	Age Definition
		Blank or zero if month and year of birth are given in field
		11, otherwise $1 =$ nearest birthday, $2 =$ next birthday at the date referred to in field 3.
		the date received to in new y.
Blo	ock B	
7	16	Sex
		1 = Male
		2 = Female
8	17	Occupational Rating
		0 = no rating
		1 = rated
9	18–20	Period of Deferment. Code in weeks thus:
		001 = 1 week, $052 = 52$ weeks, etc., to nearest week, but
		use code 999 if the period of deferment is one Calendar
10		month.
10	21–22	Year of Entry
		The last two digits of the calendar year in which the policy
		first went on the books. Code 00 if not known.
		Note: 'Continuation' policies—that is policies passing from
		group to individual under a continuation option-

should not be included with the individual returns in

· -

4

·---· ·

Field Columns

Description

cases where the disability started before the continuation policy was issued. In other cases the year of entry to be recorded is the year in which the continuation option was exercised. These policies should be coded '1' in column 1 and '3' in column 36

- 11 23-26 Month and Year of Birth or Office Year of Birth Contributors will have the option of showing the month of birth in columns 23-24 and the last two digits of the year of birth in columns 25-26, or of showing the office year of birth, which allows the calculation of the age next birthday or the nearest age at the date referred to in field 3, in columns 25-26 and zeros in columns 23-24. If possible, offices are requested to adopt the former method, since it is more accurate
- 12 27–28 Ceasing Year
 - Last two digits of calendar year in which cover will cease.
- 13 29 Period of Benefit Payment

Specify payment period to which rate shown in columns 30-34 relates:

- 1 = weekly
- 2 = monthly
- 3 = yearly
- 4 = special

If the amount of business to which code 4 applies is a large proportion of the whole, the office is requested to approach the Sub-Committee for a separate code to be allocated.

14 30-34 Rate of Benefit

Rate of benefit to the nearer \pounds , gross of reinsurance. (*Excluding* waiver amount in every case if possible. Report 00 if the only benefit is waiver of premium, *e.g.* attached to life policy.)

- Note 1: Where code 2 or 3 applies in field 15, the initial rate of benefit should be shown.
- Note 2: If it is unnecessarily cumbersome to eliminate amounts of waiver of premium from office records, this need not be done. Please inform the Committee, however.
- Note 3: Reinsurances ceded to other offices are included in the ceding office's figures. Reinsurances accepted from other offices are not to be included in the investigation.

P' 11	~ 1	
	Columns	Description
15	35	Type of Benefit 1 = level sickness benefit 2 = increasing sickness benefit 3 = decreasing sickness benefit 5 = lump sum benefit 9 = other type of benefit
16	36	 Medical Evidence medical non-medical (with or without P.M.A. report) non-selection limit applies part or whole of benefit unknown (for existing business at 1 January 1972 only) Note: Medically substandard lives (other than those subject only to a special exclusion clause) are not to be included in the investigation.
17	37	Type of Premium 1 = level annual premium 2 = recurrent single premium 3 = increasing annual premium
18	38	 4 = any other type, but see note for code 4 in field 13 Underwriting Impairment. (For cases dealt with by exclusions only. For occupational ratings see field 8. Other cases rated for health or dangerous pursuits, etc., should not be included in the investigation at all.) 0 = no extra risk 1 = exclusion relating to hypertension and disease of cardiovascular system 2 = exclusion relating to neurosis, psychoneuroses and
		 psychosis (including anxiety state) 7 = exclusion may or may not be present (for business existing at 1 January 1972 only) 8 = exclusion present but related impairment not known (for business existing at 1 January 1972 only) 9 = all other exclusions Note: Codes 3-6 are being reserved for possible future use.
Block C		
19	71–80	Policy Number Note: This field is reserved for the policy number or any

Note: This field is reserved for the policy number or any other means by which the particular record can be referred to in any communications between the C.M.I. Bureau and the contributing office for error indications, etc. Further notes:

_ . _ _

1. Block A contains fields which can probably be gang-punched by the contributing offices.

Block B contains information relating to the particular record, which will have to be individually punched.

Block C contains only an item of identification, requiring individual punching.

2. Where data are submitted in the form of punched cards, these will be returned by the Bureau after the data have been transferred to tape. It would therefore be possible for the contributing office to use some of the space on the card for its own purposes. Initially offices would be asked not to use columns other than 43-70 in this way and it would not be possible to transfer such data to the claims card because those columns are used for the details of the claim.

(2) Claims Card

Field Columns

Description

Block A

1

- 1 Type of Record
 - 3 =claim under individual policy
 - (4 = claim under group policy)
- 2-6 2-9 As for In-force Card
 - Block B

7-18 16-38 As for In-force Card

Offices are asked to ensure that the information shown in Blocks A and B is consistent with that recorded in the corresponding 'in-force' card. If fresh information should come to light when a claim arises, it should be ignored for the purpose of compiling the claims card. For example if code 4 is used in column 36 of the in-force card it should be repeated on the claims card and not amended in accordance with information discovered later.

Block C

- 19 44-49 Date of falling sick (*i.e.* beginning of deferred period). If present card relates to an interrupted claim (including a change from total to partial disability) record date of first falling sick. Date to be coded in three groups of two digits, day-month-year.
- 20 50-53 Date payments commenced (in present record year) in benefit period to which present card relates (day and month only: 0000 if continuation from previous year).

A new card should be prepared each time a claim is resumed after an interruption or a change in degree of disability. Field Columns

Description

- 21 54 Mode of commencement of present Benefit
 - 0 =continuation from previous record year
 - 1 = new claim
 - 2 = new claim following interruption of sickness in the deferred period
 - 3 = revival of claim following interruption (whether the benefit rate is the same as before the interruption or different)
 - 4 =continuation of an existing claim but benefit rate changed from date recorded in field 20
- 22 55-56 Percentage the benefit under the current claim bears to the full rate of benefit (for partial disability claim). Punch zeros if full rate is being paid.
- 23 57-60 Date payments ceased in benefit period to which present card relates (day and month only: 9999 if claim in force at end of year).
- 24 61 Mode of cessation
 - 1 = policy expired or void for reason other than death or lump sum payment
 - 2 = death
 - 3 = recovery
 - 4 = lump sum payment terminating contract (add explanatory note)
 - 5 = ex gratia commutation (add explanatory note)
 - 6 = benefit rate altered but claim continues (continuation reported on further card)
 - Note: In the case of code 4 or 5 please give amount of payment as well as circumstances, e.g. whether contract was withdrawn. If the *ex gratia* commutation is one month's payment or less punch an adjusted expiry date in field 23 which would give correct total claim. This will not be practicable if the adjusted expiry date is after the current year of claim and in such a case explain in relation to field 24 what has been done.
- 25 62-65 Cause of disability for current claim. (Abbreviated 'List C' in the eighth revision of the *Manual of the International Statistical Classification of Diseases*. See separate instructions.)
- 26 71-80 Policy number or other identification. (See note to corresponding field 19 of in-force card.)
- 2.4. Instructions for coding cause of sickness:
- (i) Always follow the latest available diagnosis.

- (ii) If only one cause of sickness is shown, refer to the index in volume 2 of the Manual of the International Statistical Classification of Diseases (eighth revision). The coding selected from the index should then be confirmed in volume 1, in case there should be any notes modifying the coding. The coding selected should finally be converted to the appropriate number in the abbreviated 'List C' shown in pages 447-9 of volume 1, and where the sickness is due to injury the 'CE' code should be chosen rather than the 'CN' code. In time an experienced coder may in some cases come to know the codes and be able to go direct to 'List C', but this would be a dangerous practice until he is well experienced and, in any cases of doubt, reference should first be made to the main index and full tabular list.
- (iii) If more than one cause is shown, and certain of the causes would be likely to cause short-term sickness only, whereas others would be likely to cause long-term sickness, discard the short-term causes.
- (iv) If more than one cause is shown it is necessary to determine whether they are connected or unconnected; sometimes a connexion may be presumed from elementary medical knowledge (e.g. if both nephritis and uraemia are shown); sometimes a connexion can be detected from the linkage instructions on pages 427-32 of volume 1. In any case of connected causes the coding should be to the underlying cause or to the cause to which the linking instructions direct.
- (v) If more than one unconnected cause is shown, discard any which are illdefined (e.g. pyrexia) and any which are trivial (e.g. coryza).
- (vi) If two diseases of the same site or of related sites are shown, one of which is a general term, the other a more specific one, prefer the specific one.
- (vii) If two causes are shown, either of which could have been due to the other, and one is known to have been of longer duration, then assume that cause to be the underlying one.
- (viii) If two or more unrelated causes are shown, or two or more ill-defined causes without any better-defined cause, or two or more trivial causes without any more serious cause, then in any of these cases prefer the first named.
 - (ix) Prefer a trivial but well-defined cause to an ill-defined cause.
 - (x) If there is any conflict in the above rules, the earlier rule takes precedence; thus, Rule (iii) takes precedence over Rules (iv)-(ix).

Notes

(a) The instructions given on pages 417–36 of volume 1 should be studied, but always remembering that they are based on the form of death certificate which frequently states explicitly cause (a) due to cause (b) due to cause (c), whereas the sickness coding will not usually be based on records given in this form, and therefore the general rule for cause of death coding cannot apply to sickness coding.

- (b) The application of Rule (iii) or Rule (vii) will not necessarily give the same coding as in the cause of death classification.
- (c) To ensure uniformity of practice, would offices treat the list which runs from C1 to C65 and from CE66 to CE70 as a series running from 0001 to 0070 and record the appropriate code in columns 62-65 of the claims card, omitting all reference to the prefixes 'C' or 'CE'.
- (d) 'Depression' is not to be coded as 0065 (other specified ill-health causes) but as 0027 (psychoses and non-psychotic mental disorders) unless there is evidence to show that it falls within 0031 (other diseases of the nervous system and sense organs).
- (e) The notes on pages 433-4 on interpretation of highly improbable relationships are very useful, but it must be realized that there are many other combinations of diseases which are unlikely to be related. If in doubt on this or on any other aspect, the C.M.I. Bureau will be glad to give assistance.

3. REPORT ON 1972 EXPERIENCE: INDIVIDUAL POLICIES

3.0. INTRODUCTION

3.0.1. The Sub-Committee has now evaluated the data needed for measuring the experience of the calendar year 1972 and results, summarized in quinquennial age groups, are given in Tables 1–10 of this report. Each table shows the exposed to risk, actual number of weeks' claims paid, the actual claim rates and percentages of actual to expected sickness subdivided into the following sickness periods: the notation in brackets indicates how the period is subsequently described in this report.

Over 1 week but not over 4 weeks (1/3) Over 4 weeks but not over 13 weeks (4/9) Over 13 weeks but not over 26 weeks (13/13) Over 26 weeks but not over 52 weeks (26/26) Over 52 weeks but not over 104 weeks (52/52) Over 104 weeks (104/all).

3.0.2. The tables are numbered according to the following scheme:

Table	number
Males	Females
1	6
2	7
3	8
4	9
5	10

10

Some contributing offices make claim payments relating to the first week of sickness. Minor differences of interpretation of office practice in such cases would have led to difficulties in processing the data. To avoid this, claim payments made within 1 week of falling sick were ignored, the policies concerned being effectively treated as giving 1 week deferred benefits.

3.0.3. Before any attempt can be made to interpret these tables the Sub-Committee must report how, and from what precise data, they were constructed; this is done in § 3.1 of the report. Then, in § 3.2 a comparison is made between the present experience and the Manchester Unity experience of 1893–97, in § 3.3 a first step is taken towards the determining of claim inception rates to which will eventually be applied disability annuity factors when the data for calculating them have been assembled. In § 3.4 the numbers in force and the numbers of claims in the various subdivisions of the data are tabulated.

3.1. NATURE AND SCOPE OF THE DATA

3.1.1. The exposed to risk was calculated from tabulations by age nearest birthday of the business in force on 1 January and 31 December 1972 derived from the returns of ten offices. The following points were taken into consideration for the exposed to risk calculation.

3.1.2. With an investigation into mortality rates we are concerned with a happening which occurs only once for each insured life and where there is no element of duration of death. Death is instantaneous.

Under this investigation the statistic being measured is the extent of disability claim. Disability is a continuing feature—by this we mean that one spell of disability can continue over many years. This fundamental difference between an investigation into morbidity rates and into mortality rates implies that the normal census method used to calculate the exposed to risk in the Continuous Mortality Investigation might not be appropriate for this morbidity investigation.

The Sub-Committee used a method by which the claims for each experience group would be set against the total exposed to risk for that group as accurately as possible. Accordingly the exposed to risk for each experience group was calculated using the calendar year method under which the experience of a group is followed from age x at the beginning of the calendar year under investigation to age (x+1) at the end of that calendar year. By this method, an insured continuously disabled throughout the experience year did not have his claim apportioned to two experience groups as would have been the case if the census method had been employed. The total exposed to risk in each experience group is made up of a full year for those included in the beginning and the end of year data and half a year for those included only at the beginning of the year, but special exposures apply to new business in the current and the two previous years as described in 3.1.3 below. The individual records of claimants were compared with the individual exposed to risk records and any claims which were not matched by exposed to risk were investigated.

3.1.3. Special considerations apply to new business and, depending upon the period of sickness, to business added in the previous year or the year before that. Obviously a new entrant in year y cannot claim in the 104/all period until year y+2. The Sub-Committee considered that offices would normally wish to take this into account in calculating their premium rates by adopting a formula for the net cost on the following lines:

Net cost of unit of benefit per week commencing on incapacity, the insurance terminating at age M, entry age x,

$$= \pi_{x;M-x|}$$

$$= \left\{ {}^{M}K_{x}^{1/3} + {}^{M}K_{x+1/12}^{4/9} + {}^{M}K_{x+\frac{1}{4}}^{13/13} + {}^{M}K_{x+\frac{1}{4}}^{26/26} + {}^{M}K_{x+1}^{52/52} + {}^{M}K_{x+2}^{104/all} \right\} \times \frac{1}{N_{x} - N_{M}}$$

the notation being derived from that described in volume 1, chapter 17, of *Life* and Other Contingencies by Hooker and Longley-Cook. (Note: This formula is based on the principle that the insurance is included in the appropriate period of sickness to the extent that it is possible for a claim to become payable in that period assuming incapacity immediately following entry.)

The Sub-Committee have therefore adjusted the exposed to risk so that it is consistent with this formula and the average period of exposure at each claim period is shown in Table 11. As with the net premium formula the insurance is included in the exposed to risk in the appropriate period of sickness to the extent that it is possible for a claim to become payable in that period.

As an example of a calculation for Table 11, take the factor to apply to 1971 entrants to derive the exposed to risk in the sickness period 13/13 in 1972. Assume an even flow of new business. Clearly, only policies with deferred periods of 13 weeks or less are considered. So any policy which has been in force for more than 13 weeks at 1 January 1972 can enter the 13/13 claim period at any moment in 1972, *i.e.* three-quarters of the entrants are exposed for the full year. The remainder, who entered during the last quarter of 1971, can enter the 13/13 claim period in 1972 for at least 39 weeks, and at most (entrants at 1 October) 52 weeks—on average, say 7/8 of a year. The overall factor is thus

$$\frac{3}{4} \times 1 + \frac{1}{4} \times \frac{7}{8} = \frac{31}{32}$$

Having calculated the mean number of policies in force in 1972 for the years of entry shown in Table 11 for a group we are processing (e.g. males, deferred period 4 weeks, age x) the exposed to risk for the 13/13 period is:

 $1 \times$ Mean in force, entry before 1970; $+1 \times$ Mean in force, entry in 1970; $+31/32 \times$ Mean in force, entry in 1971; $+9/16 \times$ Mean in force, entry in 1972 (taken as half the new entrants in force at the end of 1972).

13

No adjustment has been made for policies with a period of deferment of less than 4 weeks.

3.1.4. Those who are familiar with the details of the Manchester Unity investigation of 1893–97 will recollect that no adjustments of the kind just described were made at that time. The impact of recent entrants was very much less then. For example, the first Manchester Unity investigation covered the years 1846–48 when the exposed to risk was 621,561 compared with 2,995,724 in 1893–97, an average annual increase of about $3\frac{1}{4}$ %, whereas in only one year, 1972, the data for the present investigation has risen by just under 14% from 137,831 at 1 January 1972 to 157,098 at 31 December 1972. The result is that the business in the present investigation is rather heavily weighted with recently written business, as can be seen from any of the Tables 1–10 where exposed to risk at the older ages, where there is less new business, falls less rapidly with regard to claim period than it does at the younger ages where new business is more prominent.

Another indication of the rapid growth in this class of business is the proportion of the business in force which is of less than 3 years' duration. This varies according to the deferred period as follows:

Deferred period (weeks)	Percentage of 'in-force' which is of less than 3 years' duration
1	22
4	44
13	47
26	55
52	52

The method of deriving the exposed to risk leads to the central rates of claim at each age. The Sub-Committee can form no view at this stage of the mortality rates appropriate to lives insured under sickness policies included in the investigation. The central rate of claim, whose value is virtually unaffected by mortality, is therefore considered to be the most appropriate for tabulation of the results. This follows the precedent of the Manchester Unity 1893–97 experience; the tabulated rates in that experience were central rates.

3.1.5. The claims were classified according to age nearest birthday at the beginning of the calendar year in which they occurred and to periods of sickness passed through; sickness which terminated before the end of the deferred period was not recorded in the claims data. This means that the claims under policies with a 52-week deferred period are for relatively serious illnesses which have lasted for a year before they are recorded whilst claims under policies with a 1-week deferred period may well contain a fair number of relatively trivial ailments which would never have been reported had the deferred period been longer.

в

3.1.6. The following table shows the numbers of policies in force and of claims during the year.

	Males	Females	Total
Number of policies in force on 1 January 1972	132,660	5,171	137,831
Number of policies in force on 31 December 1972	150,681	6.417	157,098
Number of claims during 1972	4,967	249	5,216

Most of the business was for level sickness benefits at level annual premiums, written in the United Kingdom or the Republic of Ireland.

3.2. COMPARISON WITH MANCHESTER UNITY SICKNESS RATES

3.2.1. The expected number of weeks of claim were calculated on the basis of the Manchester Unity (1893–97) sickness rates for males in occupation group AHJ (the least hazardous occupations). The percentages of actual to expected claims shown in Tables 1–10 should be studied in the light of the following remarks.

The percentages shown in the tables were calculated from figures which had been calculated by the computer to two places of decimals and so it may not always be possible to reproduce them exactly from those in the tables; this is also a feature of the actual claim rates in Tables 1-10.

In order to deal with the comparison for the '4 weeks deferred' policies it was thought advisable to break down the shortest tabulated period of sickness (*i.e.* the first 3 months) of the M.U. table into 'first 4 weeks' and 'next 9 weeks' periods. There are so many reasons for hedging the expected rates with reservations that refined methods were avoided. Moreover, no attempt was made to deal separately with the first week of sickness and the next 3 weeks.

ĺ

As a basis for subdividing the M.U. first 3 months' sickness, it was considered reasonable to derive ratios from current National Insurance statistics. The Government Actuary's Department kindly supplied figures relating to employed and self-employed persons combined for the years (June-May) 1969-70 and 1970-71. The Sub-Committee applied rates for individual ages based on the National Insurance figures given in Table 12. As there are no females in the M.U. experience, only male lives were considered.

3.2.2. The Sub-Committee believes that it is helpful to present, in tabular and graphical form, aggregate rates which summarize the most important results so far. These are the claim rates for males (i) for all periods combined (first 4 weeks, next 9 weeks, etc.) for policies subject to 1 week's deferred period; and (ii) for all periods after 26 weeks combined, relating to all policies contributing to the males experience with a deferred period of 26 weeks or less.

The graphs (Fig. 1) show the central claim rates for age groups 20-24, 25-29,

etc., plotted for convenience as points at the mid-ages of the groups. For comparison, they show the Manchester Unity rates, AHJ, for 'all sickness' and 'all sickness after 6 months' respectively, at the mid-ages.

In a theoretical population where l_x is the number living according to a mortality table, the central rate of sickness at age x is the number of weeks of sickness recorded between exact ages x and x+1 divided by the central population

$$\int_{0}^{1} l_{x+t} dt$$

The standard deviation of a rate of sickness may take the form

 $\sqrt{(\text{expected weeks of sickness})} \times (\text{a factor}).$

A reference to the problem will be found in J.I.A. (1972), **98**, 35 and J.I.A. (1949) **75**, 12. The 1949 reference is to a paper by L. E. Coward, who tabulated theoretical values of the ratio of the standard deviation of sickness (in weeks) to the square root of expected sickness (in weeks) using the Manchester Unity sickness experience 1893–97 (Whole Society). These ratios ranged from 2.30 at age 20 to 2.69 at age 70 for the first 3 months' sickness and from 2.84 at age 20 to 5.44 at age 70 for all periods of sickness. He demonstrated that the maximum value this ratio can possibly take is just over 7.

The Sub-Committee believes that the Manchester Unity experience may not be suitable as a standard table for such calculations in the present investigation, but hopes the above remarks are helpful.

3.2.3. The graphs have been plotted on a 3-cycle logarithmic scale for the rates and a unitary scale for the ages. The vertical gap between the Manchester Unity graph and the corresponding 'results' graph is thus log (M.U. rate)/(actual rate).

It is hoped that the visual impression of the graphs adequately reflects the variation of the rates, and of the ratio of actual to expected rate, with age.

3.2.4. In studying the rates for the different deferred periods it should be borne in mind that one cannot prejudge the effect of the deferred period on the experienced sickness. Few offices at present issue immediate benefit policies on a significant scale. If one compares the 'after 26 weeks' rates of sickness for such policies with the 'after 26 weeks' rates for 6-months deferred period. Subject to further evidence in the future, it seems more likely that the differences are largely due to other characteristics of the portfolios of contributing offices. For example, an office may contribute a high proportion of the data for policies with a short deferred period but a lower proportion of the data for longer deferred periods, because the data for longer deferred periods is submitted by a larger number of offices. Thus its claims experience would affect the overall rate of claim for short deferred periods more than the rate for long deferred periods.

3.2.5. Due to the irregularity in the progression of rates, in age groups 40-44 and 50-54 particularly, a special investigation of ages 40-44 was carried out.

The suspicious feature is illustrated in Table 1, where the 52/52 rate is much higher than would be reasonable in relation to the 26/26 or 104/all figure. There are other examples of what would in a mature experience be impossible or, at best, freak results.

Every claim for the 1-week deferred class was, therefore, inspected for the test ages 40-44; the effect described was due to some multiple policies on individual lives. At age 42, three policies on one life contributed 284 days to the 52/52 period and 81 days to the 104/all period during 1972.

This special investigation underlines the provisional nature of the results of a single year's experience. The Sub-Committee is convinced of its duty to present these results with strong warnings that they lead to no firm conclusions.

3.2.6. It appears worthwhile to comment on one likely trend. Comparison of the results in the 52/52 and 104/all periods demonstrates that for the relationship between these two results to remain at the present level, approximately 50% of the claims in the 52/52 period and 25% of the claims in the 104/all period must terminate within the following year. For the longer periods of claim one of the main causes of termination of claim is mortality, the rate of recovery varying inversely with the length of the period of incapacity. Except at the older ages where the claim terminates with the expiry of the insurance, it is not likely that these rates of recovery will be attained so that we may expect to see an overall increase in the 104/all claims rate in future years.

3.2.7. The data for females are relatively scanty but Tables 1–10 give the general impression that the females' experience is heavier than the males' experience. A rough measure was obtained by calculating for both sexes and all deferment types separately the overall claim rates for all ages and all durations combined, *i.e.* the sum of the rates for all sickness periods following the deferred period stated. The results are shown below:

	Overall of	claim rate	
Deferred period (weeks)	Males	Females	
	(1)	(2)	(2)/(1)%
1	1.03	1.88	183
4	0.39	0.60	154
13	0.22	0.48	218
26	0.23	0.14	61
52	0.07	0.37	529

These overall claim rates include the data for lives over age 60, but in the case of females there were comparatively few such lives.

3.3. CLAIM INCEPTION RATES

3.3.1. Claim inception rates for males were calculated by dividing the numbers of new claims in 1972 by the appropriate exposed to risk, namely for 1 week deferred benefits, the exposed to risk for period 1/3, for 4 weeks deferred benefits.

the exposed to risk for period 4/9, for the 13 weeks deferred benefits, the exposed to risk for period 13/13, for the 26 weeks deferred benefits the exposed to risk for period 26/26, and for the 52 weeks deferred benefits, the exposed to risk for period 52/52. The male results are shown in Table 13 in quinquennial age groups and the female results are shown for all ages combined.

3.3.2. There are three features which seem worthy of comment. First for 1 week deferred benefits up to age group 55-59 the male claim inception rate is surprisingly constant. Secondly, there is a high inception rate for the age groups 20-24 for almost all deferred periods. It is probably premature to investigate why this should be, but recent mortality investigations have shown a similar feature. Thirdly, the overall inception rate for females is higher than for males. In view of the small numbers of females involved any breakdown of this comparison into age groups is probably superfluous this year.

3.3.3. The Sub-Committee plans to calculate disability annuities later on, but the data of several more years will be needed before a start can be made on this.

3.4. OTHER TYPES OF SUBDIVISION AVAILABLE

3.4.1. The three previous sections of this report have dealt with the primary subdivision of the data into male and female. The Sub-Committee has collected details to enable other subdivisions to be made and the following table gives details of what is available according to the various attributes:

	Number o	of Policies at	
	1 January	31 December	Number of
Attribute	1972	1972	Claims in 1972
Sex			
Male	132,660	150,681	4,967
Female	5,171	6,417	249
Country			
United Kingdom	134,276	152,835	5,102
Republic of Ireland	3,464	4,140	114
Isle of Man	1	4	0
Channel Islands	90	119	0
Occupation Rating			
No rating	117,000	140,163	4,558
Rated	20,831	16,935	658
Type of Benefit			
Level	126,415	142,945	3,806
Increasing	3,694	6,782	45
Decreasing	7,678	7,312	1,365
Waiver only	0	0	0
Lump sum	44	59	0
Medical Evidence			
Medical	9,828	18,271	154

<i>a.</i>)	Number	of Polices at	
Attribute	1 January 1972	•	Number of Claims in 1972
Non-medical	5,217	15,270	154
Non-selection limit applies	5	19	0
Unknown	122,781	123,538	4,908
Type of Premium			
Level Annual	137,799	157,064	5,216
Recurring single	3	3	0
Increasing annual	0	0	0
Any other type	29	31	0
Underwriting Impairment			
No extra risk	84,099	99,313	4,162
Exclusion exists for hypertension			
or for cardiovascular reasons	28	45	7
for neurosis	438	634	67
Unknown whether exclusion			
exists	48,745	51,959	538
Exclusion known to exist but			
condition unknown	1,956	1,793	130
All other exclusions	2,565	3,354	312

(cont.)

3.4.2. These figures show that there is a large proportion of policies for which important attributes at the outset were unknown. Until the requirements of the present investigation were made known, the contributing offices were not recording data in the appropriate form. But from then onwards the offices did start to record the required data and it would have been unreasonable to ask offices to reopen their old files, the more so as the business is growing rapidly and the old files will assume a lesser significance as time goes on. The above table shows how the 'unknown' class is tending to diminish in importance and it may well be of only minor significance when the investigation is fully under way. The Sub-Committee considers that the crude claim rates, obtained by dividing the number of claims for each attribute by the mean in-force figures, are of little value because of the changing nature of the age and duration structure of the business and so no figures have been shown.

3.4.3. The following figures describing the claims are interesting because they indicate areas of the data which might be explored from the point of view of the setting up or adjusting of office administration routines.

3.4.4. It is clear that the claims fall into two main entry groups and that in the main they either recover or continue as claims. But there are small pockets of complicated cases which must produce more than a proportionate share of administrative problems. From a purely statistical point of view it is tempting

Attribute	Number of claims in 1972
Mode of commencement	
Continuation from previous record year	992
New claim	4,093
New claim following interruption of sickness in deferred	
period	2
Revival of claim following interruption	86
Continuation of claim but benefit rate changed	43
Rate of benefit	
Full rate being paid	5,130
Reduced rate being paid	86
Mode of cessation	
No cessation by 31 December 1972	1,003
Policy expired or void	45
Death	68
Recovery	4,055
Lump sum paid	4
Ex gratia commutation	0
Benefit rate altered but claim continues	41

This analysis does not include a small number of late claims submitted with the 1973 data whereas Tables 1-10 and 13 do include these late claims.

to concentrate upon the main causes of entry and exit, but if the Sub-Committee is to give a worthwhile service to the offices as opposed to providing a summary of the statistically significant data only, then it has a duty to pursue matters which, whilst relating to small numbers of policies, are important both to the offices and their claimants. It is hoped that offices will feel able to continue to supply statistics for the minority classes even though, as yet, the Sub-Committee is not able to interpret them fully.

3.5. ACKNOWLEDGMENTS

3.5.1. Having reached this stage the Sub-Committee must place on record its indebtedness to offices who have provided data for investigation and to the many individuals who have worked to establish it. A list of the offices covered by the 1972 investigation appears below. Thanks are also due to the Government Actuary's Department for supplying the information which enabled us to calculate expected claims in a suitable form.

J. Hamilton-Jones Chairman Offices which supplied data for 1972:

Clerical, Medical & General Commercial Union Eagle Star Friends' Provident Guardian Legal & General Medical Sickness Group Norwich Union Yorkshire General

INDIVIDUAL PHI POLICIES 1972 EXPERIENCE

Users of these tables should note that the experience is heavily weighted with recently written business. See paragraph 3.1.4 and $\S 3.2$.

In Tables 1 and 6, expected weeks of sickness for period 1/3 were based on estimated M.U. sickness in the first 4 weeks. No attempt was made to treat the first week separately. See paragraph 3.2.1.

Table 1. Males—Deferred period 1 week (1972 experience)

.

Age	1/3	4/9	Expose 13/13	d to ris 26/26		104/all	1/3	Actu 4/9	al weel 13/1			2 104/alł	1/3	Ac 4/9	tual cla 13/13			104/all		ickne	ss/ex	veeks pecte 26/5 26	∕∕) b:	() 04/ all
18-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54	404 2,310 2,527 2,686 3,190 3,528 2,660	381 2,263 2,504 2,671 3,176 3,520 2,656	337 2,168 2,459 2,641 3,148 3,504 2,648	278 2,025 2,391 2,597 3,107 3,480 2,636	180 1,736 2,257 2,507 3,026 3,430 2,612	65 1,179 1,971 2,308 2,855 3,329 2,563	80 366 542 468 688 749 617	19 181 312 329 497 700 426	59 122 187 179 284 226	30 50 180 162 153 177		197 255 620 725	-198 -158 -214 -174 -216 -212 -232	-050 -080 -124 -123 -156 -199 -160	-027 -049 -071 -057 -081 -085	+015 +021 +069 +052 +044 +067	-001 -035 -107 -070 -272	-085 -089 -186 -283	40 34 46 36 41 38 38	34 47 64 55 56 58 36	32 51 58 36 40 30	25 29 76 42 26 27	2 51 108 51 125	
55–59 60–64 Total	2,651 1,637 21,593		2,645 1,636 21,186	2,640 1,635 20,789	2,632 1,632 20,012	2,612 1,627 18,509	817 590 4,917	975 758 4,197	394 412 1,863	375 559 1,686	615 596 2,577	1,305 2,327 5,429	-308 -360	·368 ·463	·149 ·252	·142 ·342	-234 -365	-500 1-430	44 46 40	65 64 56	37 42 39	35 51 39	58 48 64	59 61 47

 Table 2. Males—Deferred period 4 weeks (1972 experience)

		Елр	oosed to				Actual						al clain			Actual					
Age	4/9	13/13	26/26	52/52	104/all	4/9	13/13	26/26	52/52	104/all	4/9	13/13	26/26	52/52	104/all	4/9	13/13	26/26	52/52	104/all	
18-19	51	44	35	20	3						 .							-	—	—	
20-24	1,570	1,421	1,208	823	325	131	41	35	_	_	-083	·029	·029	<u> </u>		56	37	59	_	_	
25-29	4,843	4,591	4,222	3,518	2,339	305	134	28		<u> </u>	·063	029	-007			37	34	11			
30-34	4,934	4,739	4,453	3,903	2,971	418	152	78	64	16	·085	·032	·018	·016	-005	44	33	25	31	6	
35-39	5,164	5,017	4,799	4.376	3,612	533	186	42	85	15	·103	·037	·009	·019	·004	46	30	10	28	3	
40-44	4.628	4,535	4,394	4,113	3,603	648	346	304	130	304	·140	076	-069	·032	·084	50	48	56	32	33	
45-49	3.399	3,552	3,280	3,129	2,837	731	385	214	255	377	-215	115	·065	·081	·133	63	57	40	59	31	
50-54	1,925	1,906	1,876	1.815	1,699	415	245	232	253	434	216	·129	·124	·139	-256	49	46	51	65	36	
55-59	936	931	924	909	876	241	153	172	233	503	·257	-164	·186	·256	-574	46	41	46	65	45	
60-64	276	276	275	273	266	129	86	74	79	285	·469	313	·271	·289	1.070	66	54	42	39	47	
Total	27,726	27,012	25,466	22,879	18,531	3,551	1,728	1,179	1,099	1,934						49	43	37	11	32	

														Actual	weeks	
		Expose	d to risk	2	Actua	al week	s of s	ickness	A	ctual c	laim ra	te	sick	ness/ex	pected	(%)
Age	13/13	26/26	52/52	104/all	13/13	26/26	52/5	2 104/all	13/13	26/26	52/52	104/all	13/13	26/26	52/52	104/all
18-19	25	21	12	2	_			_			_					
20–24	900	769	529	201	19	26	7		-021	·034	·013		27	69	45	
25–29	3,915	3,553	2,845	1,652	55	20	83	19	·014	·006	·029	·011	16	9	73	22
30–34	4,760	4,477	3,914	2,881	42	42	44		009	-009	·011		9	13	21	_
35-39	5,560	5,312	4,801	3,845	132	57		52	·024	·011		013	20	12		9
40-44	5,278	5,096	4,724	4,000	130	123	121	401	-025	·024	·025	·100	15	20	26	39
45-49	4,036	3,935	3,733	3,313	91	71	74	349	023	·018	·019	·105	11	11	14	26
50–54	2,296	2,260	2,181	2,014	221	200	124	376	·096	·089	·056	·186	34	37	27	26
55-59	1,361	1,350	1,325	1,277	249	356	152	601	-183	·264	·114	-470	46	66	29	37
6064	502	501	500	497	80	95	283	454	-160	·189	•565	·913	28	29	78	41
Total	28,633	27,274	24,564	19,682	1,019	990	888	2,252					22	26	30	30

Table 3. Males-Deferred period 13 weeks (1972 experience)

		xposed to :				f sickness		ual claim		ness/e	expecte	cs sick- 2d (%)
Age	26/26	52/52	104/all	26/26	52/52	104/all	26/26	52/52	104/all	26/26	52/52	104/all
18-19	43	25	5		_	_						
20-24	2,516	1,558	374	51	2		-020	·001		41	4	_
25–29	6,788	5,055	2,368	44	28	28	-006	-005	·011	11	14	24
30–34	6,590	5,481	3,545	70	106	2	·010	·019	_	15	36	1
35-39	6,810	5,985	4,489	111	92	—	·016	·015		18	22	
40-44	6,847	6,293	5,205	119	117	153	·017	-018	·029	14	19	11
45–49	5,469	5,157	4,542	219	226	245	·040	-043	-053	24	32	14
50–54	3,946	3,814	3,542	244	270	1,299	·061	·070	·366	25	33	52
55-59	2,562	2,535	2,471	345	451	1,287	·134	·1 77	·520	34	45	41
60–64	1,010	1,008	996	193	314	1,072	·191	·310	1.075	29	43	48
Total	42,581	36,911	27,537	1,396	1,606	4,086				23	33	33

Table 4. Males-Deferred period 26 weeks (1972 experience)

Age	Expose 52/52	d to risk 104/all		weeks of mess 104/all	Actual c 52/52	laim rate 104/all	Sickness	l weeks expected %) 104/all
18-19	8	2	_		_			
20-24	152	48	_		_			_
25-29	890	470		-	_		_	
30-34	1,511	958	32		·021		39	-
35-39	2,141	1,581	—	***	_			
40-44	2,475	1,974				_		
45-49	1,949	1,662	126	246	-064	147	47	37
50-54	1,117	979	29	36	·026	·036	12	5
55-59	551	521	58	59	·106	·112	27	9
6064	126	121	12	40	·092	·333	13	15
Total	10,920	8,316	257	381	_		19	12

Table 5. Males—Deferred period 52 weeks (1972 experience)

Table 6. Females—Deferred period 1 week (1972 experience)

.				ed to ri		104/-31				ks of s			1/2		Actual c	laim ra 26/26		2 104/all	Acti 1/3	1al we 4/9	eks sid	kness/	expecte	d (%) 104/all
Age	1/3	4/9	13/13	20/20	52/52	104/aii	1/3	4/9	13/13	20/20	54154	104/all	1/3	4/9	13/13	20/20	24/24	5 104/an	175	4/2	13/13	20/20	54,52	104/411
18-19	_	_	_	_	_	_	_				_	<u> </u>							_		—	—	—	—
20-24	37	35	30	24	14	3	8	19	_	_	—	_	223	·530	·004	_			46	357	_			
25-29	88	86	82	75	61	33	12	12	2				-133	·134	·020			_	28	80	24			
30-34	70	69	67	64	58	47	25	16	2	_			·353	·231	·025	—			75	120	26	_	_	
35-39	87	86	84	82	78	70	16	18	_	_	_		·181	·213		_	_		37	97				—
40-44	96	95	94	91	88	83	25	41	26	32	32	52	·261	·424	·272	·350	-367	·622	50	151	170	279	368	236
45-49	175	174	174	173	170	164	74	118	43	1	19	85	-424	·672	-245	·003	·112	·515	76	196	122	2	82	130
50-54	89	89	89	89	89	87	34	40	6	26	19		·376	•446	·068	291	·211	_	62	103	25	123	101	
55-59	69	69	69	69	69	68	55	65	51	52	<u> </u>	104	·796	·931	·731	·754	-	1.527	114	166	184	190	—	121
60-64	15	15	15	15	15	15	6	3	_	_	—	104	-371	180				6.622	47	25		_		293
Total	726	718	704	682	642	570	255	332	130	111	70	345							64	145	93	95	70	121

Table 7. Females-Deferred period 4 weeks (1972 experience)

Exposed to risk					Actual weeks of sickness				Actual claim rate					Actual weeks sickness/expected				pected		
Age	4/9	13/13	26/26	52/52	104/all	4/9	13/13	26/26	52/52	2 104/all	4/9	13/13	26/26	52/5	2 104/all	4/9	13/13	(%) 26/26	52/52	104/all
18-19 20-24 25-29 30-34 35-39 40-44 45-49	2 103 244 196 198 194 194	2 91 233 188 192 190 143	1 75 218 177 184 184 139	48 188 158 167 171 131	19 137 129 131 146 117	20 33 49 30 28 45	4 23 3 9 13 15	19 13 18		 	-191 -134 -249 -152 -145 -306	·048 ·097 ·018 ·044	-086 -072 -125	·025 ·025		4/9 130 79 129 69 52 89	63 115 19 36 43 50	20/20 144 59 76	32/52 	104/an
50–54 55–59 60–64 Total	78 32 9 1,202	76 32 9 1,156	75 31 9 1,093	72 31 9 975	67 29 9 784	26 23 254	12 88	26 76	22 71	 131	·328 ·696	·116 ·376		-296	_	75 124 	42 95 	144 59	139 73	204 58

v

		Expose	d to risk	í.	Actual weeks of sickness Actual claim rate 13/13 26/26 52/52 104/all 13/13 26/26 52/52 104								Actual weeks sickness/expected (%) II 13/13 26/26 52/52 104/all					
Age	13/13	26/26	52/52	104/all	13/13	26/26	52/52	104/all	13/13	26/26	52/52	104/all	13/13	26/26	52/52	104/all	iga	
18-19	3	2	1		 →		_	_	_							_	igation	
20-24	56	46	30	13					_		—	_	_	_				
25-29	166	150	124	80	8	26	16		·045	·173	·126	_	53	288	_		of	
30-34	161	164	137	94	10	26	16		-056	·158	·114		59	224	216	_	Si	
3539	228	218	197	154	18	12	_		·077	·056			64	62		_	cha	
40-44	260	248	224	182	33	4		52	·128	·014	_	·284	81	11	_	103	ickness	
45-49	240	231	216	187	25	_		139	·106	—		·742	53			187	-	
50-54	130	127	122	110	17	26	2	—	·129	-203	·018		46	83	9		Ste	
55-59	52	51	50	48	4			52	·070	_		1.069	18	•		84	II.	
6064	18	18	18	17				14		—	—	•772				31	Statistics	
Total	1,314	1,255	1,119	885	115	94	34	257					52	53	24	75	6	

Table 8. Females-Deferred period 13 weeks (1972 experience)

į

.

	Ext	posed t	o risk	n rate	Actual weeks sickness/expected (%)							
Age	26/26	52/52	2 104/all	26/26	52/52	104/all	26/26	52/52	104/all	26/26	52/52	104/all
18–19	2	1	_					—		—		—
20-24	43	27	11				_	—				
25-29	103	71	34			—	—			_		
3034	193	156	104	_						_	_	
35-39	283	235	168	36	8	_	-125	·035	_	137	51	
40-44	378	339	265	25		_	•064			52	1	
45-49	291	267	225	8	—	—	·026			16	—	
50-54	162	152	134	_			_			—	_	
5559	93	91	87		48	57	\rightarrow	-522	·649	—	140	53
60–64	14	14	13		—	_			—		—	—
Total	1,562	1,353	1,041	69	56	57				30	32	13

Table 9. Females—Deferred period 26 weeks (1972 experience)

							Actua	l weeks
			Actual	weeks of			sickness,	expected
	Expose	d to risk	sick	iness	Actual c	laim rate	C	<i>(</i>)
Age	52/52	104/all	52/52	104/all	52/52	104/all	52/52	104/all
18-19			_			_	_	
20-24	6	1		_				_
2529	26	14			—			
3034	40	24			—	_	-	<u> </u>
35-39	76	56		·	_	—		
40-44	103	77	39	65	-377	•837	378	314
45-49	76	57			_			
50–54	54	46		9		·185		27
55-59	26	25	_	9		·338	_	28
60–64	2	2		—	-			_
Total	409	302	39	83			75	67

Table 10. Females-Deferred period 52 weeks (1972 experience)

 Table 11. Factors to apply to the mean in-force, 1972, to correct for recent entry (1972 experience)

		Factor (fraction of a year) for sickness period										
Year of entry	1/3	4/9	13/13	26/26	52/52	104/ali						
Before 1970	1	1	1	1	1	1						
1970	1	1	1	1	1	12						
1971	1	287	31 32	78	1							
1972	1	$\frac{121}{144}$	<u>9</u> 16	1 4								

 Table 12. Proportion of first 3 months' sickness (Manchester Unity) falling in first 4

 weeks (see assumptions in 3.2.1) (1972 experience)

Age	Proportion	Age	Proportion
18	-82	52	·58
22	-78	57	-55
27	•73	62	·52
32	•71	67	-50
37	-69		
42	-65		
47	•62		

Values for other ages were interpolated.

Table 13. Claim inception rates per thousand exposed to risk (1972 experience)

				1	Deferred	Period				
Age	1 w	eek	4 w	eeks	13 w	eeks	26 w	eeks	52 w	eeks
_	М	F	М	F	М	F	Μ	F	Μ	F
20-24	153	106	18	29	2		2			
25-29	122	73	11	20	2	+	1			•
30-34	136	263	15	46	1		—		1	
35-39	125	126	19	30	2	9	_	7	<u> </u>	
40-44	133	155	24	46	4	12	1	3	—	
45-49	117	194	35	55	3	17	2	—	1	—
50–54	128	162	30	51	8	15	3		—	_
55-59	161	380	43	123	13	19	5		1	
6064	178	190	56	—	20		8			
Total	135	182	22	40	4	9	2	2		

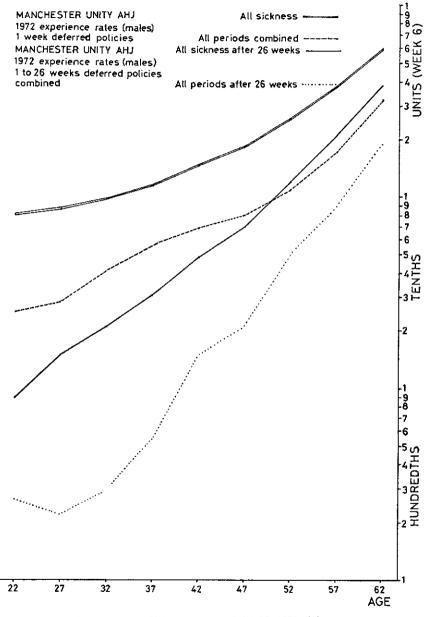


Figure 1. M.U. Sickness rates and C.M.I. 1972 claim rates

4. EXPERIENCE OF INDIVIDUAL POLICIES 1973

4.1. The data for 1973 comprised the following numbers of policies and claims:

	Males	Females	Total
Number of policies in force on			
1 January 1973	150,681	6,417	157,098
Number of policies in force on			
31 December 1973	156,754	6,445	163,199
Number of claims during 1973	4,992	242	5,234

As in the previous year, the majority of the policies were on male lives issued in the United Kingdom for level benefits at level annual premiums. An analysis of the experience is given in the following tables.

INDIVIDUAL PHI POLICIES 1973 EXPERIENCE

Users of these tables should note that the experience is heavily weighted with recently written business. See paragraph 3.1.4 and § 3.2 of the 1972 Report.

In Tables 1 and 6, expected weeks of sickness for period 1/3 were based on estimated M.U. sickness in the first 4 weeks. No attempt was made to treat the first week separately. See paragraph 3.2.1.

The following tables are not strictly comparable with those for 1972. Late notified claims are not included in 1973 whereas they were included in 1972.

Table 1. Males—Deferred period 1 week (1973 experience)

Age	1/3	4/9	Expose 13/13	ed to ris 3 26/20		2 104/all	1/3		al weel 13/13			2 104/ali	1/3	4/9	Actual 13/13	claim 1 26/26		104/all			ss/exj 13/	weel pecte 26/ 26	d (% 52/	
18-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 Total	375 2,517 2,581 2,792 3,099 3,520 2,835 2,519 1,624 21,862	352 2,470 2,561 2,778 3,089 3,514 2,832 2,517 1,624 21,737	309 2,376 2,519 2,749 3,067 3,500 2,825 2,514 1,624 21,483		164 1,937 2,313 2,616 2,947 3,432 2,789 2,499 1,621 20,318	66 1,340 2,023 2,437 2,775 3,322 2,738 2,480 1,615 18,796	69 309 445 495 679 773 724 731 691 4,916	25 120 193 270 422 673 556 858 911 4,028	25 36 88 147 379 151 508 584 1,918	25 39 247 265 199 548 616 1,939	51 51 278 220 239 659 764 2,263	131 488 551 988 1,882 2,297 6,337	-185 -123 -172 -177 -219 -220 -256 -290 -425	-072 -049 -076 -097 -137 -191 -197 -341 -561		-010 -015 -082 -076 -071 -218 -379	-027 -019 -094 -064 -086 -264 -471	·054 ·176 ·166 ·361 ·759 1·422	38 26 37 36 42 39 42 42 54 40	48 28 39 44 49 55 45 60 78 55	12 15 26 40 53 19 49 61 41	46 29	68 28 95 46 39 65 63 60	36 67 41 50 58 61 58

Table 2. Males-Deferred period 4 weeks (1973 experience)

							A			_		Aata	al claim	rate		Actua	al week	10/1	ess/exp	ected	
Age	4/9	Exp J3/13	posed to 26/26	risk 52/52	104/all	4/9	Actual v 13/13	26/26	52/52		4/9	13/13	26/26	52/52	104/all	4/9	13/13	26/26	52/52	104/all	
18-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 Total	42 1,356 5,119 5,175 5,411 4,963 3,663 2,218 1,058 334 29,339	37 1,224 4,882 5,005 5,293 4,885 3,626 2,201 1,055 334 28,542	5,111 4,764 3,567 2,173 1,050 333	18 753 3,838 4,230 4,724 4,510 3,438 2,113 1,038 331 24,993	5 348 2,580 3,263 3,960 3,984 3,157 1,976 1,004 325 20,602	54 388 491 597 685 649 436 363 167 3,830	2 150 146 286 328 317 267 274 133 1,903	53 79 206 304 215 192 211 142 1,402	50 53 17 364 209 203 187 110 1,193		-010 -076 -095 -175 -138 -177 -197 -343 -499	-002 -031 -029 -054 -067 -087 -121 -260 -399		-013 -012 -004 -081 -061 -096 -180 -331		27 44 49 50 49 51 45 61 70 48	2 36 30 44 42 43 65 68 41	19 23 44 51 36 36 50 65 37	33 23 5 82 44 45 45 45 39	12 5 35 31 40 47 33 29	•

		Exposed	d to risk	c.	Act	ual weel	s of sicl	cness	А	ctual c	laim ra	ate	sick	Actual ness/ex		
Age	13/13	26/26	52/52	104/all	13/13	26/26	52/52	104/all	13/13	26/26	52/52	104/all	13/13	26/26	52/52	104/all
18–19	20	16	10	4		→	_	—		_				—	_	
20-24	767	666	491	230	23				·029		- +		38	-	_	_
25-29	4,107	3,770	3,110	1,922	49	49	15	67	·012	·013	·005	·035	14	21	12	67
30–34	5,292	5,006	4,443	3,345	96	34	80	27	·018	·007	·018	.008	19	10	34	9
35-39	5,811	5,595	5,150	4,223	138	155	101	52	·024	·028	·020	012	19	30	29	8
40-44	5,574	5,419	5,084	4,384	135	118	129	158	·024	·022	·025	·036	15	17	26	14
45-49	4,423	4,340	4,149	3,735	323	198	21	635	·073	·046	· 0 05	170	36	28	4	43
5054	2,582	2,551	2,479	2,311	192	213	256	436	·074	·084	·103	·189	26	34	48	26
55–59	1,453	1,445	1,426	1,374	130	190	385	599	·090	·131	·270	·436	22	32	68	34
6064	565	565	563	559	116	152	333	910	·205	·268	·591	1-627	35	41	82	73
Total	30,594	29,373	26,905	22,087	1,202	1,109	1,320	2,884					24	27	40	35

Table 3. Males—Deferred	d period 13	weeks (1	973 experience)
-------------------------	-------------	----------	-----------------

					,	c - · · ·			1	· .		
	_										tual we	
	Exj	posed to) risk	Actual	weeks of	fsickness	Act	ual claim	rate	sicknes	s/expe	rted (%)
Age	26/26	52/52	104/all	26/26	52/52	104/all	26/26	52/52	104/all	26/26	52/52	104/all
18-19	25	16	6			<u> </u>		—			_	
20-24	2,562	1.956	777	26	50	2	·010	-026	·002	20	84	8
25-29	8,626	7,266	4,133	26		52	.003		·013	5	_	25
3034	8,074	7,145	4,963	90	48	109	-011	•007	·022	16	13	26
35-39	7,908	7,234	5,658	139	182	99	·018	·025	·018	19	37	12
40-44	7,483	7,012	5,905	176	132	213	·024	·019	·036	19	19	14
4549	6,138	5,894	5,269	229	382	409	·037	·065	·078	23	47	19
50–54	4,394	4,279	3,984	356	452	1,334	·081	·106	-335	33	48	46
55-59	2,660	2,633	2,567	247	349	1,581	-093	·133	·616	23	33	48
60–64	1,138	1,136	1,131	192	336	1,368	·168	-296	1.209	26	41	54
Total	49,008	44,571	34,393	1,481	1,931	5,167				22	35	37

Table 4. Males-Deferred period 26 weeks (1973 experience)

Age	*	osed to isk 104/all		l weeks skness 104/all		l claim ite 104/all	sickness	l weeks expected (a) 104/all
18–19	9	3	_	_	_			_
2024	169	76			_	—	_	—
25-29	1,066	629	_					
30-34	1,813	1,240						
35-39	2,498	1,920	_	_	_			_
40-44	2,842	2,341			_			
45-49	2,242	1,928	49	313	·022	162	16	41
50–54	1,395	1,257	43	104	·031	·083	14	12
5559	612	582	57	130	·093	·223	24	18
6064	171	167	2	52	·013	·311	2	14
Total	12,817	10,143	151	5 99			10	16

Table 5. Males—Deferred period 52 weeks (1973 experience)

Table 6. Females—Deferred period 1 week (1973 experience)

Age	1/3	4/9	Expos 13/13	sed to ri 26/26	isk 52/52	104/all	1/3	Actu 4/9	1al wee 13/13	ks of s 26/26	icknes 52/52	s 104/all	1/3	4/9	Actual o 13/13	ate 5 52/5	2 104/all	Acta 1/3		eeks sid 13/13	kness/ 26/26	expecte 52/52	d (%) 104/all	11011
18-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 Total	33 115 82 92 90 170 105 66 13 766	30 113 81 91 169 105 65 13 756	26 108 78 90 88 169 104 65 13 741	20 101 74 89 87 168 104 65 13 721	12 86 66 84 82 166 104 65 13 678	4 52 52 76 73 162 103 64 13 599	7 43 17 23 16 71 34 29 16 256	1 7 13 11 12 100 32 40 6 222	$\frac{1}{1}$ $\frac{1}{25}$ $\frac{2}{2}$ $\frac{1}{2}$ 28		 20 104 124		·219 ·369 ·204 ·248 ·173 ·419 ·321 ·442 1·264	-042 -063 -160 -121 -130 -587 -307 -609 -439	-004 -011 -149 -016	 	-443 -963 1-630 5-561	45 79 43 51 33 75 52 63 160 61	37 83 55 46 168 70 107 61 93	$\frac{1}{5}$ $\frac{11}{73}$ $\frac{6}{-}$ 20		241 392 120	168 235 125 239 125	U DICATEDO DIVIN

Table 7. Females-Deferred period 4 weeks (1973 experience)

		Ex	posed to			А	ctual w	veeks o	f sickn	ess		Actu	al clair	n rote		Actu	al week	s sickn	ess/exp	ected
Age	4/9	13/13	26/26	52/52	104/all	4/9	13/13	26/26	52/52	104/all	4/9	13/13	26/26	52/52	104/all	4/9	13/13	26/26	52/52	104/all
18–19 20–24	7 111	- 5 98	3 81	2 54	20					_	_	—				_				
25–29 30–34 35–39	259 197 206	250 192 203	235 183	203 164	140 130	3 36	54	4 89	25	_	·012 ·182	002 280	-017 -482				288	28 680	280	
40-44 45-49	200 202 158	203 200 156	197 195 153	183 185 146	153 159 132	38 37 29	26	4	44	52	·183 ·181	-030 -131	019	_	·326	82 65	25 82	15	200	125
50–54 55–59 60–64	99 34 8	98 34	96 34	92 34	84 32	13 3	2 9	-7	34	52 70 52	·186 ·133 ·087	·015 ·021 ·261	·056 ·204	-297 -373	-393 -827 1-592	54 30 15	7 7 64	$\frac{34}{50}$	214 175	98 117 124
Total	1.281	1.244	8 1.185	8 1,071	8 858	159			-	-		_			—		<u> </u>			
	.,_01	.,	1,105	1,071	020	139	99	113	103	226						49	55	79	94	87

			Tabl	e 8. Fen	ales—	Deferi	red pe	riod 13	weeks	(1973	exper	ience)				
		Expose	d to risk			al week				ctual cl				Actual ness/ex	pected	(%)
Age	13/13	26/26	52/52	104/all	13/13	26/26	52/52	104/all	13/13	26/26	52/52	104/all	13/13	26/26	52/52	104/all
18-19	1	1		_	_		—		—		—				—	—
20-24	62	53	35	12	13	15			-208	·273				—		—
2529	173	158	131	83	6	4	-	_	·037	·026		-	43	44		-
30-34	234	219	183	123	6	4	18	8	·027	·019	·099	-064	28	27	188	78
35-39	230	219	201	165	13	17	18	8	·056	·077	-090	·048	46	83	131	31
40-44	252	243	224	187	36	48	5	_	-141	·198	·022		89	160	23	
45-49	264	258	244	216				156	_			·722	—		_	183
50-54	149	146	141	131	31	61	64		·210	·413	· 4 54	—	75	171	212	—
55-59	65	64	62	57	17	7		52	·268	·115	_	·911	68	29	—	72
60-64	20	20	19	19	9			—	·419	—	—		71	—		
Total	1,450	1,381	1,240	993	131	156	105	224					54	80	69	58

Table 8. Females-Deferred period 13 weeks (1973 experience)

ይ

	Fxi	posed to	risk		ial wee		Actu	al clair	n rate		tual we	æks xted (%)
Age	26/26	52/52	104/all			,3 104/all			104/all			104/all
Age	20/20	52/32	IUH/AII	20/20	52/52	104/411	25/20	54,52	104/411	20/20	52/52	104/411
18-19	1	1		_	_	_	_	_				
20–24	57	43	20				_	_				
25-29	146	109	48							_		
30–34	244	201	129	_	_			-				_
3539	355	302	203	28	36	_	·079	·118		86	170	
4044	415	377	300		_					_		
45-49	337	317	271	7			·021			13	_	
50–54	213	201	177	33			·157	·002		65	1	_
55-59	95	94	91	6	_	76	·063		-838	16		66
60-64	16	16	16	4		24	·264	_	1.454	41	_	66
Total	1,879	1,661	1,255	78	36	100				29	17	20

Į.

							Actual	l weeks
	Expo	sed to	Actual	l weeks	Actua	l claim	,	expected
Age	ri	sk	of sic	kness	ra	ite	(?	6)
	52/52	104/all	52/52	104/all	52/52	104/all	52/52	104/ali
18-19		_	_				_	
20-24	9	2		—	—		_	—
25-29	33	18		_	—			
3034	56	33				_	_	
35-39	89	62		_	_	_		
40-44	123	92			_			_
45-49	104	84	35	30	·335	-360	245	91
5054	70	56		_				
5559	31	30	29		-919		230	
60-64	1	1		_				—
Total	516	378	64	30			96	20

Table 10. Females—Deferred period 52 weeks (1973 experience)

5. REPORT DATED SEPTEMBER 1971

5.1. The following is the text of the Circular and Report prepared in September 1971 amended where necessary to conform with instructions contained in later circulars.

5.2. Circular dated September 1971.

The Life Offices' Association and the Associated Scottish Life Offices have invited the Continuous Mortality Investigation Bureau to undertake an investigation into sickness rates experienced under Permanent Health Insurance policies.

The Councils of the Institute and Faculty have considered the question, and have amended the Bureau's constitution so as to extend its activities to the collection of morbidity statistics, and to the investigation of health insurance. An Advisory Committee has been set up and has now prepared its first report.

The report is enclosed. Most of the contents particularly concern the offices now transacting health insurance. It will however, be seen that all offices contributing to the finances of the Bureau are concerned because it is recommended that the cost of the investigation should be apportioned in the same manner as the cost of other investigations.

Offices are invited to comment on the report, but those intending or hoping to contribute data are requested to write to the Secretary, Institute of Actuaries, indicating:

- (i) The estimated number of cases they would submit for new business arising in 1972.
- (ii) Whether it seems possible to contribute data relating to 1971 new business or earlier years, and if so approximately what volume (data deficient in some minor respect(s) may well be acceptable; offices should indicate in suitable cases what the deficiencies would be).
- (iii) Whether the information will be submitted on punched cards or magnetic tape.
- (iv) Any comments they wish to make on the report or the draft cards.

It is hoped that offices will be able to send at least a preliminary reply by 15 October 1971 so that the work of the Sub-Committee can proceed.

5.3. Report of the Advisory Sub-Committee for the Investigation of Sickness Statistics. (Condensed version.)

Scope of the Investigation

If a sufficient number of offices is able to contribute data in the form required, the investigation will cover the following classes of business:

- (i) Individual policies (including disability income and lump sum benefits attached to Life policies).
- (ii) Group policies.

(iii) Waiver of premium benefits attached to life policies.

It is intended to process the data by computer; the computer would not, of course, be under the control of any individual life insurance office.

Basically the data will be required, for each class, on 80 column punched cards or on tape with the corresponding number of fields covered. For each individual policy or, in group schemes, each life, an 'in-force' card or tape record is needed. In addition, for each life concerned in a claim, a separate claim card or tape record will be set up. In view of the comparatively large number of subdivisions into which the data will be classified for initial study, the committee proposes to set up a program for summarizing the data centrally. The offices will, it is proposed, submit data for individual cases. An additional advantage of this procedure is the control which can be applied to ensure that valid data are submitted. Although it is intended that each year's experience should be compiled and analysed by itself, both for offices separately and in combination, it is realized that, to provide a sufficient volume of data to enable clear results to emerge, it will be necessary to build up a cumulative experience. It follows that a 'data bank' will have to be set up as a store of accumulated information. This will be used in the early years to provide reports on the cumulative experience by Manchester Unity type methods and, at a later stage, for an investigation on a 'Disability Annuity' basis. It should be noted that disability annuities have to be derived from 'select' data with a very long period of selection (15 years was used in the U.S.A.) and a number of years' experience must be amalgamated to produce results which are statistically reliable. Offices will appreciate that if they contribute data for existing business as well as new business, results will be achieved earlier. It is, of course, recognized that some offices might be able to contribute data in respect of new business only.

The data submitted by each office will be treated as confidential, and each office will receive summary reports on its own business which are confidential and not revealed to any other office. The reports on the combined investigation, possibly more detailed than the individual offices' reports, will be made available to all contributors.

Method

The census method will be used and initially there is not expected to be enough information to produce a graduated table of rates. The first results to be published will, therefore, be a comparison of actual and expected weeks of sickness using Manchester Unity AHJ rates for the expected. It has been noted that the investigation of sickness on the basis of amounts of benefit is liable to distort the experience. If the data provide adequate evidence, an early opportunity will be taken to investigate the effect; nevertheless it is not expected that results on an 'amounts' basis will be published for some time.

The census date will be 1 January in each year for individual business but the scheme revision date may be used for group business by offices which find it more convenient to do so.

Investigation of Sickness Statistics

Results on a 'Disability Annuity' basis

It has already been noted that a long period of investigation is required before reliable values of disability annuities can be established. The basis of calculation of these annuities is a combined termination rate for sickness terminating by recovery or death at each age. Reverse selection applies for some years after the commencement of the attack.

However, the investigation of the exposed lives (including those claiming benefit) will produce observed 'rates of starting a claim at age x' separately for each waiting period and this information is useful for international comparison as well as to enable trends to be followed from an early stage. It is therefore proposed to publish crude rates in this form at the same time as the 'Manchester Unity' type results.

Sub-divisions of data

Besides age and sex, rates of sickness depend on the waiting period (deferment period) to an important extent. For each class of business investigated (individual, group and possibly waiver of premium) it will, therefore, be necessary to publish a separate experience for each of the most common waiting periods, probably in quinquennial age groups. If there is enough information, some indication of the experience for females may also be published at an early stage. Group schemes involving a non-selection limit may exhibit special features and it is hoped to investigate the experience separately if certain technical difficulties can be overcome.

A complete analysis of occupations is not practicable and simple methods of classification would involve *a priori* decisions on the degree of extra risk involved, if any. The Sub-Committee could not put forward an authoritative opinion on the way underwriting of the occupational risk should be done. It is, therefore, recommended that offices submit cases, whether rated for occupation or not. They would be classified in two groups only, namely, (1) accepted at ordinary rates and (2) accepted with an extra premium for occupational risk. Medically substandard risks will, of course, be excluded, except under group business or where an individual life is rated solely by means of a special exclusion rather than an extra premium.

The underlying cause of sickness for claims should also be reported. The Sub-Committee decided to adopt abbreviated 'List C' of the eighth revision of the *Manual of the International Statistical Classification of Diseases* for this purpose. The rules for applying these codes are clearly set out in two volumes published by H.M.S.O. and detailed instructions would be supplied to offices. For classification of sickness due to injury, where the list offers two alternative sets of codes, the 'CE' set, based on the cause of injury rather than its clinical symptoms, would be adopted.

The cost of collecting this additional information about occupation and claims is not identifiable but it is obviously small and will eventually, it is hoped, yield helpful results.

Investigation of Sickness Statistics

The Sub-Committee considers that some offices which issue policies outside the U.K. (e.g. in the Republic of Ireland) may consider that the data would be appropriate for comparison (and possibly amalgamation) with U.K. data and would be worth recording. It would not be suitable to include business written against a completely different market background. Individual offices are asked to comment on their own situation in this respect, and to estimate how much data they would submit relating to business outside the U.K.

Apportionment of cost

The Sub-Committee was asked for its recommendations on apportionment of cost. First the question of initial costs of setting up the investigation was considered. It was pointed out that the offices with the largest amounts of business had least to gain from the information to be derived from the investigation, while small offices, or those newly venturing into the field of permanent health insurance, had most to gain. The possibility of a flat charge per contributing office was suggested but, in view of the potential usefulness of the investigation to other offices, this solution is not free from difficulty. As the initial impetus for the investigation came from the Life Offices' Association and the Associated Scottish Life Offices, it seemed more appropriate that these bodies should contribute to the cost of setting up the investigation.

The offices contributing to the main finances of the C.M.I. Bureau are largely the same as the members of the L.O.A. and A.S.L.O. The Sub-Committee therefore recommends that C.M.I. funds be employed for the initial expenses of the investigation.

It is also recommended that the subsequent running costs should be met by an appropriate addition to the normal contributions of all offices contributing to the C.M.I. Bureau.

6. DESCRIPTION OF COMPUTER SYSTEM

The investigation falls into two distinct parts having different levels of priority. The first is an analysis along Manchester Unity lines and the second is an investigation into claim inception and termination rates leading to the calculation of disability annuities. It will not be possible to obtain useful results from the second part of the investigation for a number of years and this means that it has a lower level of priority than the first.

The computer system used for the experience under individual policies in 1972 and 1973 was concerned mainly with the Manchester Unity type investigation but it was designed so as not to prejudice the second part of the investigation.

Data is accepted on punched cards or on IBM nine-track magnetic tape or in other forms with the agreement of the Sub-Committee.

If an office were supplying data as at 31 October instead of 31 December then for this office an event which occurs on 1 December 1972, for example, would be coded and treated as a 1973 event, the only inaccuracy being a slight discrepancy in the year of experience as compared with other offices.

Detailed descriptions of card layouts have been given in paragraph 2.3. The variables by which the data can be analysed separately are:

> Contributing office Age Sex Year of experience Country Whether or not rated for occupation Deferred period Benefit rate Benefit type Medical evidence type Premium type Medical exclusion type

and additionally for claims:

Whether full rate or reduced for partial disability Commencement mode Cessation mode Cause of disability Number of days of sickness in any period

The main reports required by the system are: (1) analysis of the data for all offices combined subdivided by age, sex and other variables, singly or in combination, which may affect the level of sickness claims; and (2) analysis for individual offices to compare with the results for all offices combined. The individual office figures will be analysed in less detail than the all office data.

The number of subdivisions is far too large for an analysis by all variables simultaneously so the computer system is designed to allow the Sub-Committee to change the combinations of variables as necessary when results are obtained. The exceptions to this general rule are concerned with age, where a fixed range will be used for all analyses; deferment period, where standard periods of 1, 4, 13, 26 and 52 weeks will be analysed separately and any other deferment period will be taken as the next higher period and any claims up to the deemed deferment period will be ignored; periods of sickness, where standard periods of sickness 1/3, 4/9, 13/13, 26/26, 52/52, 104/all (measured in weeks) will be used; and benefit rate, where it has been agreed that for lump sum benefits and special periods of benefit payments the rate of benefit will not be used but will be held in the system as zero. In other cases the amount to the next higher multiple of £100 per annum will be held in the system.

Since the requirements of a disability annuity investigation have not yet been specified, it is essential that none of the information supplied to the C.M.I. is lost. It is impracticable to keep copies of all input tapes submitted, so consolidated tapes for each end year's in force for all offices combined and for each year's claims will be held indefinitely.

Apart from the analyses to be performed there are other areas where generality is desirable. They are:

- (i) Years to be analysed. The system is written so that the data for any number of years, which need not be consecutive, may be combined.
- (ii) Comparison to be made. Initially all sickness rates will be compared with Manchester Unity AHJ. Later the basis of comparison may well be with a standard table derived from C.M.I. data, so the standard rates are read in as data.
- (iii) Printing. Results may be required by individual ages, by individual ages with quinquennial sub-totals, or by quinquennial sub-totals only. Also the quinquennial groupings must be capable of variation. It must be possible to suppress the printing of A/E if E is less than a certain amount and this amount should be variable. So all these facilities are controlled by parameters read by the print program.

The following is a list of programs included in the system:

- A Input Edit
- **B** In-Force Extract Create
- C Claims Extract Create
- D In-Force Extract Sort
- E Claims Extract Sort
- F Aggregation
- G Summaries Create
- H Summaries Extraction
- J Results Print
- K Statistical Summary
- L Extract File Sort
- M Results Extraction
- N Claims Extract Print
- P Claims Records Sort
- Q Claims Records Analysis
- R Delete Office

Data enter the system as card or tape files containing in-force or claim records for one or more offices. The files are read by the Input Edit program which checks each record for obvious errors and makes a list of any it finds. Records not in error are copied on to a tape called the 'brought forward' tape containing the records which have passed through previous input edit runs. Error records are corrected and submitted in card form to a later edit run. If an input file contains a large number of errors, the output file is scrapped and the data are returned to the office concerned for correction.

Investigation of Sickness Statistics

When all input edit runs for 1 year have been completed there will be two tapes holding in-force and claims for all offices combined. These tapes are the basic data of the investigation and will be held indefinitely.

These individual records are converted into a form suitable for later processing by the In-Force Extract Create and the Claims Extract Create programs. For example, dates of birth are converted to age nearest birthday, benefit rates are converted to annual amounts, non-standard deferred periods are converted to standard ones and so on. This puts all records into a standard form regardless of what the office year is or how ages are defined. Any records over age 65 or under age 15 are listed and are not passed on to the next stage of the work. Records for ages 15–17 are replaced by similar records at deemed age 18. The Claims Extract Create program also notes whether any claim ranks as a new claim for the calculation of the Claim Inception Rate.

The output tapes from this process are sorted by the In-Force Extract Sort and the Claims Extract Sort programs by the values of the several variables and these extracts will be retained indefinitely.

The extracts for which all variables have the same value are combined by the Aggregation program which takes 1 year's claims extracts and the in-force extracts for the beginning and end of the year and calculates the exposed to risk on the assumption that new policies were issued in the middle of the year of entry and allowing for the fact that no claims could arise before the end of the deferment period. It produces an Aggregates Tape consisting of the exposed to risk and claims subdivided into sickness periods 1/3, 4/9, 13/13, 26/26, 52/52 and 104/all.

Up to this stage no material information has been discarded and programs (except for input data) will normally be run once per year as an automatic process. From this stage onwards programs will be run at the request of the Sub-Committee to carry out any analyses that seem to be necessary and parameters must be specified for each run.

The next stage is to compress the aggregates into summaries by combining all records with variables other than age that are not required in a particular analysis. This is done by the Summaries Create program and the process is governed by Data Combination Cards which are coded as follows to add a record from the Aggregates Tape into a summary according to whether a particular variable (1) has a given value, (2) does not have a given value, (3) is not less than a given value, (4) is not greater than a given value.

The variables which can be referred to in this way by Data Combination Cards are as follows:

ference

No.		Values
01	Office	000 to 999
02	Sex	1 = male, 2 = female
03	Country	1 = U.K., 2 = Republic of Ireland, 3 = Isle
		of Man, $4 =$ Channel Islands

Reference No.		Values
04	Occupation	1 = Occupation rated, else 0
05	Deferment Period	1 = 1 week, $2 = 4$ weeks, $3 = 13$ weeks, 4 = 26 weeks, $5 = 52$ weeks
06	Curtate period	Curtate duration at end of year of experience (maximum = 8, 99 = unknown)
07	Payment type of benefit	1 = level, 2 = increasing, 3 = decreasing, 5 = lump sum, 9 = other types
08	Medical evidence	1 = medical, 2 = non-medical, 3 = non- selection limit applies, 4 = unknown
09	Premium type	1 = level annual, 2 = recurrent single, 3 = increasing annual, 4 = other
10	Medical exclusions	0 = no exclusions, 1, 2, 9 = specific types; 7 = exclusion may or may not be present; 8 = exclusion present, but reason unknown
11	Level of benefit	00 to 99 (in £100s taken to the nearest higher multiple of £100 per annum)
12	Full rate code (claims only)	0 = benefit reduced; $1 = $ benefit not reduced
13	Disability code (claims only)	01-70 (classification code omitting C or CE)

No Data Combination Card is required if all values of a given variable are to be included. Any number of sets of Data Combination Cards can be handled in one run leading to separate summaries. A maximum of fifteen Data Combination Cards may be used in any one set.

The first card in each set is a header card, giving the set number and the number of Data Combination Cards that will follow it. Each card in the set gives the set number, the reference number of the variable to be tested, the code for the test required and up to seven values for which the test is to be applied. If the test is (3) or (4), only one value can be given.

As an example of how the Summaries Create program works, suppose that the Sub-Committee wish to analyse the experience of all offices combined, males only, deferred 1 week, durations 5 and over (but excluding 'unknown'), excluding recurrent single premium cases and including only those that are known to have medical exclusions and disability codes 20–27. This operation would need one header card and eight Data Combination Cards. The header card would be punched as follows:

Column	Data punched	Description	
1-4	0123, say	Set number	
56	000	Type of card	
7–8	08	Number of Data Combinatio	m
		Cards in set	

Column	Data punched	Description
14	0123	Set number
5–6	02	Number of variable to be tested
7	1	Selection code
819	001	Value of field to be tested

The next card in the set would be as follows:

This card selects aggregates which are coded 001 in field 2, *i.e.* males.

The second card tests variable 5 for value equal to 001 and so selects deferred period of 1 week from the aggregates selected by the previous card. The third card tests variable 6 for value not less than 005 and so selects duration 5 and over from the aggregates selected by the previous cards. The fourth card also operates on variable 6 to select, by code 2, those aggregates whose field value is not 099 and so selects only known durations. The fifth card selects aggregates which are not coded 002 in variable 9, *i.e* recurrent single premium. The sixth card operates on variable 10 to select aggregates with values 001, 002, 008 or 009, *i.e.* those with specific types of exclusion. The seventh card selects aggregates with not less than code 20 in variable 13 and the final card selects those not greater than 27 in variable 13, thereby separating the sickness causes required.

Thus the data to be analysed are separated from the whole body of data and the summary derived from the set of Data Combination Cards is referred to by its year/set number—thus set 0123 of 1972 data is designated 720123. The output from the Summaries Create Program is a Summaries Tape. Each summary on the tape contains a copy of the Data Combination Cards that were used to create it.

When results are required from the system, any required summaries are extracted by the Summaries Extraction program; similar summaries for different years being added together if required and written into a Summaries Extracted File. This is achieved by means of results parameter cards which are laid out in the following form:

Column	Description
1-4 5-6 7-10 11-30	Results set number Card number in set Data combination set number Marker for years 1972–1991:
	for each year $1 =$ required 0 = not required

The program also checks that the details of the Data Combination Cards are the same on each summary to be combined. A warning is printed if they are not.

The following Results Print program calculates expected claims on a basis to be defined, ratios of actual to expected claims and, optionally, actual rates of sickness for the six sickness periods referred to earlier and prints the results. The

Investigation of Sickness Statistics

sickness rates for the calculation of the expected claims are read in from a set of Basis Cards and the rates actually used so far are Manchester Unity AHJ Rates 1893–97. The details of the printing of the results are defined by a Print Parameter Card which allows the following choices to be made:

Printing of individual ages and/or quinquennnial sub-totals Choice of quinquennial groupings Minimum value of expected sickness below which A/E is suppressed Whether actual sickness rates are to be calculated and printed.

All tapes used by the system are retained until the end of the year's running, except results tapes which are discarded immediately. When each year's running is complete all tapes are discarded except for:

In-force records (all offices combined) Claims records (all offices combined) Aggregates Summaries.

The in-force and claims tapes contain all data submitted, so that no basic information is ever lost. The aggregate tape contains all the information that the present system is designed to use and it will only be necessary to go back to the in-force and claims records in the event of a major modification of the system. The claims records will eventually be needed for the disability annuity investigation.

The summaries tape contains information relating to all years and is updated annually, so that the current tape includes all past information.

There is always the possibility that a magnetic tape will become unreadable if it is stored for any long period of time, and so the procedure adopted (except for the summaries tape, which is never more than a year old) is to copy each tape at the end of a year's running and to keep both copies. Once a year thereafter each copy is again copied and the copy made 2 years previously is discarded. Thus two copies of each tape are always held, one created within the last year and one a year earlier.

The last three generations of the summaries tape are held and a copy of this tape is taken at the end of each year.

This description of the computer system is a condensed version of a full report prepared by Mr G. T. Humphrey. It omits the description of some facilities built into the system for such special purposes as correction of data errors, control prints, etc. The Sub-Committee wishes to acknowledge the valuable work done by Mr Humphrey and Pensions and Insurance Computer Services.

THE GRADUATION OF PENSIONERS' AND OF ANNUITANTS' MORTALITY EXPERIENCE, 1967-70

1. INTRODUCTION

1.1. In the paper 'Considerations Affecting the Preparation of Standard Tables of Mortality' (J.I.A. 101, 133 and T.F.A. 34, 135), the Committee presented a new graduated table for assured lives, 'A1967-70'. In the same paper, and in a report 'Mortality of Immediate Annuitants' (C.M.I.R. 1, 29), the Committee explained why they did not at that time think that it was appropriate to prepare a new standard table for the annuitants. Also in the paper the Committee examined the pensioners' experience and recommended 'that two graduated tables of mortality be constructed, one for males and the other for females to exhibit faithfully the experience in 1967-70 of "lives" who retired at or after the normal age'. Nothing was said in the discussions at the Institute and the Faculty to encourage the Committee to change its mind about the pensioners' experience but the Committee nevertheless feels that it should explore the possibility of giving further guidance to the profession and this matter is referred to again in paragraph 3.16. On the other hand the Committee gained the impression that new graduated tables of the experience of male and female annuitants who have purchased annuities since 1956 might be welcomed even though the experience to date for this apparently new class of lives is heavily weighted with the shorter durations. This paper presents new graduated tables of mortality rates for male and female pensioners and for male and female annuitants derived directly from the experience of the years 1967-70. In none of the cases does the graduated table make any explicit allowance for future improvements in mortality.

2. THE CHOICE OF A FORMULA

2.1. In the Institute discussion on the A1967-70 graduation, Professor R. E. Beard had criticized the formula used on the grounds that it did not readily allow comparison of its parameters with those of other tables at different times (such as A1949-52) or in other countries. For the same reasons the Committee felt too that the use of an *ad hoc* formula for each graduation, however well it fitted the experience, was not wholly satisfactory. The formulae that had been used for various recent graduations included Beard's variation of Perks' formula (for A1949-52):

$$q_x = A + \cdot \frac{B \cdot c^x}{E \cdot c^{-2x} + 1 + D \cdot c^x}$$

The Graduation of Pensioners' and of

Barnett's variation of Makeham's formula (for A1967-70):

$$q_x/p_x = A + B \cdot c^x - H \cdot x$$

Logistic plus Normal (for ELT11 and 12):

$$m_{x} = a + \frac{b}{1 + e^{-\alpha \cdot (x - x_{1})}} + c \cdot e^{-\beta \cdot (x - x_{2})^{2}}$$

It can be shown that each of these is a variation of a straightforward logistic curve:

$$(m_x \text{ or})q_x = A + B \cdot \frac{1}{1 + \exp(-C - Dx)}$$

and it was thought that a more powerful variation would be to allow the exponential term to contain, not just a linear function of x, but a polynomial of whatever degree was required. First experiments with the pensioners' experience showed that in fact satisfactory results could be obtained with A = 0.0 and B = 1.0, so the formula could be rearranged yet again to give:

$$q_x = \frac{\exp(F(x))}{1 + \exp(F(x))}$$
$$p_x = \frac{1}{1 + \exp(F(x))}$$

or $\log (q_x/p_x) = F(x)$ where F(x) is a polynomial in x of whatever degree is appropriate for the data. The item $\log (q_x/p_x)$ can also be termed the log of the odds of dying.

The above form, namely:

$$\log\left(q_x/p_x\right) = F(x) = \sum_{r=0}^n a_r x^r$$

has therefore been used for all the graduations, with the degree of the polynomial, n, being adjusted appropriately. It can be seen that, since the range of $\log (q_x/p_x)$ is potentially from $-\infty$ to $+\infty$, the function can be appropriately represented by a polynomial function of x, which is less appropriate for the representation of q_x , whose maximum range is from 0 to 1.

2.2. The method used to determine the parameters, $\{a_r\}$, for any value of *n* for each set of data was the same as for the A1967-70 data, namely the method of maximum likelihood. The parameters are chosen so as to maximize the log likelihood function:

$$\mathbf{L}' = \sum_{\mathbf{x}} \{ \mathbf{A}_{\mathbf{x}} \cdot \log q_{\mathbf{x}} + (\mathbf{E}\mathbf{R}_{\mathbf{x}} - \mathbf{A}_{\mathbf{x}}) \cdot \log (p_{\mathbf{x}}) \}$$

where A_x is the number of actual deaths at age x and ER_x is the exposed to risk at that age. The function L' is described by Edwards (in *Likelihood*, Cambridge, 1972) as the 'support function' and he shows that a difference of 2.0 in this function is equivalent to a deviation of two standard deviations about the mean, roughly implying significance at the 5% level. This observation can be used in determining the order of the polynomial to be used. If an additional term

58

improves the level of support by $2 \cdot 0$ or more then it shows a significant improvement in the fit of the curve, and the extra term should be included. However, if the improvement in the level of support is less than $2 \cdot 0$ then the extra term does not add significantly to the fit of the curve, and it should be rejected.

2.3. An incidental convenience of the form of curve and the method used is that the maximum value of the support function is found when

$$\sum_{x} x^{r} \{ \mathbf{A}_{x} - \mathbf{E} \mathbf{R}_{x} q_{x} \} = 0 \text{ for } r = 0 \text{ to } n^{*}$$

so that at the maximum value the totals of actual and expected deaths are equal, and so are the moments of actual and expected deaths up to as many moments as there are terms in the polynomial. The method, therefore, produces the same results as the method of moments for the logistic form of curve though not necessarily for other formulae for q_x . However, this fact cannot be used to facilitate the calculation of the values.

2.4. In addition to the level of support test mentioned above the same tests of a satisfactory graduation as were described in the previous paper have been used again for these graduations, namely: a runs test, t(r), and a serial correlation coefficient test, $t(\rho)$, to test whether the graduation goes satisfactorily down the middle of the data; and a χ^2 test, $t(\chi^2)$, to test whether the fit of the data to the binomial model is satisfactory. For 'amounts' data in the pensioners' experience an assumption of independence for each pound of annuity is of course quite inappropriate, so that values of χ^2 and of the level of support are unsuitable; how this was dealt with is explained in paragraph 3.6.

3. THE PENSIONERS' EXPERIENCE

3.1. The basic statistics for the pensioners' experience were published in the paper 'Considerations ...'. Tables in that paper showed exposed to risk and actual deaths for individual ages for eight groups of data, classified in pairs:

Males Females by Retirements at or after normal retiring age by Lives Amounts

* This can be shown as follows. The log likelihood function L' is at a maximum when $\partial L'/\partial a_r = 0$ for all a_r . But L'

$$= \sum_{x} \{A_{x} \cdot \log q_{x} + (ER_{x} - A_{x}) \cdot \log p_{x} \}$$

= $\sum_{x} \{A_{x} \cdot \log (q_{x}/p_{x}) - ER_{x} \cdot \log (1/p_{x}) \}$
= $\sum_{x} \{A_{x} \cdot F(x) - ER_{x} \cdot \log (1 + \exp(F(x))) \}$

since $\log (q_x/p_x) = F(x)$ and $1/p_x = 1 + \exp(F(x))$. But

$$\frac{F(x)}{\partial a_r} = x^r \text{ and } \frac{\partial}{\partial a_r} \cdot \log \left(1 + \exp(F(x))\right) = \frac{\exp(F(x))}{1 + \exp(F(x))}, \ x^r = q_x \cdot x^r.$$

So

$$\frac{\partial \mathbf{L}'}{\partial a_r} = \sum_{x} \{ x^r \left(\mathbf{A}_x - \mathbf{E} \mathbf{R}_x \cdot q_x \right) \} \ r = 0 \text{ to } n.$$

The Graduation of Pensioners' and of

The statistics for ages up to nearest age 50 and for ages from 101 onwards are not available for single years of age, and they have therefore been ignored. This involves the loss of 40 actual deaths and 936 exposed to risk in the Males, Early, Lives data and 9 actual deaths and 272.5 exposed to risk in the Females, Early, Lives data. The statistics for each single year up to age 107 will be collected from offices from 1975 onwards. The statistics for single years of age from 51 to 60 were available to the Committee and have been used for the graduations, although they were shown grouped in the earlier paper.

3.2. In the eight sets of data, by far the largest exposures are those for Males, Normal, as can be seen from the following table:

	Lives		Amounts (£)	
	Exposed	Actual	Exposed	Actual
	to risk	deaths	to risk	deaths
Males, Normal	833,442	45,860	125,639,566	5,754,895
Males, Early	162,856-5	8,784	28,640,701	1,165,059
Females, Normal	170,200-5	3,829	13,794,287	255,435
Females, Early	30,368-5	638	2,286,171	37,945

The bulk of the exposure for normal retirements is in the years after 65 for males and 60 for females; for early retirements there is a reasonable volume for both sexes down to age 55. However, the exposure is very scanty for both Males and Females, Normal, below age 59 and above about age 94 and for Males and Females, Early, above about age 88. This restricts the range of validity of the tables, especially in the lower direction.

3.3. The restricted lower age range is no disadvantage if the tables are used only for the mortality of pensioners retiring at or after a normal retirement age of 60 or more. Of greater importance for early retirements is that the statistics show that almost certainly mortality in the years immediately following early retirement is high, and that, in aggregate, it declines with advancing age. This feature could be caused either by the mortality of those retiring at a certain age actually falling in the years subsequent to retirement, or by the high mortality of those who retire early at an early age (and therefore presumably because of severe ill-health) being diluted by the addition to the experience of others retiring only shortly before their normal age (and not being, on average, in such poor health). Which is the case cannot be determined without having the data subdivided by duration since retirement, and offices are contributing data in this form from 1976 onwards. But whichever is the case, a table based on such aggregate data is quite inappropriate for calculating annuity values for a person retiring at any specific age.

3.4. The discrepancy between the experience by lives and the experience by amounts was fully discussed in the earlier paper, and the conclusion there was that there was probably a genuine difference between the mortality by lives and by amounts, but that the statistics available possibly exaggerated the difference because of various 'time-trends' in the size of annuities being paid. 3.5. In spite of the arguments against using the amounts data and the early retirements data for standard tables, the Committee felt that it was useful to prepare graduations of each of the eight sets of data, purely for the purpose of comparing the levels of mortality one with another. The formula discussed above was used, namely:

$$\log\left(q_x/p_x\right) = F(x)$$

using a quadratic function for F(x). In fact, by a transformation of scale of x and the use of Chebyshev polynomials the formula for F(x) used was:

$$A+B$$
, $t+C$, $(2t^2-1)$,

where t = (x-70)/50, so that t = -1, 0, ± 1 at x = 20, 70, 120 respectively. The advantages of using a formula expressed in Chebyshev polynomials in this way are that the values of A, B and C are a convenient order of size, are easily comparable from one graduation to another, change only to a moderate extent when the second-degree term is omitted or when a third-degree term, D. ($4t^3 - 3t$), is added, and can be thought of as representing a level, a slope, and a second-degree adjustment respectively, all centred on age 70.

3.6. In order that the amounts data might be of the same scale as the lives data, the numbers of exposed to risk and of actual deaths were divided by a factor, the same for all ages, but different for each set of data, so that the total number of exposed to risk was the same for amounts as for lives. The factors and the adjusted total data are shown in the table below:

	Factor (average pension per life exposed to risk) (£)	Exposed (£)	to risk (Units)	Actual (£)	deaths (Units)
Males.	(/		()	()	(0
Normal	150-74782	125,639,566	833,442	5,754,895	38,175.6
Males,			*		
Early	175.86465	28,640,701	162,856.5	1,165,059	6,624.7
Females,					
Normal	81.04728	13,794,287	170,200.5	255,435	3,151.7
Females,					
Early	75-28100	2,286,171	30,368.5	37,945	504.0

This allowed values of χ^2 and of the support function for amounts data to be of the right order of size.

3.7. The results of the graduations using a quadratic function (three parameters) for F(x) are summarized in Table 1. The values of Σ (A-E) and $\Sigma\Sigma$ (A-E) are near zero in each case, confirming that the repeated approximation method has produced a result very close to the exact maximum. The results of the tests can be summarized:

- (a) Runs test: the number of runs is always just below the number expected, i.e. t(r) is positive in every case, but not substantially so except in one case, that of Females, Normal, Amounts, where t(r) at 1.77 exceeds the desired value of 1.65 (but not by much).
- (b) Serial correlation test: t(ρ) is no greater than 0.88 at the maximum, which is quite satisfactory.
- (c) χ^2 -test: for lives, the values of χ^2 , grouped to eliminate cases where the expected deaths are less than 5, are quite satisfactory in three cases out of four. In the fourth case, Males, Normal, Lives, the values are too big. A study of the individual ages shows that this high value derives substantially from the ages from 64 nearest to 66 nearest, which contribute 20.74 to a grouped χ^2 of 70.25. The crude values of q_{x-4} in this area are:

х	$q_{x-\frac{1}{2}}$
63	0.02792
64	0.03366
65	0.03322
66	0.03177
67	0.03595

It is clear that no satisfactorily smooth curve for q_x will be anything else than low for age 64 and high for age 66 as compared with these crude values. It is not clear what the reasons might be for this irregularity in the experience. It is possible that some 'normal' retirements at age 63 or 64 in fact take place because of some degree of ill-health, though perhaps after a full 40 years service. While, if actual retirements are not evenly spread across the calendar year, the census method of calculating the exposed to risk, which assumes an average exposure of half a year for new entrants, will not satisfactorily represent the true exposure; however, there is no reason to suppose that such an irregular distribution of retirements in fact occurs, except to the extent that retirements may occur on the first of a month, so that the average exposure in the first year is $6\frac{1}{2}$ months rather than exactly 6.

3.8. Each of the normal retirement graduated curves slopes upwards with age, and the parameters are comparable in size: A is between $-3\cdot1$ and $-3\cdot4$; B is between $+4\cdot3$ and $+5\cdot4$; and C is fairly small, being less than 0.53 in absolute value. But for the males, both lives and amounts, C is small and negative, whereas for the females C is positive. A negative C implies that F(x), and hence q_x , has a maximum value at some high age, and a positive C implies correspondingly a minimum value at some low age; but in these four cases the turning points are well outside the age range in question. However, the female rates do exceed the male rates at high ages, overlapping at age 98 for normal and age 88 for early retirements, whereas otherwise the female rates are lower than the males. In both cases these crossing points are outside the range where there is any substantial amount of data.

Annuitants' Mortality Experience, 1967-70

The early retirement curves show a quite different set of shapes. In each case C is positive and quite large, ranging from +1.6 to +4.9, indicating a strong second-degree effect. In fact all four curves have a minimum within the useful age-range—at 56 for Males, Early, Lives; 46 for Males, Early, Amounts; 58 for Females, Early, Lives; and 60 for Females, Early, Amounts. For Males, Early, Lives this minimum is amply justified by the data as the following table of Actual/Exposed to risk shows:

Nearest ages	Actual deaths	Actual/Exposed to risk
51-55	108	.05512
5660	819	·04438
61-65	3,077	·04741

For females the quantity of exposure is less, but the same feature clearly exists to some extent:

Nearest ages	Actual deaths	Actual/Exposed to risk
51-55	25	·01575
56-60	118	·01642
61-65	164	·01613
66–70	127	·01886

3.9. The value of χ^2 for amounts data do not have the same use as for lives data, but the calculated values are of some interest. If all lives had the same amount of pension, then the amounts experience would be identical with the lives experience. If all lives had the same probability of death, but differing amounts, then the average mortality rates experienced in the amounts investigation would be the same as for lives, but the divergences from that average at individual ages would be expected to be greater, and hence the values of z_x^2 at individual ages, and also χ^2 would also be greater, the amount of the increase depending on the distribution of amounts. If the lives at any one age do not have the same probabilities of death, then the variances (the z_x^2) of the data for individual ages will also be increased—both for lives data and amounts data. The increase in χ^2 for the amounts data over the χ^2 for lives data, therefore, gives some indication of the distribution of amounts per life and of the lack of homogeneity in the probabilities of death. The table below shows the values of χ^2 for the different graduations (using ungrouped data):

	Lives χ^2	Amounts χ^2	Ratio A/L
Males, Normal	77-51	223-14	2-88
Males, Early	55-09	86.28	1.57
Females, Normal	47.94	83.75	1.75
Females, Early	35-43	39.89	1.13

The implication of the figures in the final column is that the variation in size of amount is greater for males than for females, and greater for normal retirements than for early retirements. One has to take into account also the 'time-trend' of average amounts, but these implications are not unreasonable, although they would require solider evidence from more complete data before being accepted as fact.

3.10. Although the quadratic function for F(x) seemed to provide satisfactory results, it was appropriate to investigate whether a polynomial of different degree would be more satisfactory. Accordingly, a cubic function for F(x) was tried:

$$A+B$$
. $t+C$. $(2t^2-1)+D$. $(4t^3-3t)$

and the results of this were compared with the three-parameter graduations. In five cases out of the eight there was no substantial increase in the value of the support function, and no substantial reduction in the value of χ^2 . The values of D were generally small (less than 0.5 in absolute magnitude). However, in three cases, the improvement was significant. These were: Males, Early, Lives; Males, Early, Amounts; Females, Normal, Amounts. But in every case the improvement was gained by having a substantial negative D, which resulted in the curve of q_x rising to a rather low maximum between 95 and 100 and then falling away sharply.

3.11. In the other direction, trials were then made with a simpler, linear, function for F(x):

$A+B \cdot t$,

and the results again compared with the three-parameter graduations. As might be expected, the graduations of the Early retirement data were all very much poorer with only two parameters. The second-degree term is essential to represent the real decline in the curve in the 50s. But for each of the sets of Normal data the two-parameter graduations produced results not significantly worse than the three-parameter ones. Indeed, in the case of Males, Normal, Lives, the value of $t(\chi^2)$, being based on more degrees of freedom, was slightly reduced. The values of A and B were not substantially changed from the three-parameter graduations, and the shapes of the curves of q_x were quite satisfactory. The results of the graduations for all sets of data are summarized in Table 2, and shown in detail for Males, Normal, Lives; Males, Normal, Amounts; Females, Normal, Lives; and Females, Normal, Amounts in Tables 3-6 and in Figures 1-4.

3.12. Table 7 shows the ratios (as percentages) of the graduated qs for each quinquennial age for each of the possible paired comparisons of corresponding data, using the two-parameter graduations for Normal and the three-parameter graduations for Early. First are shown qs for Amounts as a percentage of Lives for four combinations; then Early as a percentage of Normal; then Females as a percentage of Males. The results of course confirm the general tendencies evident in the crude data. Amounts rates are lower than Lives rates, but the rates converge at higher ages, and for Females the Amounts rates from age 95 (Normal) or 85 (Early) are higher. Early rates at the young ages are much higher than Normal, but the differences reduce up to 75–80, and then widen again;

indeed for Females, Early, rates are below Normal at ages 70–75 (Lives) or 80 (Amounts). The sharp rise in the ratio at the highest ages results from the quadratic term in the formula that is needed to fit the lower ages and is not justified by the data. Female rates are substantially lower than Males except at the highest ages (Early), where again the exposure is scanty.

3.13. The Committee felt that there was no justification in using a more complicated formula than was necessary to fit the data for the published tables and therefore suggest that the two-parameter formulae should form the basis of graduation of the data for Males and Females, Normal, using both lives and amounts. The tables can be referred to for convenience as Peg 1967-70 (mL), (mA), (fL) and (fA) respectively, *i.e.* 'Pensioners' experience graduated . . . males Lives, etc.' Values of q_x for these tables for ages from 50 to 114 inclusive are shown in Table 8, and depicted in Figure 5.

3.14. The values of q_x for the graduated experience tables for pensioners are compared with corresponding values for some other tables (including the new annuitants experience graduated—*aeg* 1967-70—see § 4) in Tables 9 and 10. For males, Peg 1967-70 (mL) is seen to be substantially higher than a(55)ultimate at ages up to 85, and higher than A1967-70—the 1967-70 assured lives table—at ages up to 90. It is higher even than ELT 12 (Males) below age 60, but rather lower thereafter except at the highest ages. The result is to show pensioners' mortality beyond the common retirement ages as being intermediate between assured lives' and population mortality, and below the common retirement ages as being noticeably high. The Amounts rates, Peg 1967-70 (mA), are lower than the Lives, but show the same sort of features. For females, pensioners' mortality is relatively better. Peg 1967-70 (fL) is below ELT 12 (Females) at all ages, but it is above a(55) ultimate at ages above 55. No female assured lives table is available for comparison.

Female Amounts rates, Peg 1967-70 (fA), are better, being lower than a(55) up to age 75, and substantially lower than ELT 12 (Females) except at age 100. The results are consistent with female pensioners being a rather more select group than male pensioners, possibly including proportionately more women from professional and clerical occupations.

3.15. Tables 11 and 12 show selected annuity values using Peg 1967–70 mortality and also a(55) ultimate (and *aeg* 1967–70) for males and females, at rates of interest of 0%, 5%, 10% and 15%. From this it can be seen that the Peg 1967–70 (mL) and (fL) Lives annuity values are generally *lower* than those for a(55) ultimate, except for males above about age 85. For males at age 65 the Peg 1967–70 (mL) values are 90–95% of the a(55) values, depending on the rate of interest used, while for females at the same age the values are closer, Peg 1967–70 values being some 97–99% of the a(55) values. The Amounts annuity values are closer to a(55) for both sexes. For males, the (mA) values exceed a(55) above about age 75, and at age 65 the values are 97–98% of a(55). For females, the (fA) values are very close to a(55), the values in the table being between 97.6% and 100.6% of a(55) throughout. The use of the new Lives tables by life

offices for calculation of premiums and reserves would result in a reduction of premium rates and a weakening of reserves as compared with a(55); the use of the Amounts tables would have less effect, but on balance the change would also be towards weakening the basis.

3.16. In paragraph 5.15 of the paper 'Considerations ...', the Committee suggested that offices might be willing to use monetary functions derived from the experience tables and to adjust them in the light of the comparison of their own experience with that of the experience of all offices in 1967-70. The Committee now feels, however, that for a number of reasons the production of monetary functions based on the graduated tables derived from that experience might itself lead offices to believe that they had an authority which is not justified. The Committee has decided, therefore, to publish the rates set out in this report but to undertake further investigations to see whether it is possible in the reasonably near future to offer for consideration by the profession some better set of tables for use by offices than is available at the present time. The difficulties which will need to be solved include questions relating to allowance for future improvements in mortality, doubts about the appropriateness of using either the lives table, which is relatively heavily weighted with the lower amounts with which are presumably associated heavier mortality, or the amounts table, which contains a number of confusing features to which reference was made in the earlier paper. The Committee cannot stress too strongly that the present tables of graduated rates have been produced solely as a standard of comparison for offices. They do not purport to provide a suitable tool for the calculation of premiums or reserves without adjustment being made for one or more of a number of possible reasons. It would, in the opinion of the Committee, be quite inappropriate for an office which is currently using lighter mortality than appears in the present tables to change to a heavier basis for calculation of premiums or reserves.

4. THE ANNUITANTS EXPERIENCE

4.1. The note 'Mortality of Immediate Annuitants' (C.M.I.R. 1, 29) describes the mortality experience of immediate annuitants in the period 1967–70, and compares it with that of the earlier periods 1959-62 and 1963-66. Comparisons of annuitants' mortality in recent years have been confused by the break in the class of person effecting annuities after the Finance Act, 1956. All the pre-1957 contracts were at least 10 years old by the beginning of 1967; the post-1956 contracts are no more than 14 years old by the end of 1970. Statistics were collected by individual years of complete duration from 0 to 4 and for '5 and over' split into pre-1957 and post-1956 data, for males and females separately. We therefore have 14 sets of data:

Males Females $by \begin{cases} Durations 0, 1, 2, 3, 4, 5 and over (post-1956), \\ 5 and over (pre-1957) \end{cases}$ It was decided to use only the post-1956 data for the construction of standard tables. The pre-1957 5 and over experience was also graduated but the results are used only for comparison with the post-1956 data.

4.2. Statistics are available by single ages for nearest ages 51–100 inclusive. For ages below 51 or above 100 the returns from offices were grouped; these groups contain very little exposure, except for the pre-1957 females where 81 deaths occur in the over 100 group, and they have not been used in the graduations.

4.3. The same general methods were used for annuitants as for pensioners. The problems that required solving were:

- (a) What select period to use? A select period of only 1 year had been found convenient for the a(55) tables.
- (b) What order of polynomial to use in the logistic formula? Would only two parameters be sufficient, as for the pensioners?
- (c) What to do about ages below 50, where there is no experience, or even between 50 and 60 where there is very little exposure? The a(55) tables were extended down to age 20 on the basis of current assured lives mortality, and rates for ages as low as this are in fact used by life offices for the calculation of, for example, reversionary annuities.

4.4. The female exposure is considerably larger than the male. The exposed to risk and actual deaths for each experience are shown in the following table.

	Ma	le	Female		
Duration	Exposed to risk	Actual deaths	Exposed to risk	Actual deaths	
0	8,231	256	16,273	348	
1	8,036	339	16,518	483	
2	7,338-5	368	16,001	516	
3	6,586-0	315	15,496.5	583	
4	6,065.5	331	15,145.5	618	
5 and over (post-1956)	26,472	1,985	71,704.5	3,473	
5 and over (pre-1957)	11,568	1,464	75,969.5	7,133	

With such numbers we find that the 'gates' (to use the terminology of the paper 'Considerations \ldots ') are rather wide, so it is not difficult to find a curve which fits the data; but the confidence limits one can place on the curve are also rather wide, so that any one of quite a number of curves would fit.

4.5. Females. The females were considered first. A preliminary graduation with a quadratic function for F(x), *i.e.* three parameters, gave satisfactory graduations at all durations. The graduated rates for 5 and over (post-1956) were then used as a basis for comparing actual and expected deaths for the other durations.

The following table shows the percentage ratios of actual to expected on this basis:

Duration	0	1	2	3	4	5 and over	5 and over
						(post-1956)	(pre-1957)
100 A/E	64.3	83·2	86-3	96-3	99•5	100.0	119.5

It was clear from this that durations 3 and 4 should certainly be amalgamated with the 5 and over (post-1956) data. The graduated rates for durations 1 and 2 overlapped, and there was therefore no justification for separating them. The value of χ^2 for the data for durations 1 and 2 combined, as compared with the 5 and over (post-1956) data, showed that mortality at these durations was significantly lower, but not exceptionally so. It therefore seemed reasonable to amalgamate all durations from 1 upwards (excluding the pre-1957 data) and to prepare tables on the basis of 1 year's selection.

4.6. Alternative graduations were then carried out using only two parameters, *i.e.* a linear form for F(x). For duration 0 the value of the support function was only slightly smaller than with three parameters, and the other tests were satisfactory. For durations 1 and over the support function increased by 2.3, which is more than the acceptable 2.0.

4.7. Then, in the other direction, the number of parameters was increased to four, giving a cubic form for F(x). For duration 0 there was an improvement of 1.3 in the support function, at the expense of a curiously shaped curve immediately outside the main age-range. There was no advantage here. However, for durations 1 and over the value of the support function improved by 2.8, $t(\chi^2)$ reduced from 2.45 to 1.93 for the grouped data, and the shape of the curve was not unreasonable within the age-range 55–115. But q_x reached a minimum at age 49 (rising below this age) and a maximum at age 115 (falling above this age). The drop at high ages is of no significance and can be eliminated by taking q_x as constant above age 115. At the lower end it is clear that the graduated values for ages 50–54 or so are unreasonably high in comparison with other tables, and need adjustment. But overall the fit is sufficiently improved to prefer this four-parameter graduation to the three-parameter one.

4.8. Increasing the number of parameters yet further for the data for durations 1 and over, *i.e.* to five parameters, giving a quartic form for F(x) produced no significant improvement in the support function. It therefore seemed best to use the two-parameter graduation for duration 0 and the four-parameter one for durations 1 and over; the ratios of select $q_{[x]}$ to ultimate q_x on these bases were for the most part reasonable, except at the extreme ages.

4.9. The data and the graduation results are shown in Tables 13–17. Table 13 shows the graduation parameters and test results for the graduations using two, three and four parameters for duration 0 and for durations 1 and over. Tables 14 and 15 show the details of exposed to risk and actual and expected deaths for the duration 0 two-parameter graduation and the duration 1 and over four-parameter graduation respectively which are shown graphically in Figures 6

and 7. Tables 16 and 17 give the basic data of exposed to risk and actual deaths for all the other separate durations, namely: 1, 2, 3, 4, 5 and over (post-1956) and 5 and over (pre-1957).

4.10. Males. Before describing how the female tables were completed it is convenient to discuss the graduations of the male data. The first graduations showed exceptionally high values of χ^2 for both sets of 5 and over data. This was accounted for by values of z_x (= $(A_x - E_x)/\sqrt{E_x p_x}$) at age 94 nearest of 5.9 and 6.0 in the two sets of data. A closer look at the original data showed the following numbers of deaths in each calendar year:

Male annuitants: durations 5 and over (post-1956)						
Age (nearest)	(1967)	(1968)	(1969)	(1970)		
92	6	10	12	7		
93	5	11	13	14		
94	2	4	6	47		
95	4	6	9	2		
96	0	2	0	1		

	(1967)	(1968)	(1969)	(1970)
92	7	16	8	3
93	17	14	21	9
94	9	11	5	49
95	9	8	9	7
96	4	2	7	3

It was clear that some unusual feature was present at age 94 in the year 1970, and it was not accounted for by errors of transcription of the data. Offices who had contributed to these deaths were asked if they could identify the annuitants by name. Many offices could do so, and it transpired that of 54 identified deaths in the combined pre-1957 and post-1956 data some 41 were of a Mr A and 3 of a Mr B, so there were only 12 separate lives for the 54 policies. The Committee previously imagined that duplicate lives in the annuitants investigation were insignificantly few in numbers. This investigation showed that on certain occasions they were not. It was decided to reduce the number of deaths recorded at age 94 by 30 for each of the sets of 5 and over data, and to reduce the exposed to risk by 15 at age 90, and by 30 at each age from 91 to 94 inclusive, on the assumption that all these policies must have been in force for the whole period of the investigation. The adjusted statistics were used thereafter, and are quoted in all the tables that follow.

4.11. As for the females, the first graduations used a quadratic function for F(x), *i.e.* three parameters. The graduated rates for 5 and over (post-1956) were again used as a basis for comparing actual and expected deaths for the other

durations. The following table shows the percentage ratios of actual to expected on this basis:

						5 and over	5 and over
Duration	0	1	2	3	4	(post-1956)	(pre-1957)
100 A/E	62-8	80.5	89.7	80.1	85.4	100.0	115.6

Although there was less sign of the select rates running quickly into the 5 and over rates than was the case with the females, the number of deaths in each case was sufficiently small and the χ^2 values were also sufficiently low for it to be difficult to justify using a different select period for males than for females. The statistics for durations 1 and over (post-1956) were therefore amalgamated.

4.12. The initial three-parameter graduation showed satisfactory results with only one exception: the number of runs for the duration 0 data was uncomfortably low, giving t(r) = 3.25 (only 13 runs over 50 ages). However, inspection of the data (shown graphically in Figure 8) indicated that a much higher order of polynomial would be needed to provide a satisfactory fit, and the gates were so wide that a very simple curve would readily pass between them. Alternative graduations with only two parameters were therefore tried, and these gave results very similar to the three-parameter ones, with only a small increase in the value of the support function in each case. The two-parameter graduations seemed, therefore, to be satisfactory and no further trials were made.

4.13. The data and the graduation results for males are shown in Tables 18–22, corresponding to Tables 13–17 for the females. The graduation parameters and test results are shown in Table 18 only for the two-parameter and three-parameter graduations, and Tables 19 and 20 show details of exposed to risk and actual and expected deaths for durations 0 and 1 and over for the two-parameter graduations, also shown graphically in Figures 8 and 9.

4.14. Extensions to young and old ages. There is insufficient exposure for either sex below about age 60 to construct any satisfactory mortality rates based on the actual experience. Nevertheless it is convenient, if only for a comparison of future experience (e.g. of pensioners' widows) with some standard, for the published mortality rates to extend down to younger ages. Experience with the existing tables has also shown that it is inconsistent to have annuitant mortality rates at the younger ages at a higher level than the rates shown in the assured lives table relating to similar years of investigation, as is the case with a(55) and A1949-52. For this reason it is felt that the A1967-70 tables provide the most suitable basis for extension to the younger ages of annuitants. They do, of course, relate only to male lives and can therefore only be used as they are to extend the male annuitants table. A comparison of the graduated rates for durations 2 and over from A1967-70 with those for durations 1 and over for male annuitants showed that the curves crossed between ages 65 and 66, the annuitants rates being higher below this age and the assured lives' higher above it.

A smooth blend between the two curves was obtained by using a quintic

blending function over the ages 50-65, thus taking gradually increasing account of the annuitant data as the exposure increases. The function used was:

$$k_x$$
 (annuitants q_x) + (1 - k_x) (A1967-70 q_x)

where

$$k_r = (8+15t-10t^3+3t^5)/16$$
 and $t = (x-57\cdot5)/7\cdot5$

The graduated rates for male annuitants for duration 0 are so far above the A1967-70 rates for either duration 0 or duration 1 that the assured lives rates gave no useful guidance. The graduated male annuitants duration 0 rate at age 65 was 70.7% of the duration 1 and over rate, and the same ratio was used for all lower ages to obtain artificial duration 0 rates for the male annuitants.

4.15. For the females there are as yet no assured lives rates, so an artificial table was constructed by using population rates from 'English Life Table No. 12—Males and Females', and by reducing the A1967-70 proportionately, *i.e.*

$$q_x$$
 A1967-70× $\frac{q_x$ ELT12F
 q_z ELT12M

These artificial rates crossed the female annuitants rates between ages 66 and 67 in a similar manner as for the males, so the same system of blending was used, again between ages 50 and 65. The female duration 0 rates at age 65 were 49.7% of the duration 1 and over rates, and the same ratio was used for all lower ages to obtain artificial duration 0 rates for the female annuitants.

4.16. At the highest ages the graduated male rates were quite well behaved and no adjustments were necessary. But for the females, first, the graduated duration 1 and over rates reached a maximum around age 115 and declined thereafter, and, secondly, the duration 0 rates rose above the male duration 0 rates at age 91 and even above the female duration 1 and over rates at age 99. The necessary adjustments were, in the first place, to make $q_x = q_{115}$ for all $x \ge 115$, and in the second, to make $q_{[x]} = 0.75 q_x$ for all $x \ge 86$. The consequences of these adjustments are not material.

4.17. The final tables, so graduated, extended and adjusted are shown in Table 23 and in Figure 10, for both sexes, both select and ultimate. They can be denoted the *aeg* 1967–70 males and *aeg* 1967–70 females tables—*i.e.* annuitants' experience graduated 1967–70. It should be noted that the graduated rates are quoted to eight decimal places, whereas any rates based on arbitrary adjustments are quoted to only six decimal places. In neither case are more than about the first three figures of any significance. Select rates, $q_{[x]}$ are not quoted above age 100. The extended and adjusted rates are also shown on each of Figures 6–9, from which it can be seen that in no case do the adjustments seriously disagree with the actual experience.

4.18. Comparisons. Table 24 shows various comparisons between the mortality rates of the *aeg* 1967–70 tables: select rates as a percentage of the ultimate for each sex, and the female rates as a percentage of the male rates for each duration. Tables 9 and 10 show comparisons between the *aeg* 1967–70 tables and various

other tables, in particular the a(55) tables. For males the *aeg* 1967–70 ultimate rates are *higher* than those of a(55) from ages 55 to 65, and the select rates are higher from ages 50 to 75. This is not inconsistent with changes in population mortality, where the improvement has been least at these middling male ages. For females the *aeg* 1967–70 tables are lower than a(55) throughout.

4.19. Tables 11 and 12 show selected annuity values for *aeg* 1967-70 select and ultimate in comparison with a(55) and Peg 1967-70 values. The new tables show rather higher annuity values than a(55) at most ages, the increase being greatest for males at high ages (11-15%) up at age 85, 4-9% up at age 75) and then for females at high ages (7-11%) up at age 85, 4-9% up at age 75). For males at age 55 there is a small decline in the annuity value at higher rates of interest. It is clearly not possible to approximate to *aeg* 1967-70 mortality by a constant age adjustment to the a(55) tables, because the relative changes at different ages have been so different.

4.20. The Committee considers that it should pursue with urgency its search for a suitable way to prepare standard tables with full monetary functions broadly corresponding to the present a(55) tables, particularly since there is no simple way of making use of the existing tables while allowing for changes in mortality since they were produced. As soon as the Committee has some proposals to put to the profession they will be exposed to scrutiny. The Committee is also aware of the particular responsibility for producing justifiable mortality rates for annuitants since they are required for a variety of purposes including the statutory calculation of capital content factors for immediate annuities. Meanwhile, the Committee feels that it is right for the graduated rates to be published so that they can be used as a standard of comparison by life offices and they will be so used by the Committee in reporting on annuitants' experience starting with the combined 4-year experience of 1971-74. Nevertheless, the Committee must repeat its warning that the tables are not necessarily appropriate for the calculation of premiums or reserves since they make no explicit allowance for possible future improvements in mortality.

73

INDEX TO TABLES

- 1. Pensioners 1967-70: test statistics, etc. for three-parameter graduations.
- 2. Pensioners 1967-70: test statistics, etc. for two-parameter graduations.
- 3. Pensioners 1967-70: Males, Normal, Lives: details of graduation.
- 4. Pensioners 1967-70: Males, Normal, Amounts: details of graduation.
- 5. Pensioners 1967-70: Females, Normal, Lives: details of graduation.
- 6. Pensioners 1967-70: Females, Normal, Amounts: details of graduation.
- 7. Pensioners 1967-70: Comparison of experiences.
- 8. Peg 1967-70: mortality rates.
- 9. Comparison of mortality rates, males.
- 10. Comparison of mortality rates, females.
- 11. Comparison of annuity values, males.
- 12. Comparison of annuity values, females.
- 13. Female annuitants 1967-70: test statistics, etc.
- 14. Female annuitants 1967-70: duration 0: details of graduation.
- 15. Female annuitants 1967–70: durations 1 and over: details of graduation.
- 16. Female annuitants 1967-70: durations 1, 2 and 3: basic data.
- 17. Female annuitants 1967–70: durations 4, and 5 and over (post-1956 and pre-1957): basic data.
- 18. Male annuitants 1967-70: test statistics, etc.
- 19. Male annuitants 1967-70: duration 0: details of graduation.
- 20. Male annuitants 1967-70: durations 1 and over: details of graduation.
- 21. Male annuitants 1967-70: durations 1, 2 and 3: basic data.
- 22. Male annuitants 1967-70: durations 4, and 5 and over (post-1956 and pre-1957): basic data.
- 23. aeg 1967–70: mortality rates.
- 24. aeg 1967-70: comparison of rates.
 - F

	Formula: $\log (q_x/p_x) = A + Bt + C(2t^2 - 1)$ where $t = (x - 70)/50$								
	Males, Normal,	Males, Normal,	Males, Early,	Males, Early,	Females, Normal,	Females, Normal,	Females, Early,	Females, Early,	
Experience	Lives	Amounts	Lives	Amounts	Lives	Amounts	Lives	Amounts	
Ages used (nearest)	51-100	51-100	51-97	51-97	51-99	51-99	51-93	5193	
Parameters									
A	- 3-1569	- 3.3655	-0.5171	-1-2381	- 3-3911	- 3.2483	+0.4177	+1.0220	
B	+4-2865	+4.5647	+ 2-4797	+3.2021	+5.1817	+ 5•3487	+ 3.8937	+4.0570	
С	-0.1875	-0.2533	+ 2.2173	+1-6726	+0.2849	+0.5229	+4.1242	+ 4.8896	
Actual deaths	45,860		8,784	—	3,829		638	—	
Σ(Α-Ε)	0.03	0.02	-0.05	-0.08	0.00	-0.05	0.00	0.00	
$\Sigma\Sigma(A-E)$	1-04	0-57	0·59	-2.76	-0-28	0.62	-0.08	-0.12	
- L'	172,675-9	150,547.6	33,920.4	27,431-2	17,477.6	14,980-5	3,003-3	2,517.4	
Using single ages:									
Runs, r	25	25	20	20	23	19	21	17	
<i>t</i> (<i>r</i>)	0.27	0.11	1-26	1.20	0.59	1.77	0.46	1-56	
$t(\rho)$	0.88	1-48	- 0-08	0.29	0.05	0.22	0.02	0.84	
Using grouped ages:									
χ²	70·2	214-2	50-5	82-9	40-9	69-5	31-5	35-2	
Degrees of freedom	39	40	39	37	33	33	34	28	
$t(\chi^2)$	3.08	11-81	1.27	4 ·33	0.98	3.73	-0.22	0-98	
Values of χ^2 and $t(\chi^2)$	based on (scal	led) amounts o	lata are show	n in italics.					
$10^{5} \times q_{x}$:									
Ages									
50	863	657	4,668	2,518	348	319	1,900	1,935	
55	1,353	1,070	4,398	2,738	560	506	1,579	1,471	
60	2,101	1,720	4,509	3,176	911	817	1,544	1,355	
65	3,224	2,729	5,031	3,926	1,494	1,345	1,775	1,514	
70	4,883	4,261	6,097	5,163	2,470	2,251	2,397	2,048	
75	7,280	6,533	8,002	7,195	4,101	3,820	3,788	3,344	
80	10,649	9,801	11,294	10,560	6,806	6,540	6,928	6,507	
85	15,223	14,327	16,919	16,124	11,202	11,180	14,233	14,550	
90	21,168	20,304	26,251	25,075	18,062	18,780	30,379	33,624	
95	28,497	27,757	40,471	38,382	28,035	30,251	57,504	64,696	
100	36,993	36,452	58,659	55,350	41,051	45,376	83,190	8 8, 96 5	

Table 1. Pensioners 1967–70: graduation parameters, test statistics and values of q_x for preliminary three-parameter
graduations

Values of q_x which are in a region where actual deaths at each age are generally less than 5 are shown in italics.

				-		<i>,</i> ,		
	Males,	Males,	Males,	Males,	Females,	Females,	Females,	Females,
	Normal,	Normal,	Early,	Early,	Normal,	Normal,	Early,	Early,
Experience	Lives	Amounts	Lives	Amounts	Lives	Amounts	Lives	Amounts
Ages used (nearest)	51-100	51-100	51-97	51-97	51-99	51-99	51-93	51-93
Parameters								
A	-2.9719	-3.1164	-2.6713	- 2.8707	- 3.6666	- 3.7520	- 3-5034	- 3-6870
В	+4.2143	+4.4803	+ 2.2464	+ 2.9869	+ 5-2448	+ 5.4434	+ 3.5383	+ 2-9278
Actual deaths	45,860		8,784		3,829		638	
Σ(Α-Ε)	0.00	0-02	-0.11	-0.05	0.00	0-02	0.00	0.01
$\Sigma\Sigma(A-E)$	0.14	0.49	- 3.23	-0.18	-0·03	0.40	-0.24	-0.10
-L'	172,676-8	150,549.0	33,957-4	27,444-5	17,478 0	14,981-5	3,023-0	2,534-8
Using single ages:								
Runs, r	25	21	20	22	23	19	16	8
<i>t</i> (<i>r</i>)	0.27	1-08	0.86	0.22	0.66	1.82	1.98	4.27
$t(\rho)$	0-96	- 1.43	2-84	1.09	0.12	0.32	3 06	2.70
Using grouped ages:								
χ²	72·7	213-6	129-8	107-5	42-4	72-9	75-3	69-2
Degrees of freedom	41	41	37 -	35	34	34	30	24
$t(\chi^2)$	3.06	11.67	7.57	6 36	1.02	3.89	4.59	4-91
Values of χ^2 and $t(\chi^2)$	based on (sca	led) amounts o	lata are show	n in italics,				
$10^{5} \times q_{x}$:								
Ages								
50	940	733	2,739	1,687	313	265	726	771
55	1,426	1,143	3,405	2,260	527	456	1,030	1,030
60	2,157	1,777	4,227	3,023	888	784	1,461	1,375
65	3,251	2,753	5,236	4,033	1,490	1,343	2,069	1,835
70	4,871	4,244	6,469	5,362	2,493	2,293	2,922	2,443
75	7,240	6,487	7,969	7,096	4,140	3,888	4,111	3,248
80	10,631	9,794	9,779	9,336	6,801	6,517	5,756	4,305
85	15,348	14,526	11,948	12,189	10,977	10,726	8,003	5,686
90	21,650	21,011	14,521	15,764	17,241	17,155	11,026	7,475
95	29,635	29,396	17,537	20,145	26,035	26,301	15,004	9,769
100	39,095	39,456	21,025	25,378	37,293	38,083	20,094	12,671

Table 2. Pensioners 1967–70: graduation parameters, test statistics and values of q_x for two-parameter graduations Formula: log $(q_x/p_x) = A + Bt$ where t = (x - 70)/50

Values of q_x which are in a region where actual deaths at each age are generally less than 5 are shown in italics.

---- --

Table 3. Pensioners 1967–70: Males, Normal, Lives: exposed to risk and comparison of actual deaths with those expected according to the graduated table, namely:

$\log\left(q_x/p_x\right) =$	-2.9718602 + 4.2142613 (x - 70)/50	
------------------------------	------------------------------------	--

	Exposed		Actual	Expected		$z_x =$	
Age	to risk	Graduated	deaths	deaths	Deviation	$A_x - E_x$	Age
x	ER_{x}	<i>q</i> ×	A_x	E_x	$A_x - E_x$	$\sqrt{\mathbf{E}_x(1-q_x)}$	x
50 1	35	·009801	0	0.34	ר 0·34−		50 1
51 1	40	·010654	1	0.43	+0.57		51 1
52 1	48	·011580	0	0.56	-0.56		52 1
53 1	72	·012585	1	0.91	+0.09	≻ —0·84	53]
54 1	100.5	·013677	2	1.37	+0.63		54 1
55 1	165	.014963	0	7.45	2.45		-
-	235·5	·014862	0	2.45	-2.45		55 1
56 1		016148	3	3.80	-0·80	→1·22	56 1
57] 58]	270·5	·017543	2	4.75	-2·75 J	. 1 . 2 . 2	57 <u>1</u>
-	316	·019056	9	6.02	+2.98	+1.23	581
59 1	939-5	·020697	21	19-44	+1.56	+0.36	59 <u>1</u>
60 <u>1</u>	2,070	·022476	48	46.53	+1.47	+0.22	60 1
61 1	2,570-5	·024404	55	62.73	7·73	-0.99	611
62 <u>1</u>	3,080	·026494	86	81.60	+4.40	+0.49	62 1
63 <u>‡</u>	3,683-5	·028756	124	105-92	+18.08	+1.78	63]
64 <u>‡</u>	41,232.5	·031206	1,370	1,286.72	+ 83-28	+2.36	64 1
65 1	90,159	·033858	2,864	2 052.59	100.50	2 47	(5)
66 1	91,679		2,804	3,052.58	- 188-58	-3.47	$65\frac{1}{2}$
67 1	85,674·5	·036726		3,366.98	- 70-98	1-25	$66\frac{1}{2}$
68 1	76,582.5	·039827	3,355	3,412.14	- 57.14	-1.00	$67\frac{1}{2}$
69 1	67,050·5	·043178	3,378	3,306.67	+71.33	+1.27	68]
092	07,030.3	·046797	3,206	3,137.78	+68-22	+1.25	69 1
70 1	57,747	·050704	2,971	2,928.00	+43.00	+0.82	70 1
71 1	49,322	·054918	2,701	2,708.66	7.66	-0.12	71 1
72]	42,466	·059460	2,575	2,525-04	+ 49 • 96	+1.03	72 1
73 1	36,716	064353	2,414	2,362.77	+51.23	+1.09	73 1
74 1	31,940	·069618	2,330	2,223.59	+106.41	+ 2.34	$74\frac{1}{2}$
751	77.016	075070	0.044	0.005.46	61 16		
75 1	27,836	·075279	2,044	2,095-46	-51.46	-1.17	75]
76 1	23,907	·081360	1,917	1,945-08	-28.08	-0.66	76 1
77 <u>1</u>	20,304.5	·087886	1,762	1,784.49	-22.49	-0.56	77 1
78 1	16,926	·094882	1,607	1,605-97	+1.03	+0.03	781
79 <u>‡</u>	13,790	·102371	1,422	1,411-70	+10.30	+0-29	79 <u>1</u>
80 1	11,263	·110380	1,191	1,243-21	52-21	-1.57	80 1
81 1	8,995	·118932	1,092	1,069.80	+22.20	+0.72	81 1
82 1	6,966-5	·128052	870	892.07	-22.07	-0.79	82 1
83 1	5,376	·137761	742	740.60	+1.40	+0.06	83 1
84 1	4,007-5	·148082	583	593-44	-10.44	-0.46	84 1

Annuitants' Mortality Experience, 1967-70

Age x	Exposed to risk ER _x	Graduated q_x	Actual deaths A _x	Expected deaths E _x	Deviation $A_x - E_x$	$\frac{z_x =}{\sqrt{A_x - E_x}}$ $\frac{A_x - E_x}{\sqrt{E_x(1 - q_x)}}$	Age x
85 1	3,004	159033	433	477·74	- 44·74	- 2.23	85 1
86]	2,165	170632	362	369-42	-7.42	-0.42	86 1
87 1	1,528	·182893	286	279.46	+6.54	+0.43	87 1
88 <u>1</u>	1,067.5	195827	231	209.05	+21.95	+1.69	88 1
89 1	731	·209441	149	153-10	-4.10	-0.37	89]
90 1	523	·223738	136	117-02	+18.98	+1.99	90 1
91 1	327.5	·238717	81	78.18	+2.82	+0.37	91 1
92 1	219-5	·254369	61	55.83	+ 5.17	+ 0-80	92 1
93 1	130	·270684	40	35-19	+4.81	+ 0.95	93 1
94 <u>‡</u>	79	287640	22	22.72	-0.72	-0.18	94 1
95ۇ	47.5	·305215	8	14.50	- 6.50	-2.05	95 1
96 1	23.5	·323376	4	7.60	- 3.60	-1.59	96 1
97 1	16	342085	1	5.47	-4.47	-2.36	97률
981	11	·361299	4	3-97	+0.03 ∖	-0.62	98 1
99 1	3	·380967	0	1.14	-1•14 ∫	-0.02	99 1
Total	833,442	—	45,860	45,860.00	0.00		
				X	$z^2 = \text{Total } z_x^2$	² = 72·74	

Table 3 (continued).

 Table 4. Pensioners 1967–70: Males, Normal, Amounts: exposed to risk and comparison of actual deaths with those expected according to the graduated table, namely:

$$\log (q_x/p_x) = -3.1163671 + 4.4802968 (x - 70)/50$$

(Exposed to risk and deaths are measured in units of £150.75)

Age x	Exposed to risk ER _x	Graduated q_x	Actual deaths A _x	Expected deaths E _x	$z_x =$ Deviation $\frac{A_x - E_x}{\sqrt{E_x(1 - q_x)}}$	Age x
50불	78·79	007663	0.00	0.60	-0.60	50불
51 1	93.59	-008375	0.75	0-78	-0.03	511
52 1	136.48	·009153	0.00	1.25	-1.25 > +0.44	52 <u>2</u>
53 1	166.66	·010003	1.79	1.67	+0.12	53 1
54 <u>‡</u>	299-96	·010930	6.25	3-28	+2.97]	54 1
55 <u>1</u>	414.92	·011942	0.00	4-96	-4.96 -2.04	55 1
56 <u>1</u>	587.58	-013047	5.41	7.67	$-2.26 \int -2.04$	56 <u>1</u>
571	678·40	·014253	7-59	9.67	-2.08 - 0.67	57 ફ ੇ
58 <u>1</u>	838.88	·015568	8-14	13.06	-4·92 -1·37	58]
59 <u>1</u>	2,597-24	·017003	41.30	44.16	-2.86 -0.43	59 <u>1</u>

· -

Table 4 (continued).

			·				
	Exposed		Actual	Expected		$z_x \approx$	
Age	to risk	Graduated	deaths	deaths	Deviation	$A_x - E_x$	Age
x	ER_x	q_x	A_x	$\mathbf{E}_{\mathbf{x}}$	$A_x - E_x$	$\sqrt{\mathrm{E}_{\mathbf{x}}(1-q_{\mathbf{x}})}$	x
60 1	5,854.56	·018567	91-38	108.70	-17.32	-1.68	$60\frac{1}{2}$
61 1	6,897·41	·020272	114·23	139.83	-25.60	-2.19	$61\frac{1}{2}$
$62\frac{1}{2}$	7,601.30	·022131	165.48	168-22	-2.75	-0.21	62 1
63 <u>1</u>	8,118-53	024155	117.92	196-10	-78.19	- 5.65	63 1
64 <u>1</u>	46,887.30	026360	1,469.48	1,235.94	+233.54	+6.73	$64\frac{1}{2}$
65 1	97,785.49	·028760	2,736-83	2,812.30	- 75·47	-1.44	651
$66\frac{1}{2}$	96,404 ·17	031371	3,081-20	3,024.32	+ 56.87	+ 1.05	66]
671	88,006-90	034212	2,918.74	3,010-85	-92.12		67 1
$68\frac{1}{2}$	76,470-45	037299	2,851-06	2,852.27	-1.21	-0.05	68 1
69 1	65,078-59	·040653	2,523-50	2,645.67	-122.17	-2.42	69 <u>1</u>
70 1	55,547.07	044296	2,487.42	2,460-49	+ 26-93	+0.26	70 1
71]	47,126.35	048248	2,221.63	2,273-73	52-10	-1.12	71호
72 1	39,688-31	052533	2,218.08	2,084.94	+133.14	+ 3.00	72 1
73 1	33,699-28	·057176	1,973-65	1,926.79	+ 46.86	+1.10	73불
74호	28,679-25	·062202	1,903-03	1,783-92	+119-11	+ 2.91	74]
75월	24,467-26	·067639	1,674-39	1,654.94	+ 19·45	+0.50	75 1
76 1	20,711.69	·073514	1,486.44	1,522-59	-36.16	— 0 [,] 9б	76불
77]	17,275-25	-079855	1,420.10	1,379.51	+ 40.59	+1.14	77 <u>‡</u>
78 1	14,111 09	·086692	1,115-90	1,223.31	107-41	- 3·21	78 1
79 <u>1</u>	11,547-58	094054	1,083-16	1,086-10	-2.94	-0.09	79]
80 1	9,229.11	101972	898-48	941 · 1 1	-42.63	-1.47	80 <u>‡</u>
81]	7,166-11	·110475	723.13	791.68	<i>−</i> 68·54		81호
82 1	5,538-74	·119593	689 ·20	662-39	+ 26.81	+1-11	82 1
83 1	4,122.54	·129354	538-63	533-27	+5.37	+0.25	83 1
84 1	3,049.72	-139784	469-59	426.30	+ 43·29	+2.26	$84\frac{1}{2}$
85 1	2,199-10	150911	297.00	331.87	- 34.87	2.08	85 <u>1</u>
86 <u>1</u>	1,513.87	·162755	261.94	246.39	+15.55	+1.08	861
871	916·33	-175337	161-04	160.67	+0.38	+0.03	87 <u>1</u>
88 1	621.79	·188673	132-54	117-32	+15.22	+1.56	88 1
89 <u>‡</u>	402.63	·202773	70.22	81.64	-11-42	-1.42	89 1
90 1	298-68	217645	78-20	65.01	+13.20	+1.85	90 1
91 1	186-95	·233288	52-39	43.61	+8.78	+1.52	91호
92 1	125-43	249696	29-36	31-32	- 1.96	-0.40	92 1
93 <u>1</u>	72.66	-266857	33-82	19-39	+ 14-44	+ 3.83	93 <u>1</u>
94 1	44·33	284750	6.24	12.62	6.38	-2.12	94 1
95 1	45.75	·303346	2.57	13.88	- 11.31	- 3.64	95 <u>1</u>
96 <u>1</u>	28.18	·322609	2.88	9.09	-6.21	-2.50	96 1
97 1	18.55	·342493	0.31	6-35	<i>−</i> 6·04)	97 <u>‡</u>
98 1	9.88	-362947	3.24	3.58	-0.35	> -2.65	98 1
99 1	1.35	383908	0.00	0.52	-0·52	J	99 1
Total	833,442		38,175-64	38,175.62	+0.02		
				X ²	$z = \text{Total } z_x^2$	$^{2} = 213.57$	

Annuitants' Mortality Experience, 1967-70

.....

Table 5. Pensioners 1967–70: Females, Normal, Lives: exposed to risk and comparison of actual deaths with those expected according to the graduated table, namely:

$\log (q_x/p_x) = -3.6665812 + 5.2448241 (x - 70)/50$									
	Exposed		Actual	Expected		$z_x =$			
Age	to risk	Graduated	deaths	deaths	Deviation	$A_x - E_x$	Age		
x	ER,	q_{\star}	Ax	E,	$A_x - E_x$	$\sqrt{E_x(1-q_x)}$	x		
501	14-5	·003295	0	0.05	-0.05]		50‡		
50 <u>s</u> 51 1	145	-003658	0	0.03	-0.04		51분		
5212 5212	21	·003058	0	0.04	-0.09		52 1		
53 1	21	-004508	0	0.09	-0.10		53 1		
54 1	23 89·5	·004508	0	0-10	-0.45 (× +0·08	54 1		
J4 2	99.7	+00J004	v	0.47	-0.43		548		
55 1	165	·005554	0	0.92	-0.92		55]		
56 1	211-5	·006165	3	1.30	+1.70		56 1		
57 1	277.5	·006842	2	1.90	+0.10		57 1		
58]	385-5	007593	3	2.93	+0.07		581		
59 <u>1</u>	4,926.5	·008426	54	41.51	+12.49	+1.95	59 1		
$60\frac{1}{2}$	11,535	·009349	115	107.84	+ 7.16	+0.69	$60\frac{1}{2}$		
61률	12,416.5	·010372	131	128.79	+ 2.21	+0.20	61 🛔		
62 1	12,772.5	·011506	129	146-96	-17.96	-1.49	$62\frac{1}{2}$		
63 <u>‡</u>	12,835	·012762	145	163-81	-18.81	-1.48	63 <u>1</u>		
64 1	13,102-5	·014154	200	185-45	+ 14.55	+1.08	64 <u>1</u>		
	12.110	A1 8 (0.5	105	005.54	10 -	0.74	(
65 <u>1</u>	13,110	·015695	195	205.76	- 10.76	-0.76	65 <u>1</u>		
66 1	12,206	·017400	234	212.39	+ 21.61	+1.50	66 1		
67 <u>‡</u>	11,072	·019288	197	213.55	- 16-55	1-14	67 1		
68 1	9,784.5	·021375	209	209.14	-0.14	-0.01	68 1		
69 1	8,658	·023683	229	205.05	+23.95	+1.69	69]		
70 1	7,607.5	·026234	200	199-57	+0.43	+0.03	70 1		
71 1	6,718	·029051	195	195-16	-0.16	0.01	71]		
721	5,887	032160	194	189-33	+ 4.67	+0.35	72 1		
73 <u>1</u>	5,130.5	-035590	186	182.60	+3.40	+0.26	731		
741	4,403	·039371	163	173-35	10-35	-0.80	741		
••*	.,								
75쿨	3,687.5	-043536	131	160-54	29.54	- 2·38	75]		
76 <u>1</u>	3,022	·048119	147	145.42	+1.58	+0.13	$76\frac{1}{2}$		
77 <u>1</u>	2,403	·053158	115	127.74	-12.74	-1.16	77 <u>4</u>		
78 1	1,879.5	·058692	117	110.31	+ 6.69	+ 0.66	78 <u>1</u>		
79 1	1,410.5	·064763	99	91-35	+7.65	+0.83	79 <u>‡</u>		
•••				-			0.01		
80 1	1,090	·071414	76	77.84	-1.84	-0.22	80 1		
81불	825	·078691	58	64.92	-6.92	-0.89	81 1		
82 <u>}</u>	649.5	-086639	53	56-27	-3.27	-0.46	82 1		
83 1	513·5	·095308	54	48.94	+5.06	+0.76	83 1		
84 <u>‡</u>	390	·104745	46	40.85	+5.15	+0.82	84 1		

namely: $\log (a_n/n_n) = -3.6665812 + 5.2448241 (x - 70)/50$ 79

Age x 85 ¹ / ₂ 86 ¹ / ₂ 87 ¹ / ₂ 88 ¹ / ₃ 89 ¹ / ₂ 90 ¹ / ₂ 91 ¹ / ₂ 92 ¹ / ₂ 93 ¹ / ₂	Exposed to risk ER _x 297-5 203 151 114 76 50-5 28-5 15 9-5 8-5	Graduated <i>q_x</i> ·114997 ·126111 ·138132 ·151100 ·165053 ·180021 ·196028 ·213088 ·231206 ·250374	Actual deaths A _x 47 21 21 22 12 12 11 5 6 2 0	Expected deaths E _x 34:21 25:60 20:86 17:23 12:54 9:09 5:59 3:20 2:20 2:13	Deviation $A_x - E_x$ + 12.79 - 4.60 + 0.14 + 4.77 - 0.54 + 1.91 - 0.59 + 2.80 - 0.20	$z_{x} = \frac{A_{x} - E_{x}}{\sqrt{E_{x}(1 - q_{x})}} + \frac{2 \cdot 32}{-0.97} + \frac{0 \cdot 03}{+1.25} - \frac{0 \cdot 17}{-0.17} + \frac{0 \cdot 70}{-0.28} + 1 \cdot 27$	Age x 851 861 871 881 891 901 911 921 931
941 951 961 971 981 981 Total	8·5 8 3 2·5 1 170,200·5	-250374 -270572 -291766 -313905 -336924	0 2 0 0 0 3,829	2-13 2-16 0-88 0-78 0-34 3,829-00 x ²	$ \begin{array}{c} -2.13 \\ -0.16 \\ -0.88 \\ -0.78 \\ -0.34 \\ 0.00 \\ ^{2} = \text{Total } z, \end{array} $	-2.01	94 <u>1</u> 95 <u>1</u> 96 <u>1</u> 97 <u>1</u> 98호

Table 5 (continued).

 Table 6. Pensioners 1967–70: Females, Normal, Amounts: exposed to risk and comparison of actual deaths with these expected according to the graduated table, namely:

 $\log (q_x/p_x) = -3.7520391 + 5.4433637 (x - 70)/50$

(Exposed to risk and deaths are measured in units of £81.05)

Age x	Exposed to risk ER _x	Graduated q _x	Actual deaths A _x	Expected deaths E _x	Deviation $A_x - E_x$	$z_x = \frac{A_x - E_x}{\sqrt{E_x}(1 - q_x)}$	Age x
$50\frac{1}{2}$	38.67	·002801	0.00	0.11	-0·11]		50 1
511	16.58	003122	0.00	0.02	-0.05		51분
52 <u>‡</u>	28-24	·003480	0.00	0.10	-0.10		52 <u>1</u>
53 <u>1</u>	48.27	·003879	0.00	0.19	ح 19∙0−	+0.82	53 1
54 <u>1</u>	163-93	·004323	0.00	0.71	-0.71		54 <u>1</u>
55 1	336-96	-004818	0.00	1.62	-1.62		55 <u>1</u>
56 <u>1</u>	504.79	·005369	7.40	2.71	+4.69 ∫		56]
57 1	586-20	·005983	3.01	3.51	–0·50 โ	0.67	57]
58 1	773-50	·006666	3.70	5.16	—1·45	-0.67	58 1
59 1	6,501-51	-007427	77·39	48.29	+29.10	+ 4 20	59]

.

Table 6 (continued).

					,		
	Exposed		Actual			$z_x = A_x - E_x$	
Age	to risk	Graduated	deaths		Deviation		Age
x	ER_{x}	q_x	A _x	E _x	$A_x - E_x$	$\sqrt{E_x(1-q_x)}$	x
60 1	14,289-36	·008274	125-40	118-24	+7.16	+0.66	60 1
61 ±	14,618.49	-009217	131-26	134.74	- 3.49	-0.30	61 1
62 1	14,333.02	·010267	140.39	147.15	- 6.76	0.56	$62\frac{1}{2}$
63]	14,095-97	·011434	140.40	161-17	- 20.77	-1.65	63 1
64 <u>1</u>	14,136.59	·012732	174.80	179-99	-5-19	-0.39	64 <u>‡</u>
65 <u>1</u>	13,879.74	·014176	203.47	196.76	+6.72	+ 0.48	65]
66]	12,409.19	·015780	216-36	195.82	+20.53	+1.48	66 1
67 1	10,806.83	017564	171-23	189-81	-18.57	-1.36	67 1
68 1	9,066.77	•019544	1 90 -47	177.20	+13-27	+1.01	68 1
69 <u>1</u>	7,620.12	·021743	169.35	165.69	+ 3.66	+0.29	69 1
70 1	6,329-57	·024183	145.85	153·07	-7.22	-0.59	70 1
71 1	5,436-85	·026890	142.78	146.20	-3.42	-0.29	71 1
72 <u>‡</u>	4,706.98	·029890	109-89	140-69	-30.81	- 2.64	72 1
73 1	4,043.57	·033214	124.68	134.30	9-62	-0.84	73 1
74 1	3,361.52	·036893	114.75	124.02	-9-27	-0.82	$74\frac{1}{2}$
75 1	2,696.72	·040963	88-13	110.46	-22.33	-2.17	75 1
76]	2,206-32	·045460	103-15	100.30	+ 2.85	+0.29	76 1
77 <u>1</u>	1,658-66	050425	86-02	83.64	+ 2.39	+0.52	77 1
78 1	1,367.57	-055900	115-09	76-45	+ 38.65	+4.55	78 <u>1</u>
79 1	997.00	·061931	63.74	61.75	+2.00	+0.26	79 1
80 1	799-20	·068566	54.55	54.80	-0.25	-0.03	80 1
81 1	605-87	-075854	46-85	45-96	+ 0.89	+0.14	81 1
82 1	470.49	-083846	43.76	39-45	+4.32	+0.72	82 1
83 1	352-16	·092597	35-51	32.61	+ 2.90	+0.53	83 1
84 1	261.30	·102159	28.84	26.69	+2.14	+0.44	84 1
85 <u>1</u>	197.74	·112586	26.89	22.26	+4.62	+1.04	851
86 1	149-99	·123930	17.16	18.59	-1.43	-0.32	86 1
87 1	94.23	·136242	12.52	12.84	-0.31	-0.09	87 1
88 <u>‡</u>	76-15	·149568	16-55	11-39	+5.16	+1.66	88 1
89 1	46.66	·163950	4.39	7-65	-3.26	-1.29	89 1
90 1	30-35	179423	5.59	5-45	+0.14	+0.02	90 <u>‡</u>
91 1	15-20	·196014	3-55	2.98	+0·57]		91 1
92 <u>1</u>	7.01	·213740	1.72	1.50	+0.22 >	+0-49	92 1
93 1	5.02	·232605	1.41	1.17	+0.24		93 1
94 <u>1</u>	8.50	·232600	0.00	2.15	–2·15 ๅ้		94 <u>‡</u>
95]	9.97	·273701	3.69	2.73	+0.96		95 <u>‡</u>
96 1	2.21	·295867	0.00	0.65	-0.65 }	-1.94	96 1
97 1	6.01	·319040	0.00	1.92	-1.92		97 1
98 1	2.94	·343142	0.00	1.01	-1·01 J		98 <u>1</u>
Total	170,200.51	-	3,151.68	3,151.66	+0.02		
					$\chi^2 = Tot$	al $\pi^2 = 72.92$	

 $\chi^2 = \text{Total } z_x^2 = 72.92$

Table 7. Pensioners 1967-70.	. Ratios (as a percente	age) of gra	aduated rates,	using two-paramete	er graduations for
Normal, three-parame	eter graduations for Ea	arly, for ea	ch comparison	of corresponding pa	irs of data

	Amounts as per cent of Lives				Early as per cent of Normal				Females as per cent of Males				
	Males,	Males,	Females,	Females,	Males,	Males, 1	Females	, Females,	Normal	, Normal,	Early,	Early,	
Age	Normal	Early	Normal	Early	Lives	Amounts	Lives	Amounts	Lives	Amounts	Lives	Amounts	Age
50	78·0	53·9	84.7	101-8	496·6	343-5	607.0	730·2	33-3	36-2	<i>40</i> ·7	76·8	50
55	80-2	62.3	86-5	93-2	308•4	239-5	299.6	322-6	37.0	39.9	35-9	53.7	55
60	82.4	70·4	88.3	87.8	209.0	178.7	173-9	172.8	41 2	44·1	34.2	42.7	60
65	84.7	78 ∙0	90-1	85.3	154.8	142.6	119-1	112.7	45.8	48.8	35-3	38.6	65
70	87-1	84.7	92.0	85.4	125-2	135.8	96 ·1	89.3	51.2	54.0	39.3	39.7	70
75	89.6	89·9	93.9	88.3	110.5	110·9	91·5	86.0	57·2	59-9	47·3	46.5	75
80	92.1	93.5	95-8	93-9	106-2	107-8	101 ·9	99.8	64·0	66.5	61.3	61.6	80
85	94·6	95-3	97.7	102-2	110.2	111-0	129.7	135.7	71.5	73.8	84·1	90.2	85
90	97·0	95-5	99.5	110.7	121.3	119-3	176-2	196.0	79 .6	81.6	115.7	134·1	90
95	99-2	94·8	101.0	112-5	136-6	130.6	220-9	246.0	87.9	89.5	142-1	168-6	95
100	100.9	94·4	102-1	106-9	150-0	J40·3	223·1	233.6	95•4	96.5	141.8	160.7	100

Ratios based on rates in the regions where actual deaths at each age are generally less than 5 are shown in italics.

Table 8. Peg 1967–70: values of q_x

Formula: log	$(q_x/p_x) = A + B (x - A)$	-70)/50
Males, Lives (mL)	A = -2.9718602	B = +4.2142613
Males, Amounts (mA)	A = -3.1163671	B = +4.4802968
Females, Lives (fL)	A = -3.6665812	B = +5.2448241
Females, Amounts (fA)	A = -3.7520391	B = +5.4433637

Age	Males, Lives	Males, Amounts	Females, Lives	Females, Amounts	Age
x	(mL)	(mA)	(fL)	(fA)	x
50	·00940034	·00732954	·00312712	·00265307	50
51	·01021855	·00801113	00347177	-00295730	51
52	·01110718	-00875554	·00385425	00329631	52
53	·01207214	·00956846	00427869	·00367404	53
54	·01311983	·01045606	·00474964	·00409488	54
55	·01425713	·01142505	00527216	·00456370	55
56	·01549146	01248270	-00585183	00508592	56
57	·01683084	01363691	·00649481	00566756	57
58	·01828387	01489624	-00720793	·00631529	58
59	·01985981	·01626994	·00799872	·00703653	59
60	·02156859	·01776803	-00887550	·00783948	60
61	·02342089	·01940135	·00984742	·00873326	61
62	·02542813	·02118157	·01092460	·00972794	62
63	-02760254	·02312129	·01211818	·01083467	63
64	-02995717	·02523406	·01344038	·01206578	64
65	·03250594	·02753445	·01490467	-01343487	65
66	·03526368	-03003808	01652582	-01495697	66
67	·03824614	-03276169	·01832003	·01664859	67
68	·04147000	·03572317	·02030500	·01852794	68
69	·04495290	·03894156	·02250012	·02061499	69
70	·04871345	·04243715	·02492650	·02293164	70
71	·05277120	·04623143	·02760716	02550184	71
72	·05714666	05034711	·03056706	·02835176	72
73	·06186121	·05480813	·03383327	·03150987	73
74	06693709	05963960	-03743501	03500709	74
75	·07239733	·06486775	·04140374	-03887688	75
76	-07826560	07051983	04577321	-04315532	76
77	·08456618	07662404	·05057948	·04788114	77
78	·09132371	-08320933	·05586087	·05309576	78
79	·09856309	·09030523	06165792	·05884319	79
80	·10630920	·09794161	-06801323	·06516994	80
81	·11458670	·10614838	·07497127	·07212481	81
82	·12341970	-11495519	-08257806	07975857	82
83	·13283145	·12439098	·09088084	·08812356	83
84	·14284397	·13448360	-09992750	·09727312	84

Table 8 (continued).

		•			
Age	Males, Lives	Males, Amounts	Females, Lives	Females, Amounts	Age
x	(mL)	(mA)	(fL)	(fA)	x
85	·15347762	·14525925	·10976596	-10726092	85
86	·16475073	·15674195	·12044345	·11814002	86
87	·17667903	·16895294	-13200559	·12996192	87
88	·18927527	·18191000	·14449531	·14277528	88
89	·20254861	·19562683	·15795171	·15662452	89
90	·21650421	·21011234	•17240871	·17154830	90
91	·23114263	·22536992	·18789367	·18757781	91
92	·24645947	·24139684	·20442588	·20473497	92
93	·26244482	25818364	·22201504	·22303062	93
94	·27908299	-27571351	·24065979	·24246276	94
95	·29635215	-29396196	·26034636	·26301484	95
96	·31422412	·31289643	·28104729	·28465439	96
90 97	·33266435	·33247618	·30272055	·30733188	97
97 98	·35163185	-35265231	32530892	·33098012	98
	·35163185 ·37107947	·35265251 ·37336798	·34873979	-35551406	99
99	•3/10/94/	-3/330/98	•34873979	-55551400	77
100	·39095410	-39455885	·37292549	-38083138	100
101	-41119725	·41615369	39776407	-40681358	101
102	-43174552	·43807526	·42314067	·43332783	102
103	-45253144	·46024130	·44892941	·46022942	103
104	·47348426	·48256574	·47499568	48736473	104
105	10152090	·50495999	·50119892	·51457473	105
105	·49453089 ·51559691	·50495999 ·52733437	-52739558	·54169860	105
106		·52/33437 ·54959946	-55344225	·56857756	100
107	-53660766		+57919877	·59505854	107
108	·55748922	-57166766			108
109	·57816952	·59345442	·60453126	·62099756	109
110	·59857925	·61487956	62931473	·64626276	110
111	·61865282	·63586839	·65343543	·67073673	111
112	·63832909	·65635263	·67679269	·69431835	112
113	·65755210	·67627121	·69930017	·71692384	113
114	·67627156	·69557075	·72088667	·73848727	114

____ ·· ·· ··

Annuitants' Mortality Experience, 1967-70

				10 ⁵ q _x (u	ltimate)	$10^5 q_{[x]}$ (select)				
Age	Peg 19	967-70		A				Α	aeg	Age
x	(mL)	(mA)	a(55)	1967-70	ELT 12	196770	a(55)	196770	1967-70	x
20			118	89	119	89	71	66	63	20
25			128	69	99	69	77	47	49	25
30			139	65	115	65	83	44	46	30
35			168	86	155	86	101	60	60	35
40			230	144	235	144	138	102	102	40
45			349	264	399	264	209	174	186	45
50	940	733	547	479	728	479	328	286	338	50
55	1,426	1,143	870	844	1,331	875	522	447	619	55
60	2,157	1,777	1,402	1,443	2,287	1,527	841	670	1,079	60
65	3,251	2,753	2,297	2,403	3,648	2,407	1,378	969	1,701	65
70	4,871	4,244	3,776	3,911	5,566	3,724	2,266	1,363	2,561	70
75	7,240	6,487	6,164	6,229	8,434	5,717	3,698	1,875	3,838	75
80	10,631	9,794	9,861	9,703	12,747	8,683	6,212	2,531	5,715	80
85	15,348	14,526	15,246	14,727	18,659	12,974	10,291		8,429	85
90	21,650	21,011	22,413	21,651	25,593	18,947	16,137		12,265	90
95	29,635	29,396	30,903	30,593	32,385	26,821	22,250		17,512	95
100	39,095	39,456	39,668	41,229	37,983	36,495			24,381	100

Table 9. Values of 10^5q_x and $10^5q_{[x]}$ by various tables: Males

Table 10. Values of $10^5 q_x$ and $10^5 q_{[x]}$ by various tables: Females

			$10^5 q_x$ (ultimate)			10 ⁴	q _[x] (select)
Age	Peg 19	06770			aeg		aeg	Age
х	(fL)	(fA)	a(55)	ELT 12	1967–70	a(55)	1967-70	x
20			117	44	33	70	16	20
25			123	54	38	74	19	25
30			132	75	43	79	21	30
35			153	114	63	92	31	35
40			191	180	111	115	55	40
45			261	284	188	157	93	45
50	313	265	376	439	289	226	14 4	50
55	527	456	553	682	484	332	241	55
60	888	784	855	1,088	836	513	416	60
65	1,490	1,343	1,385	1,808	1,262	831	627	65
70	2,493	2,293	2,307	3,104	1,971	1,384	1,152	70
75	4,140	3,888	3,881	5,370	3,250	2,329	2,107	75
80	6,801	6,517	6,495	9,108	5,490	4,092	3,825	80
85	10,977	10,726	10,628	14,729	9,207	7,174	6,844	85
90	17,241	17,155	16,694	22,128	14,839	12,020	11,129	90
95	26,035	26,301	24,688	30,323	22,323	17,775	16,742	95
100	37,293	38,083	33,846	37,788	30,729		23,047	100

100-					(4,))))		
					aeg		aeg
Rate of	Age	Peg 19	67-70	a(55)	1967- 7 0	a(55)	1967-70
interest	х	(mL)	(mA)	(ult.)	(ult.)	(select)	(select)
0%	55	19-158	20.420	21.369	21.686	21.445	21.742
	65	12.555	13.391	13.807	14-351	13-936	14.455
	75	7.507	7.944	7.891	8.639	8.098	8.811
	85	4.078	4.228	4.007	4.663	4·241	4.907
5%	55	11-192	11-694	12.122	12 149	12.164	12-180
	65	8-393	8-823	9.081	9.269	9.166	9-336
	75	5.646	5.925	5.915	6.336	6.071	6.462
	85	3.367	3.481	3.321	3 792	3.515	3.990
10%	55	7.552	7.795	8.017	8.001	8.045	8.022
	65	6.136	6-386	6-555	6.625	6.617	6.673
	75	4.468	4 658	4.665	4.923	4.787	5.021
	85	2.854	2.943	2.823	3.176	2.988	3.342
15%	55	5.595	5.732	5.862	5.844	5-882	5.859
	65	4.774	4.934	5.051	5.078	5.098	5.114
	75	3.670	3.807	3.820	3.990	3.921	4.070
	85	2.470	2.541	2.448	2.722	2.591	2.864

Table 12. Comparison of annuity values (a_x) by various tables: Females

Rate of	Age	Peg 19	67-70	a(55)	<i>aeg</i> 1967–70	a(55)	<i>aeg</i> 1967–70
interest	x	(fL)	(fA)	(ult.)	(ult.)	(select)	(select)
0%	55	24.843	25.417	25-293	26.473	25-349	26.538
	65	16.653	17-053	17.089	18.269	17.185	18.386
	75	9.927	10.126	10.205	11-163	10.370	11.294
	85	5.133	5.169	5.295	5.859	5.500	6.011
5%	55	13-263	13.464	13-390	13.698	13.420	13.731
	65	10.362	10.552	10-553	11.021	10.612	11.092
	75	7.116	7.239	7.272	7-796	7.389	7.886
	85	4-137	4.167	4·244	4 627	4.408	4.748
10%	55	8.489	8.576	8.532	8.634	8.551	8.655
	65	7.222	7.325	7.320	7.539	7.361	7-587
	75	5.434	5.516	5-531	5.848	5.620	5.917
	85	3.440	3.465	3.514	3.791	3.650	3.889
15%	55	6.097	6.143	6.115	6.156	6-128	6.171
	65	5.441	5.504	5.498	5.615	5-529	5.651
	75	4.347	4.405	4.412	4-620	4.484	4.675
	85	2.931	2.951	2.985	3-193	3.101	3-276

Table 13. Female annuitants 1967-70: graduation parameters, test statistics, and
values of q_x for graduations of data for durations 0 and 1 and over (post-1956) using
using two, three and four parameters

using two, three and four parameters									
Formula: $\log(q_x/p$	$(p_x) = A + A$	Bt+C(2t)	$(^{2}-1)+D($	$(4t^3 - 3t)$ wh	here $t = (.$	x - 70)/50			
Experience		Duration 0)	Dura	Durations 1 and over				
Graduation	2-pars	3-pars	4-pars	2-pars	3-pars	4-pars			
Ages used (nearest)	51-100	51-100	51-100	51-100	51-100	51-100			
Parameters									
A	- 4.4521	- 3-8484	- 6.4936	-3.8814	-3.4054	- 2.4116			
В	+6.1370	+5.7613	+14.8741	+5.2600	+4.9226	+1.7242			
С	_	+0.6071	-2.1301		+0.4688	+1.4950			
D			+ 3 0390			-1.0501			
Actual deaths	348	348	348	5673	5673	5673			
$\Sigma(A-E)$	0.00	0.00	- 0.01	-0.05	0.01	0.04			
$\Sigma\Sigma(A-E)$	0.01	0.00	-0.12	-0.92	0.27	0.25			
$-\mathbf{L'}$	1506-2	1506.0	1504.7	21625-6	21623-3	21620.6			
Using single ages:									
Runs, r	22	22	22	28	24	24			
t(r)	1.10	1.10	1.10	-0.28	0-57	0.57			
$t(\rho)$	-0.31	-0.33	0.75	0.68	0.34	-0.06			
Using grouped ages:									
χ^2	28·9	28.2	26.1	70.5	66.8	59-7			
Degrees of freedom	29	28	28	42	42	41			
$t(\chi^2)$	0.05	0.09	-0.20	2.77	2.45	1.93			
$10^5 \times q_x$: Ages									
50	100	141	30	251	336	600			
55	185	230	111	424	514	678			
60	340	384	307	715	799	876			
65	627	656	673	1,204	1,265	1,262			
70	1,152	1,148	1,257	2,020	2,035	1,971			
75	2,107	2,049	2,149	. 3,372	3,317	3,250			
80	3,825	3,716	3,608	5,576	5,457	5,490			
85	6,844	6,800	6,347	9,084	9,005	9,207			
90	11,949	12,382	12,300	14,462	14,741	14,839			
95	20,044	21,903	26,299	22,246	23,533	22,323			
100	31,651	36,317	54,557	32,621	35,823	30,729			

Values of q_x which are in a region where actual deaths at each age are generally less than 5 are shown in italics,

87

 Table 14. Female annuitants 1967–70: duration 0: exposed to risk and comparison of actual deaths with those expected according to the graduated table, namely:

		O (ILIE L)				// + -	
	Exposed		Actual	Expected		$a = \frac{A_x - E_x}{\sqrt{E_x}(1 - q_x)}$	
Age	to risk	Graduated	deaths	deaths	Deviation z ,	$r = \frac{1}{\sqrt{2}}$	- Age
x	ER_x	q_x	A _x	$\mathbf{E}_{\mathbf{x}}$	$A_x - E_x$	$V E_x(1-q_x)$	<i>)</i> x
50 1	34.5	·001063	0	0.04	-0.04		50 1
51 1	39	·001202	0	0.02	0-05		51 1
521	48-5	·001358	0	0.07	-0.07		52]
531	65	·001536	0	0.10	-0.10		531
54 <u>1</u>	101	·001736	0	0.18	-0.18		54 1
					İ		
55 1	142-5	·001962	1	0.28	+0.72	+0.02	55 1
56 1	118-5	·002218	0	0-26	-0.26		56]
57불	175	-002507	0	0-44	-0-44		57 1
58 1	197	·002833	3	0.26	+2.44		58 <u>‡</u>
59ۇ	491	·003202	2	1.57	+0.43		59 <u>₽</u>
60 1	646-5	·003618	0	2.34	-2·34 J		60 <u>‡</u>
61]	452·5	·004089	3	1.85	+1·15 ጊ		61 1
62 1	504-5	· 00 4620	1	2.33	-1.33 }	-0.36	62 1
63 1	527	005221	2	2.75	_0·75 J		63 1
64 1	717	-005898	2	4-23	-2·23]		64 1
					· · · · · · · · · · · · · · · · · · ·	-1.18	
65 1	817	006664	4	5.44	-1·44 J		65 1
$66\frac{1}{2}$	681	·007527	3	5.13	-2.13	-0.94	661
67 <u>1</u>	640.5	·008502	8	5-45	+2.55	+1.10	67 <u>1</u>
68 <u>1</u>	663-5	·009601	11	6-37	+ 4.63	+1.84	68 1
69]	710·5	-010842	7	7.70	-0.20	-0.22	69 <u>‡</u>
701	- 41 - 5	010040	0	0.00	1.00	0.04	701
701	741.5	·012240	8	9.08	-1.08	-0.36	70 1
711	668	·013817	16	9·23	+6.77	+2.24	71 1
72 1	651 (72 5	015593	9	10.15	-1.15	-0-36	72 1
731	672-5	·017593	13	11.83	+1.17	+0.34	73]
74불	601	·019845	17	11-93	+ 5-07	+1.48	74 1
75 1	624.5	·022379	14	13-98	+0.02	+0.01	75 1
761	557.5	·025227	14	14.06	- 3·06	-0.83	76 1
77 <u>+</u>	519	028428	14	14.00		-0·20	70 <u>s</u> 77 1
78호	448	·032022	14	14-75	-1.35	-0·20 -0·36	78 1
79 1	454.5	·036053	13	16.39	3·39	~0.85	78호 79호
128	454 5	030033	10	10.55	مرد و		175
80 1	415	·040570	15	16.84	-1.84	-0-46	80 1
81 1	375-5	-045626	14	17-13	-3.13	0-77	81]
82 1	301	-051279	16	15-44	+0.56	+0.15	82 1
83 1	294.5	-057590	19	16.96	+2.04	+0.51	83 1
84 1	272	·064625	18	17.58	+0.42	+0.10	84 <u>1</u>
~							-

 $\log (q_x/p_x) = -4.4520890 + 6.1370401 (x - 70)/50$

Table 14 (continued).								
	Exposed		Actual	Expected		$A_x - E_x$		
Age	to risk	Graduated	deaths	deaths	Deviation	$Z_{\tau} = -$	Age	
x	ER_{x}	q_x	A_x	E_{x}	$A_x - E_x$	$\sqrt{E_x(1-q_x)}$	x	
85 <u>1</u>	228	·072453	17	16.52	+0.48	+0.15	85]	
86 1	174	·081147	9	14.12	5.12	-1-42	86 <u>‡</u>	
87 1	125-5	·090782	11	11.39	-0.39	-0-12	87 1	
88 1	125	·101435	14	12.68	+1.32	+0-39	88 1	
89 1	68.5	113182	8	7.75	+0.22	+0.09	89 1	
90 1	48.5	·126099	5	6.12	-1.12	0-48	90 1	
91 1	44·5	·140256	9	6.24	+2.76	+1.19	91 <u>1</u>	
92호	40	·155720	2	6.23	-4-23	-1.84	92 1	
93 1	23	·172547	5	3.97	ך 1.03 +		93 <u>‡</u>	
94월	12	·190782	3	2.29	+ 0.71		94 <u>‡</u>	
95 1	7.5	·210453	5	1.58	+3.42		95 <u>1</u>	
96 1	3	·231572	1	0.69	+0.31 ≻	+2.05	96 1	
97월	3.5	-254128	0	0.89	- 0.89		97ۇ	
98 <u>1</u>	1.5	·278086	1	0.42	+0.28		98 1	
99 <u>1</u>	1	·303384	1	0.30	+0·70 J		991	
Total 2	16,273		348	348.00	0.00	_		
	$\chi^2 = \text{Total } z_x^2 = 28.87$							

Table 15. Female annuitants 1967–70: durations 1 and over (post-1956): exposed to risk and comparison of actual deaths with those expected according to the graduated table, namely:

 $log(q_x/p_x) = -2.4115886 + 1.7242068t + 1.4950480(2t^2 - 1) - 1.0500534(4t^3 - 3t)$ where t = (x - 70)/50

Age x	Exposed to risk ER _x	Graduated q_x	Actual deaths A _x	Expected deaths E _x	Deviation $z_x = A_x - E_x$	$=\frac{\mathbf{A}_{x}-\mathbf{E}_{x}}{\sqrt{\mathbf{E}_{x}(1-q)}}$	= Age (x) = x
501	11 1	·006038	1	0.67	+0·33]		50 1
511	166-5	·006132	0	1.02	-1.02		51 1
52 1	224	·006266	3	1-40	+1.60	+1.27	52 1
53 1	290.5	·006441	3	1.87	+1.13		53 1
54 <u>‡</u>	386	·006658	4	2.57	ل 1.43 +		54 1
55 <u>1</u>	513-5	·006921	2	3.55	—1·55 `	-0.84	55 <u>1</u>
56 <u>‡</u>	676-5	·007231	4	4.89	—0·89 ∫	-0.94	56 1
57 <u>1</u>	820.5	·007594	6	6.23	-0.23	-0.09	57 1
58 1	984	·008014	8	7.89	+0.11	+0.04	58 1
59 1	1,246	·008497	15	10-59	+4.41	+1.36	59 1
60]	1,813	·009049	8	16-41	-8.41	2.08	$60\frac{1}{2}$
61 1	2,497.5	009677	16	24-17	8·17	-1.67	61]
62 1	2,948.5	·010391	28	30-64	-2.64	-0-48	621
63 <u>1</u>	3,361.5	·011200	40	37-65	+2.35	+ 0-39	63 <u>1</u>
641	3,758	·012116	42	45.53	-3.53	0-53	64 <u>1</u>

89

G

Table 15 (continued).

				• (•••••••••••			
	Exposed		Actual	Expected		$A_x - E_x$	
Age	to risk	Graduated	deaths	deaths	Deviation	Z	Age
x	ER_x	q_x	$\mathbf{A}_{\mathbf{x}}$	Ex	$A_x - E_x$	$\sqrt{E_x(1-q_y)}$	x
65]	4,232-5	·013151	71	55.66	+15.34	+2.07	65 <u>1</u>
66 1	4,770	·014319	79	68·30	+ 10.70	+1.30	66]
67 1	5,082	·015637	78	79.47	-1.47	-0.17	67 1
68 1	5,314	017123	89	90.99	1.99	-0.21	$68\frac{1}{2}$
69 1	5,611	·018797	124	105·47	+18.53	+1.82	69 1
$70\frac{1}{2}$	5,821	·020682	112	120.39	8.39	-0.77	70 1
711	5,931	·022802	98	135-24	-37.24	-3.24	71]
72 1	5,950	025186	147	149-86	-2.86	-0.24	72 <u>‡</u>
73 1	5,884.5	·027862	159	163-96	- 4.96	-0.39	73 1
74 1	5,916.5	-030865	204	182-61	+21.39	+ 1 ·61	74 1
75]	5,750-5	·034229	208	196.83	11.17	10.01	75 1
75 g 76]	5,569·5	-034229	208	211-59	+ 11·17 + 5·41	+0.81	75 2 76 1
70 2 77 1		·042193	234	211-39 226-22	+ 7.78	+ 0·38 + 0·53	
781 781	5,361·5 5,173	·042193 ·046877	234 241	242·49	+ 7.78 1.49	-0.10	77 <u>1</u> 781
70명 79뒾	4,997.5	·040877 ·052086	269	242·49 260·30	+8.70	+ 0.55	
794	4,997.3	-032080	209	200.30	+ 0.10	+0.33	79 1
80 1	4,816.5	·057864	280	278.70	+1.30	+0.08	80 1
81 1	4,490.5	064256	284	288.54	-4.54	-0.28	81 1
82 1	4,137	071306	268	294.99	26.99	-1.63	82 1
83 1	3,692.5	079055	278	291.91	- 13-91	-0.85	83 1
84 1	3,287	087540	269	287-75	-18.75	-1.16	84 1
-	,						-
85 1	2.872	096794	297	277-99	+ 19.01	+1.20	85 1
$86\frac{1}{2}$	2,414.5	·106842	258	257-97	+ 0.03	0.00	861
87]	1,980	117699	255	233.04	+21.96	+1.53	87]
$88\frac{1}{2}$	1,534-5	129371	186	198-52	-12.52	- 0.95	88 <u>1</u>
89 1	1,202-5	·141852	168	170.58	-2.58	-0.21	89 <u>‡</u>
001	020	15-100	107	146.50	. 21 50		001
90 1	938	·155120	167	145.50	+21.50	+1.94	90 <u>1</u>
91 1	703	169140	111	118-91	-7.91	-0.80	91 1
92 1	541·5	·183858	110	99·56	+10.44	+1-16	92 1
93 1	398	199208	67	79·28	-12.28	-1.54	93]
94 <u>1</u>	270	215105	56	58.08	-2.08	-0.31	94 1
95불	173	231449	42	40.04	+1.96	+0.32	95 1
96 1	108	248128	27	26.80	+0.20	+0.04	96 1
97호	71.5	-265019	21	18.95	+ 2.05	+0.55	97 1
98 1	43-5	·281989	15	12.27	+2.73	+0.92	98 1
99 <u>4</u>	30-5	-298900	4	9.12	-5-12	-2.02	99 1
	34,865-5	·	5,673	5,672.96	+0.04	_	-
	- 1,000 0		0,010	-,	1004 2 Tata	1 = 2 = 50.74	

-

 $\chi^2 = \text{Total } z_x^2 = 59.74$

. . - -

٠

Annuitants' Mortality Experience, 1967-70

Table 16.	Female	annuitants	196770:	exposed to	o risk	and	actual	deaths
10010 100	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		1,0, ,0.	corposed it	1 10/0	10100	a c i maria	WC W FI FO

Age	Durati	on 1	Durati	on 2	Durati	on 3	Age
x	ERx	A _x	ER_{x}	A _x	ERx	A,	x
50 1	24	0	13-5	0	17.5	0	50 1
51 1	40.5	0	30.5	0	20	0	51 1
52]	47	0	45	0	42	3	52 1
53 1	49	1	48	1	55	0	53 1
54]	75	0	51	0	51	1	54 <u>1</u>
55 1	113	0	80-5	0	50	0	55 1
56 1	153-5	1	123-5	0	85	0	56 1
57 호	126	1	162	1	140.5	1	57 <u>‡</u>
58 1	180	1	127-5	0	169.5	1	58 1
59 1	214	1	181	2	157	2	59 1
$60\frac{1}{2}$	523·5	2	223	1	188-5	2	$60\frac{1}{2}$
611	675.5	3	525	4	244-5	2	61 🖥
62 1	482	2	684	3	525	11	62 1
63 1	521	5	488	6	685-5	7	63 1
64 <u>1</u>	557.5	4	518-5	6	490.5	6	64 1
$65\frac{1}{2}$	727-5	8	541-5	10	518·5	9	65 1
66 1	828	9	703	13	525	9	66 1
$67\frac{1}{2}$	710.5	8	777	15	697.5	15	$67\frac{1}{2}$
68 1	659-5	12	697	7	728.5	14	68 1
69 1	660.5	11	650∙5	10	695-5	14	69 <u>1</u>
70 1	730-5	17	644	17	657	12	70 1
71 1	731-5	14	685	8	619-5	6	71호
72 1	698	17	708.5	21	646-5	10	72불
73 1	663	13	692.5	18	678-5	22	73 1
74호	682	17	647	18	683-5	18	74 1
75 1	586.5	14	650-5	14	623	19	75 1
76 1	620.5	24	570-5	25	628.5	26	76]
77 <u>‡</u>	539-5	19	590-5	23	545	26	77 1
78 1	532	15	524-5	18	563-5	17	78월
79 1	473-5	25	518	19	510	32	79불
80 1	473-5	30	471	21	485	31	80 1
81 1	410	24	440-5	22	448-5	29	81 1
82 1	382-5	19	381.5	14	425	30	82]
83 1	303	25	375	25	373-5	32	83 1
841	293	24	284.5	17	327-5	31	84 1
85 1	241	22	273.5	25	260.5	22	85 1
86 1	210.5	22	211.5	24	246	29	86 1
87 1	166-5	16	174	23	175	16	87 1
88 1	105	10	1 47·5	19	141	20	88 1
89 1	105-5	12	90.5	14	115	12	89 1

			Table 16 (c	ontinued	<i>d</i>).		
Age	Durati	Duration 1		ion 2	Durati	on 3	Age
<i>x</i>	ER _x	A_{x}	ER _x	A _x	ER _x	A _x	x
90 1	61	13	90-5	14	79 ∙5	16	901
91 1	50	4	54-5	11	67.5	5	91 1
92 1	31.5	9	48	12	43	8	92 1
93 1	31-5	2	19	5	28	7	93 1
94 <u>1</u>	12.5	4	17.5	4	17.5	5	94 <u>‡</u>
95 1	7	2	10.5	3	8	3	95 1
96 1	4.5	1	5.5	1	4	0	96 <u>1</u>
97 1	0.2	0	2.5	1	5	1	97 <u>1</u>
98 1	4.5	0	1	1	3	1	98 1
99 <u>1</u>			1.5	0	2.5	0	99 1
Total	16,518	483	16,001	516	15,496-5	583	

Table 17. Female annuitants 1967-70: exposed to risk and actual deaths

			Durations	5 and	Durations		
Age	Duratio	on 4	over (post		over (pre-		Age
x	ER_x	A_x	ER_x	A_x	ER_x	A_x	x
50 <u>1</u>	13.5	0	42.5	1	27.5	1	50 1
51 1	18.5	0	57	0	38-5	0	51 1
52 1	23.5	0	66-5	0	48.5	0	52 <u>1</u>
53 1	48.5	1	90	0	67	0	53 1
54 1	64	1	145	2	84.5	0	54 1
55 1	54.5	0	215.5	2	96	1	551
56 1	58	1	256.5	2	122.5	0	56]
57 1	89	0	303	3	149	1	571
581	157	2	350	4	204.5	3	58 1
59 1	187-5	1	506-5	9	245	3	59 1
60 1	184.5	0	693-5	3	286	0	$60\frac{1}{2}$
61 1	205.5	1	847	6	356-5	3	61 1
62 1	261.5	3	996	9	415	5	62 1
63 1	531·5	6	1,135-5	16	495	4	63 1
64]	696	12	1,495-5	14	580	13	64 1
65 1	488	6	1,957	38	665-5	19	65 1
66 1	513-5	12	2,200.5	36	757-5	6	$66\frac{1}{2}$
67 1	519	10	2,378	30	893-5	17	67 1
68]	680	9	2,549	47	1,040.5	25	68 1
69 1	743	22	2,861.5	67	1,183	29	69 1
70 <u>1</u>	672	8	3,117.5	58	1,334.5	30	70 1
711	649.5	16	3,245.5	54	1,559-5	47	71호
72 1	634	12	3,263	87	1,828.5	78	72 1
731	631.5	20	3,219	86	2,132.5	77	73 1
74 1	680	20	3,224	131	2,426.5	107	74 1

Table 17 (continued).

			Duration	ns 5 and	Duration	is 5 and	
Age	Durati	on 4	over (po	st-1956)	over (pr	e-1957)	Age
x	ER _x	A _x	ER _x	A_x	ER _x	A _x	x
75불	660.5	28	3,230	133	2,707	131	75]
76 1	607.5	25	3,142-5	117	2,971.5	170	76 1
77 1	612	27	3,074.5	139	3,194	175	771
78 1	534.5	32	3,018.5	159	3,427.5	196	78 1
79 1	550	31	2,946	162	3,663	276	79 <u>1</u>
80 1	496	30	2,891	168	3,747-5	256	80 1
81 1	440	29	2,751.5	180	3,827-5	297	81 1
82 1	413-5	27	2,534.5	178	3,885	356	82 1
83 1	384.5	21	2,256.5	175	3,860-5	354	83 1
84불	342	29	2,040	168	3,825	397	84 <u>‡</u>
85 1	276-5	31	1,820.5	197	3,682	481	85 1
86 <u>1</u>	239	26	1,507.5	157	3,419	3 93	86 1
$87\frac{1}{2}$	209-5	29	1,255	171	3,196	486	87 1
88 1	145.5	16	995-5	121	2,787	426	88 1
89 1	120	19	771-5	111	2,373	397	89 <u>‡</u>
90 <u>1</u>	93-5	11	613·5	113	2,000	367	90៛
91 1	63	12	468	79	1,643.5	340	911
92 1	58	12	361	69	1,314.5	287	92 1
93 1	40.5	5	279	48	1,055-5	262	93 1
94 1	24.5	5	198	38	769	204	94 1
95 <u>1</u>	14	5	133-5	29	574-5	141	95률
96 1	6	3	88	22	404	92	96 1
97 1	3	1	60.5	18	284	78	97 1
98 1	5-5	1	29.5	12	197-5	72	98 1
99 <u>1</u>	3	0	23.5	4	124.5	30	991
Total	15,145.5	618	71,704.5	3,473	75,969-5	7,133	

-

Table 18. Male annuitants 1967–70: graduation parameters, test statistics and values of q_x for graduations of data for durations 0 and 1 and over (post-1956) using two and three parameters

Formula: log	$g\left(q_{x}/p_{x}\right) = A +$	$Bt + C(2t^2 - 1)$	where $t = (x - t)$	- 70)/50
Experience	Durat	ion 0	Durations 1	and over
Graduation	2-pars	3-pars	2-pars	3-pars
Ages used (nearest)	51-96	51-96	51-100	51-100
Parameters				
A	- 3.6389	-2-5372	-3.2526	-2.8294
В	+ 4.1783	+3.7167	+ 4-4977	+4.2391
С		+1.1454	_	+0.4250
Actual deaths	256	256	3,338	3,338
$\Sigma(A-E)$	0.00	0.00	0-02	0.01
$\Sigma\Sigma(A-E)$	0-01	-0.03	0.62	-0.12
-L'	1,080.7	1,080.0	11,752.3	11,751-2
Using single ages:				
Runs, r	13	13	23	21
t(r)	3.27	3-25	0.82	1.39
$t(\rho)$	1.67	1-42	1.66	1.62
Using grouped ages:				
χ^2	29.5	27.4	64.2	61.5
Degrees of freedom	27	27	39	39
$t(\chi^2)$	0.40	0.12	2-56	2.31
$10^5 \times q_x$: Ages				
50	492	814	636	805
55	745	1,004	993	1,155
60	1,127	1,294	1,549	1,682
65	1,701	1,744	2,407	2,485
70	2,561	2,454	3,724	3,717
75	3,838	3,598	5,717	5,615
80	5,715	5,480	8,683	8,529
85	8,429	8,616	12,974	12,942
90	12,265	13,831	18,947	19,424
95	17,512	22,243	26,821	28,449
100	24,381	34,798	36,495	40,014

Values of q_x which are in a region where actual deaths at each age are generally less than 5 are shown in italics.

94

$\log (q_x/p_x) = -3.0300040 + 4.1702090 (x - 70)/50$							
Exposed		Actual	Expected		$z_x =$		
to risk	Graduated	deaths	deaths	Deviation	$A_x - E_x$	Age	
ER_x	q_{\star}	A_x	\mathbf{E}_{x}	$A_x - E_x$	$\sqrt{\mathbf{E}_{\mathbf{x}}(1-q_{\mathbf{x}})}$	x	
7.5		0	0.04	0.04)		50]	
						51±	
				I		5212	
						53월	
						54월	
455	-00/145	1	0.33	+0.07	1 2.07	55 <u>1</u>	
50	·007763	1	0.39	+ 0.61	T 2'97	225	
						56]	
						57ኔ	
						581	
						59 1	
2110	410011	0	200	1202)		0,7	
365	·011742	5	4.29	+0·71)	o	60 1	
					-0.57	61 1	
	-		-			62 ¹ / ₂	
			-		-0.42	63 1	
					-0.77	64 1	
•		Ū				÷ · 2	
776	·017724	10	13.75	-3.75	-1.02	$65\frac{1}{2}$	
399-5	·019239	10	7.69	+ 2.31	+0.84	$66\frac{1}{2}$	
362.5	·020881	9	7.57	+1.43	+0.53	67]	
309-5	·022660	7	7.01	0.01	-0.01	$68\frac{1}{2}$	
328	·024586	4	8.06	-4.06	-1-45	69 1	
						70 1	
						71 1	
280.5	·031372	9	8.80	+0.20	+0.07	72 1	
253	·034013	10	8.61	+ 1·39	+0.48	73 1	
227	·036868	10	8.37	+1.63	+0.57	$74\frac{1}{2}$	
					. –	75호	
						76 1	
						77월	
						78월	
207	·054940	8	11.37	-3.37	-1.03	79 1	
1/2	050444	~	0.70	0.00	0.33	001	
						801	
						81 1	
						82 1	
						83 <u>৳</u>	
95	-081123	14	$7 \cdot 1$	+ 6.29	+2.36	84 1	
	Exposed to risk ER x 7-5 13-5 22-5 24-5 45-5 50 59 81 114-5 217-5 365 255-5 239 330-5 642 776 399-5 362-5 309-5 328 339-5 292-5 280-5	Exposed to riskGraduated q_x 7.5 005125 13.5 005570 22.5 006052 24.5 006576 45.5 007145 50 007763 59 008434 81 009162 114.5 009953 217.5 010811 365 011742 255.5 012752 239 013849 330.5 015037 642 016327 776 017724 399.5 -02660 328 024586 339.5 026672 292.5 028930 280.5 031372 253 034013 227 039953 242 043285 259 046880 230 050759 207 054940 163 059444 151.5 -064291 142 069505 117 075108	Exposed to risk ER.xActual Graduated deaths q_x Actual deaths q_x 7.5 005125 013.5 005570 022.5 006052 024.5 006576 045.5 007145 150 007763 159 008434 181 009162 1114.5 009953 4217.5 011742 5255.5 012752 1239 013849 4330.5 015037 3642 016327 8776 017724 10399.5 -01239 10362.5 022660 7328 024586 4339.5 0226672 8292.5 023930 10280.5 031372 9253 034013 10227 039953 12242 043285 8259 046880 11230 050759 11207 059444 9151.5 -064291 4142 069505 13117 075108 9	Exposed to risk R_x Actual Expected deaths q_x Actual Expected deaths q_x 7.5.005125.0.0.0413.5.005570.0.0.0822.5.006052.0.0.1424.5.006576.0.0.1645.5.007145.1.0.3350.007763.1.0.3959.008434.1.0.5081.009162.1.0.74114.5.009953.4.1.14217.5.010811.5.2.35365.011742.5.4.29255.5.012752.1.3.26239.013849.4.3.31330.5.015037.3.4.97642.016327.8.10.48776.017724.10.13.75399.5.019239.10.769362.5.020881.9.757309.5.022660.7.701328.024586.4.8.06239.5.028930.0.8.46280.5.031372.9.8.80253.034013.10.8.61227.7.039953.12.10.99242.043285.8.10.47259.046880.11.12.14230.050759.11.1.67207.054940.8.11.37163.059444.9.9.69151.5.064291.4.9.74	Exposed to risk R_x Actual Expected deaths q_x Deviation $A_x - E_x$ 7.5-00512500.04 -0.04 13.5-00557000.08 -0.08 22.5-00605200.14 -0.14 24.5-00657600.16 -0.16 45.5-00714510.33 $+0.67$ 50-00776310.39 $+0.61$ 59-00843410.50 $+0.50$ 81-00916210.74 $+0.26$ 114.5-00995341.14 $+2.86$ 217.5-01081152.35 $+2.65$ 365-01174254.29 $+0.71$ 255.5-01275213.26 -2.26 239-01384943.31 $+0.69$ 330.5-0150373 4.97 -1.97 642-016327810.48 -2.48 776-0177241013.75 -3.75 399.5-01923910 7.69 $+2.31$ 362.5-0208819 7.57 $+1.43$ 309.5-0226607 7.01 -0.01 228-0245864 8.06 -4.06 339.5-0266728 9.06 -1.06 292.5-02893010 8.46 $+1.54$ 280.5-031372 9 8.80 $+0.20$ 253-03401310 8.61 $+1.39$ 227-03686810 </td <td>$\begin{array}{c c c c c c c c c c c c c c c c c c c$</td>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Table 19. Male annuitants 1967–70: duration 0: exposed to risk and comparison of actual deaths with those expected according to the graduated table, namely: $\log (a_{\star}/p_{\star}) = -3.6388848 + 4.1782890 (x - 70)/50$

Exposed		Actual	Expected		$z_x =$	
to risk	Graduated	deaths	deaths	Deviation	$A_x - E_x$	Age
ER _x	q_x	A_x	E _x	$A_x - E_x$	$\sqrt{\mathrm{E}_{\mathbf{x}}(1-q_{\mathbf{x}})}$	x
73	-087575	8	6.39	+1.61	+0.67	85불
59	·094486	6	5.57	+ 0-43	+0.19	86 1
53-5	·101882	7	5.45	+1-55	+0.70	87 1
31.5	·1 097 87	4	3.46	+0·54 <u></u>)		88 1
28	·118225	4	3.31	+0.69 ∫	+0.20	89 1
.						
		1		-2.05		90호
14.5	·136789	1	1 ·9 8	0.98		91 1
12.5	·146959	1	1.84	0.84	0.07	92 1
10	·157747	3	1-58	+1·42 [↑]	~0.81	93 1
6	·169170	1	1.02	-0.02		94 1
2	-181242	0	0.36	– 0·36 J		95 <u>1</u>
8,231	—	256	256.00	0.00		
				$\chi^2 = \text{Total } z_s$	$c^2 = 29.46$	
	to risk ER _x 73 59 53·5 31·5 28 24 14·5 12·5 10 6 2	to riskGraduated ER_x q_x 73 $\cdot 087575$ 59 $\cdot 094486$ 53.5 $\cdot 101882$ 31.5 $\cdot 109787$ 28 $\cdot 118225$ 24 $\cdot 127218$ 14.5 $\cdot 136789$ 12.5 $\cdot 146959$ 10 $\cdot 157747$ 6 $\cdot 169170$ 2 $\cdot 181242$	to riskGraduated deaths ER_x q_x A_x 73-087575859-094486653.5-101882731.5-109787428-118225424-127218114.5-136789112.5-146959110-15774736-16917012-1812420	to risk ER_xGraduated deaths q_x deaths Ex73 -087575 8 $6\cdot39$ 59 -094486 6 $5\cdot57$ 53·5 $\cdot101882$ 7 $5\cdot45$ 31·5 $\cdot109787$ 4 $3\cdot46$ 28 $\cdot118225$ 4 $3\cdot31$ 24 $\cdot127218$ 1 $3\cdot05$ 14·5 $\cdot136789$ 1 $1\cdot98$ 12·5 $\cdot146959$ 1 $1\cdot84$ 10 $\cdot157747$ 3 $1\cdot58$ 6 $\cdot169170$ 1 $1\cdot02$ 2 $\cdot181242$ 0 $0\cdot36$ 8,231—256256\cdot00	to riskGraduated deathsdeathsDeviation ER_x q_x A_x E_x $A_x - E_x$ 73 $\cdot 087575$ 8 $6 \cdot 39$ $+ 1 \cdot 61$ 59 $\cdot 094486$ 6 $5 \cdot 57$ $+ 0 \cdot 43$ 53 \cdot 5 $\cdot 101882$ 7 $5 \cdot 45$ $+ 1 \cdot 55$ $31 \cdot 5$ $\cdot 109787$ 4 $3 \cdot 46$ $+ 0 \cdot 54$ 28 $\cdot 118225$ 4 $3 \cdot 31$ $+ 0 \cdot 69$ 24 $\cdot 127218$ 1 $3 \cdot 05$ $- 2 \cdot 05$ $14 \cdot 5$ $\cdot 136789$ 1 $1 \cdot 98$ $- 0 \cdot 98$ $12 \cdot 5$ $\cdot 146959$ 1 $1 \cdot 84$ $- 0 \cdot 84$ 10 $\cdot 157747$ 3 $1 \cdot 58$ $+ 1 \cdot 42$ 6 $\cdot 169170$ 1 $1 \cdot 02$ $- 0 \cdot 02$ 2 $\cdot 181242$ 0 $0 \cdot 36$ $- 0 \cdot 36$ 8,231- 256 $256 \cdot 00$ $0 \cdot 00$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 19 (continued).

Table 20. Male annuitants 1967–70: durations 1 and over (post-1956) exposed to risk and comparison of actual deaths with those expected according to the graduated table, namely:

$\log\left(q_x/p_x\right) = -$	-3.2525555+	4.4976687 ((x-70)/50
--------------------------------	-------------	-------------	-----------

Age x	Exposed to risk ER _x	Graduated 9*	Actual deaths A _x	Expected deaths E _x	Deviation $A_x - E_x$	$z_x = \frac{A_x - E_x}{\sqrt{E_x(1 - q_x)}}$	Age x
50 1	50	·006649	1	0.33	+0.67		50 1
51 1	72	007270	3	0.52	+ 2.48		51 1
52 1	82	-007949	1	0.65	+0·35 [10.04	52]
53 1	112-5	·008691	0	0.98	0·98	+0.64	53 1
54 <u>4</u>	133	·009501	1	1.26	-0.26		54 1
55 <u>1</u> 56 <u>1</u>	169-5 220	-010386 -011352	1 7	1∙76 2∙50	-0.76 +4.50	+1-26	55 <u>‡</u> 56 <u>‡</u>
57 <u>‡</u>	278.5	-012407	2	3.46	—1·46 ∫		57 1
58 <u>‡</u>	368-5	·013559	5	5.00	0-00 ጊ	+0.42	58 1
59]	509	·014817	9	7.54	+1.46 ∫	+042	59 1
60½ 61½ 62½ 63½ 63½	743.5 1,071.5 1,225 1,339 1,563.5	·016189 ·017686 ·019318 ·021098 ·023038	7 16 26 24 22	12-04 18-95 23-66 28-25 36-02	-5.04 -2.95 +2.34 -4.25 -14.02	1-46 0-68 +-0-48 0-81 2-36	60 <u>1</u> 61 <u>1</u> 62 <u>1</u> 63 <u>1</u> 63 <u>1</u> 64 <u>1</u>

Annuitants' Mortality Experience, 1967-70

. _____. . . .

- - -

Table 20 (continued).

		-		. ($z_x =$	
	Exposed			Expected		$A_x = A_x - E_x$	
Age	to risk	Graduated	deaths	deaths	Deviation	$A_x - D_x$	Age
x	ER_x	q_{\star}	A_x	$\mathbf{E}_{\mathbf{x}}$	$A_x - E_x$	$\sqrt{\mathrm{E}_x(1-q_x)}$	x
65 <u>1</u>	2,081.5	-025152	58	52-35	+ 5.65	+ 0·79	65]
66 1	2,574	·027454	81	70.67	+10.33	+1.25	66 1
67 1	2,576	·029961	75	77 ·18	-2.18	-0.25	67 1
$68\frac{1}{2}$	2,573-5	·032689	95	84.12	+ 10.88	+1.21	68 <u>‡</u>
691	2,566	·035656	101	91-49	+9.51	+1.01	$69\frac{1}{2}$
$70\frac{1}{2}$	2,509	·038882	108	97-55	+10.45	+1.08	70불
711	2,507	·042386	95	106-26	-11.26	-1.12	71호
$72\frac{1}{2}$	2,487.5	·046191	121	1 14·9 0	+6.10	+0.28	72불
73 1	2,384	·050320	122	119·96	+2.04	+0.19	73 1
74 1	2,351-5	·054797	128	128.86	-0.86	-0.08	74불
75 <u>1</u>	2,277-5	·059647	138	135-85	+2.15	+0.19	75 1
76]	2,161	·064897	144	140-24	+3.76	+0.33	76 1
77 1	2,019.5	-070574	140	142.52	-2.52	0-22	77 <u>1</u>
78 <u>1</u>	1,938-5	·076707	138	148-70	- 10.70	- 0-91	78 1
791	1,823	·083325	147	1 51·9 0	-4.90	-0.42	79ఓ
001	1 704 6	000450	1.41	156.00	10.00	1.26	001
80 1	1,724.5	·090459	141	156.00	-15.00	-1.26	801
81±	1,601·5	·098138	123	157·17	~34.17	-2.87	81 1
82 1	1,435	·106392	155	152.67	+2.33	+0.20	821
83 1	1,271	·115252	159	146.48	+12.52	+1.10	83 1
84 <u>1</u>	1,091	·124746	132	136-10	-4.10	-0.38	84 1
85 1	967-5	·134904	136	130-52	+ 5-48	+0.52	85 1
86 1	839-5	·145751	143	122.36	+20.64	+2.02	86 <u>1</u>
87 1	682	·157311	120	107-29	+12.71	+1.34	87 1
88 1	553-5	·169607	80	93.88	-13.88	-1.57	881
89 1	457-5	-182655	77	83.56	-6.56	-0.79	89 <u>1</u>
							-
901	342.5	·196469	51	67-29	-16.29	-2-22	90호
91‡	275.5	·211058	53	58.15	- 5.15	-0.76	91호
92 1	211.5	·226426	65	47.89	+17.11	+2.81	$92\frac{1}{2}$
93 1	118	-242568	40	28.62	+11.38	+ 2.44	93]
94 <u>1</u>	75	·259475	25	19-46	+5.54	+1-46	94 1
95 1	42-5	·277130	9	11.78	-2.78	-0.95	95 <u>‡</u>
95 2 96 1	23-5	·295506	5	6·94	-2.78 -1.94	-0.93 -0.88	93 2 96 1
90 3 97 1	23·3 11·5	·314570	3	3.62	-1.94 0.62]	-0.00	90± 971
98 1	6	·314370	3	3·02 2·01	+0.99	+0.81	97 <u>\$</u> 981
99 1	2	·354588	2	0·71	+1.29	+ +0.01	98± 99±
					-		778
Total	54,498		3,338	3,337.98	+0.05		

 $\chi^2 = \text{Total } z_x^2 = 64.21$

...........

Table 21. Male annuitants 1967-70: exposed to risk and actual deaths

Age	Durati		Duratio	on 2	Duratio		Age
x	ER_{x}	A _x	ER _x	A_x	ER_x	A _x	x
50 1	8	0	5-5	0	8	0	50 1
51 1	9	0	11	0	5	2	51 1
52 1	15-5	0	11-5	0	11.5	1	52]
53 1	24.5	0	19-5	0	16	0	53 1
54 <u>1</u>	24.5	0	27.5	0	21.5	0	54 <u>1</u>
55 1	45.5	0	24	0	27	1	55 1
56 1	53-5	3	42.5	2	24.5	0	56 1
57 <u>1</u>	59-5	1	58	0	39-5	1	57 1
581	81	1	60.5	1	65	1	58 1
59 1	125-5	1	83∙5	2	63	1	59 <u>‡</u>
60 1	236	3	123-5	0	92	0	60 1
61 <u>1</u>	362	5	226	2	113-5	0	611
62 <u>1</u>	252	3	326	13	212.5	3	62 1
63 1	232	2	243	8	287	4	63 1
64 <u>1</u>	334.5	1	229	5	222-5	5	64 1
65 1	623-5	22	313	3	223-5	15	65 1
66 1	735	22	538-5	23	275	5	66 1
$67\frac{1}{2}$	396-5	10	618.5	13	464	24	$67\frac{1}{2}$
68 1	365	11	376	11	537	24	68 1
69 1	313	17	328.5	12	344-5	12	69 1
70 1	319	14	273	6	275	7	70 1
71]	332.5	11	285	11	255-5	8	71 1
72 <u>1</u>	274	8	322	19	253.5	11	72 1
73]	275-5	9	242	13	283	10	73 1
74 1	236-5	8	266	10	221	9	74 1
75 <u>1</u>	222.5	14	213	14	248·5	14	75 <u>1</u>
76 1	252-5	13	205	11	190	8	76 1
77 1	249·5	19	230-5	12	190-5	12	77 1
78]	259-5	20	238-5	25	209.5	17	78 1
79 1	214	9	231	15	207	11	79 1
80 1	211	10	194	17	1 92	11	80 1
81 1	159-5	12	197-5	13	162-5	11	81 1
82 1	156 5	14	150-5	14	175-5	16	82]
83 1	120	12	143	17	131	11	83 1
84 1	104	12	96-5	13	117	3	84 1
851	84	9	92 50 1	17	86	12	85 1
86 1	70	6	70-5	12	84.5	9	86 1
87 1	52	7	68.5	10	58.5	10	871
88 1	44·5	6	43	8	51	3	88 1
89 <u>1</u>	28	5	37.5	3	39-5	5	89 <u>1</u>

Sec. 5 -

98

Annuitants' Mortality Experience, 1967–70

		Т	able 21 (<i>c</i>	ontinue	<i>ed</i>).		
Age	Durati	on 1	Durati	on 2	Durati	on 3	Age
x	ER _x	A_x	ER_x	A _x	ER _x	A _x	x
90 1	19	2	21.5	1	42.5	2	90 1
91 1	22.5	4	19	2	23	6	91 1
92 1	15	8	14	3	17	5	92 1
93 1	10	2	10	3	10.5	4	93 1
94 1	4.5	1	3.5	1	6	0	94 1
95 <u>1</u>	2.5	1	4.5	3	2	1	95 1
96 1	1.5	1	1.5	0	1	0	961
97 1					0-5	0	97 1
Total	8,036	339	7,338.5	368	6,586	315	

Table 22. Male annuitants 1967-70: exposed to risk and actual deaths

			Duration		Duration		
Age	Durati		over (pos		over (pre		Age
x	ER _x	A_x	ER,	A_x	ER_x	A_x	x
50 1	6	0	22.5	1	13	1	50 1
51 <u>1</u>	10.5	0	36.5	1	14.5	0	51 1
52 1	2.5	0	41	0	14.5	0	52 1
53]	11.5	0	41	0	24-5	0	53 1
541	17	0	42.5	1	33	0	$54\frac{1}{2}$
55 <u>1</u>	22	0	51	0	35.5	0	55 <u>1</u>
56 1	24·5	1	75	1	51	2	56 1
57 1	27.5	0	94	0	52	0	57 1
58 <u>1</u>	44	1	118	1	53	0	58 1
59 <u>1</u>	73-5	0	163-5	5	55-5	2	59 1
60 1	66	1	226	3	53	2	$60\frac{1}{2}$
61 1	95.5	0	274.5	9	64	8	61 <u>1</u>
62 <u>1</u>	103-5	1	331	6	76-5	2	62]
63 1	209-5	3	367-5	7	100	2	63 1
64 1	267.5	4	510	7	119-5	3	64 1
65 1	210.5	4	711	14	137	13	65 <u>1</u>
66]	208	8	817-5	23	146.5	6	66 1
67 1	234	9	863	19	156	3	67 1
$68\frac{1}{2}$	388	11	907-5	38	182	20	68 1
69 1	489.5	14	1,090-5	46	181-5	15	69 1
70 <u>1</u>	315	13	1,327	68	187	10	70 1
71 1	256.5	12	1,377-5	53	205-5	10	71]
72 1	241.5	10	1,396-5	73	251-5	15	$72\frac{1}{2}$
73 1	240	15	1,343-5	75	297	15	73 1
74]	258-5	9	1,369•5	92	354.5	29	74 <u>‡</u>

99

-

Table 22 (continued).

				ns 5 and		ns 5 and	
Age	Durati		over (po		over (pr	e-1957)	Age
x	ER_{x}	A _x	ER_x	A _x	ER_x	A _x	x
75 <u></u> ₽	211	11	1,382-5	85	400.5	30	75]
76]	228·5	18	1,285	94	461	45	76 1
77불	186	13	1,163	84	518	42	77 <u>1</u>
78 1	193	13	1,038	63	564.5	49	$78\frac{1}{2}$
79 1	185.5	15	985-5	97	601.5	60	79 1
80 1	18 0·5	13	947	90	615-5	75	80 1
81 1	130 5	13	908	74	619	68	802 81 1
82 1	130	11	822.5	100	653.5	92	82 1
83 1	151	19	726	100	627	95	83 1
84 1	121.5	21	652	83	600·5	79	84 1
042	121 5	21	054	05	000 5	19	042
851	106-5	11	599	87	570-5	96	85 <u>1</u>
86 1	77	17	537.5	99	482	104	86 1
87 1	75.5	10	427.5	83	426	69	87]
88]	44·5	6	370-5	57	355-5	78	88 1
89 <u>‡</u>	52.5	4	300	60	278	57	89 <u>‡</u>
90 1	39-5	3	220	43	234	55	90 1
91 1	43	6	168	35	186	34	91 1
92 1	22	6	143.5	43	168	61	92 1
93 1	6.5	2	81	29	111.5	44	93 1
94 1	8	2	53	21	94.5	33	94 <u>1</u>
051		4	20	•		17	051
95 <u>1</u>	4.5	1	29	3	56	16	95 <u>1</u>
96 1	0.5	0	19	4	35.5	10	96 1
97 1	1.5	0	9·5	3	24	4	97 <u>1</u>
98 <u>1</u>	0.5	0	5.5	3	18	6	98 <u>1</u>
99 <u>1</u>			2	2	9.5	4	99 <u>1</u>
Totals	6,065.5	331	26,472	1,985	11,568	1,464	

*

Annuitants' Mortality Experience, 1967–70

Table 23. aeg	196770:	values of	$q_{[x]}$ and q_x
---------------	---------	-----------	---------------------

			J. Vances of q		
	Ma		Fem	Durations	
	Duration 0	Durations 1 and over	Duration 0	1 and over	4
Age					Age x
x	$q_{[x]}$	q_{\star}	$q_{[x]}$	q _x	
20	·000629	-000889	·000163	·000328	20
21	-000595	·000841	·000160	-000323	21
22	·000564	·000797	·000163	·000328	22
23	·000536	·000758	.000171	·000343	23
24	·000511	·000724	·000180	·000363	24
25	·000491	·000695	·000188	·000378	25
26	·000475	000672	·000194	-000390	26
27	·000463	000656	-000198	·000398	27
28	000457	000647	·000199	·000401	28
29	·000456	·000646	·000204	·000410	29
30	000462	000654	.000212	·000426	30
31	000474	000671	-000223	·000448	31
32	·000494	000699	·000238	·000478	32
33	000522	·000738	-000257	·000517	33
34	·000558	·000790	·000281	·000566	34
35	·000605	·000856	-000311	·000626	35
36	000662	·000937	·000346	·000697	36
37	·000731	001034	-000388	·000780	37
38	000812	001150	·000435	·000875	38
39	·000908	001285	·000489	000984	39
40	·001020	·001443	-000549	·001105	40
41	·001148	·001624	·000615	·001238	41
42	·001294	·001831	-000687	·001382	42
43	001461	002068	-000764	·001537	43
44	·001650	002335	·000846	·001703	44
45	·001864	·002637	-000933	·001877	45
46	·002104	·002977	-001024	·002060	46
47	.002373	·003358	·001119	·002253	47
48	·002674	·003784	-001219	·002454	48
49	·003010	·004259	-001325	·002666	49
50	·003384	·004789	-001436	·002891	50
51	-003803	·005382	·001560	·003139	51
52	·004283	·006061	·001711	·003443	52
53	·004837	·006845	·001901	·003826	53
54	005471	007742	·002133	·004294	54
55	·006187	·008754	·002406	·004842	55
56	006979	·009876	-002713	·005461	56
57	·007842	·011097	003049	·006137	57
58	.008769	012408	·003406	·006855	58
59	·009752	·013800	·003777	·007602	59

- ×

Table 23 (continued).

	Mal	es	Fema	les	
		Durations		Durations	
Age	Duration 0	1 and over	Duration 0	1 and over	Age
x	$q_{[x]}$	q_x	$q_{[x]}$	q_x	x
60	·010788	·015266	·004156	·008365	60
61	·011880	·016810	·004542	·009141	61
62	·013032	·018442	·004936	009933	62
63	·014260	020179	·005345	·010758	63
64	-015580	·022046	·005784	·011641	64
65	·01701140	·02407240	·00626935	·01261751	65
66	·01846668	·02627863	-00708228	·01371712	66
67	·02004392	·02868112	·00799976	·01495816	67
68	·02175288	·03129620	·00903502	-01635778	68
69	·02360403	·03414133	-01020288	·01793516	69
70	·02560860	-03723517	·01151994	·01971166	70
71	·02777856	·04059758	·01300478	·02171098	71
72	·03012671	·04424967	·01467816	·02395933	72
73	03266668	·04821379	·01656326	·02648544	73
74	·03541298	·05251352	·01868586	·02932074	74
75	03838100	·05717367	·02107464	·03249925	75
76	·04158704	·06222021	·02376141	·03605763	76
77	04504835	06768022	·02678134	·04003492	77
78	·04878308	·07358177	·03017322	· 04 447237	78
79	·05281032	07995378	03397969	·04941296	79
80	05715004	·08682589	·03824742	·05490085	80
81	06182311	· 094228 16	·04302729	·06098067	81
82	06685120	10219088	·04837447	·06769657	82
83	·07225673	·11074423	·05434842	·07509107	83
84	·07806277	·11991786	·06101282	·08320371	84
85	·08429296	·12974053	·06843529	·09206954	85
86	·09097132	·14023958	·076288	·10171744	86
87	09812210	·15144041	·084126	11216829	87
88	10576956	16336584	-092575	·12343316	88
89	·11393775	·17603556	-101634	·13551151	89
90	12265022	·18946534	·111292	·14838957	90
91	·13192971	·20366643	·121529	·16203894	91
92	·14179780	·21864482	·132312	·17641559	92
93	15227453	·23440052	·143595	·19145935	93
94	16337797	·25092698	-155320	·20709392	94
95	·17512378	·26821043	·167421	·22322755	95
96	·18752477	·28622946	-179816	·23975422	96
97	·20059035	·30495457	·192417	·25655555	97
98	·21432613	·32434803	·205127	·27350301	98
99	·22873336	·34436375	·217846	·29046072	99

1

Annuitants' Mortality Experience, 1967-70

	Mal	es	Females			
		Durations		Durations		
Age	Duration 0	1 and over	Duration 0	1 and over	Age	
x	$q_{1,x1}$	q_x	$q_{[x]}$	q_x	x	
100	24380853	36494748	·230466	·30728820	100	
101		38603713		32384339	101	
102		•40756336		·33998542	102	
103		·42945033		-35557708	103	
104		·45161668		·37048698	104	
105		•47397669		·38459117	105	
106		·49644156		·39777420	106	
107		51892080		·40992974	107	
108		·54132371		·42096062	108	
109		-56356079		·43077847	109	
110		·58554521		·43930308	110	
111		60719409		·44646141	111	
112		·62842974		·45218655	112	
113		·64918065		45641662	113	
114		-66938238		·45909381	114	

Table 23 (continued).

Table 24. aeg 1967-70 tables for annuitants: comparison of rates

	Select as percentage of		Females as		
	Ulti	mate	of I		
Age	Males	Females	Select	Ultimate	Age
20	70.7	49-7	25.9	36-8	20
25	70.7	49-7	38-2	54-4	25
30	70.7	49.7	45-8	65-1	30
35	70.7	49.7	51-4	73-1	35
40	70-7	49.7	53-8	76.6	40
45	70-7	49.7	50-0	71-2	45
50	70.7	49.7	42.4	60.4	50
55	70.7	49•7	38-9	55-3	55
60	70.7	49•7	38-5	54.8	60
65	70.7	49-7	36-9	52.4	65
70	68-8	58.4	45 ∙0	52-9	70
75	67.1	64.8	54-9	56-8	75
80	65.8	69·7	66-9	63-2	80
85	65-0	74·3	81-2	71-0	85
90	64.7	75·0	90.7	78.3	90
95	65-3	75 ·0	95-6	83-2	95
100	66-8	75-0	94.5	84-2	100

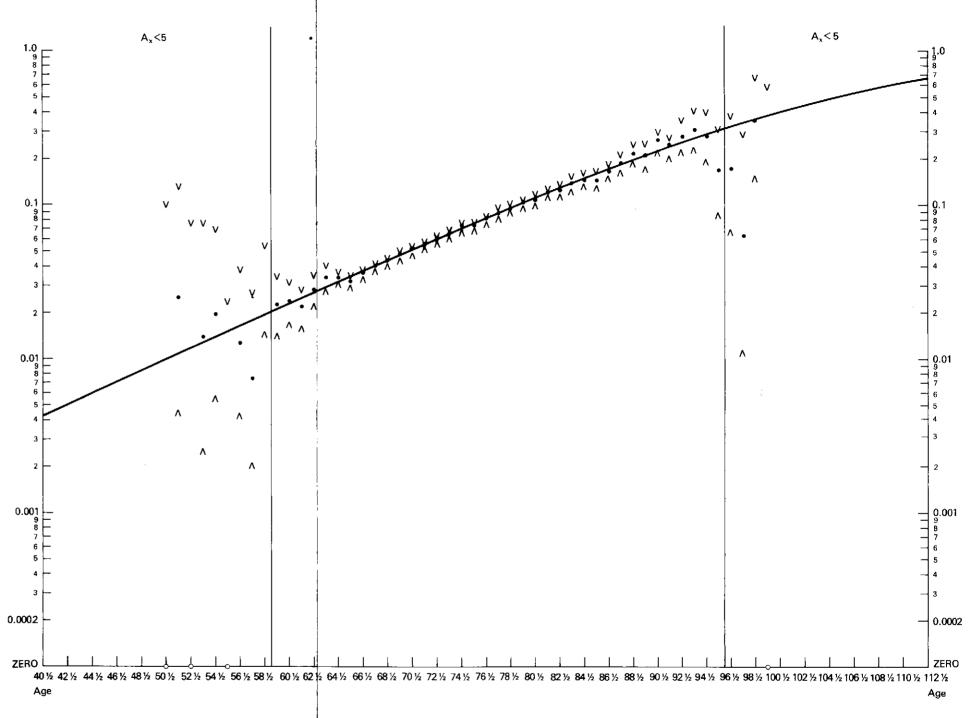
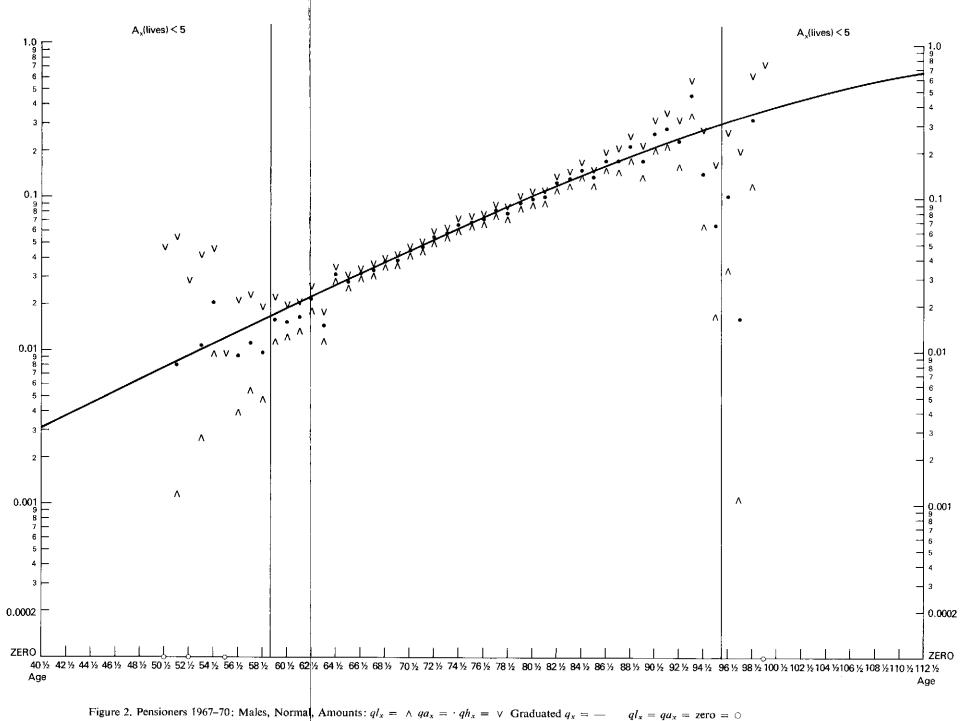



Figure 1. Pensioners 1967–70: Males, Normal, Lives: $ql_x = \wedge qa_x = \cdot qh_x = \vee$ Graduated $q_x = - ql_x = qa_x = zero = 0$

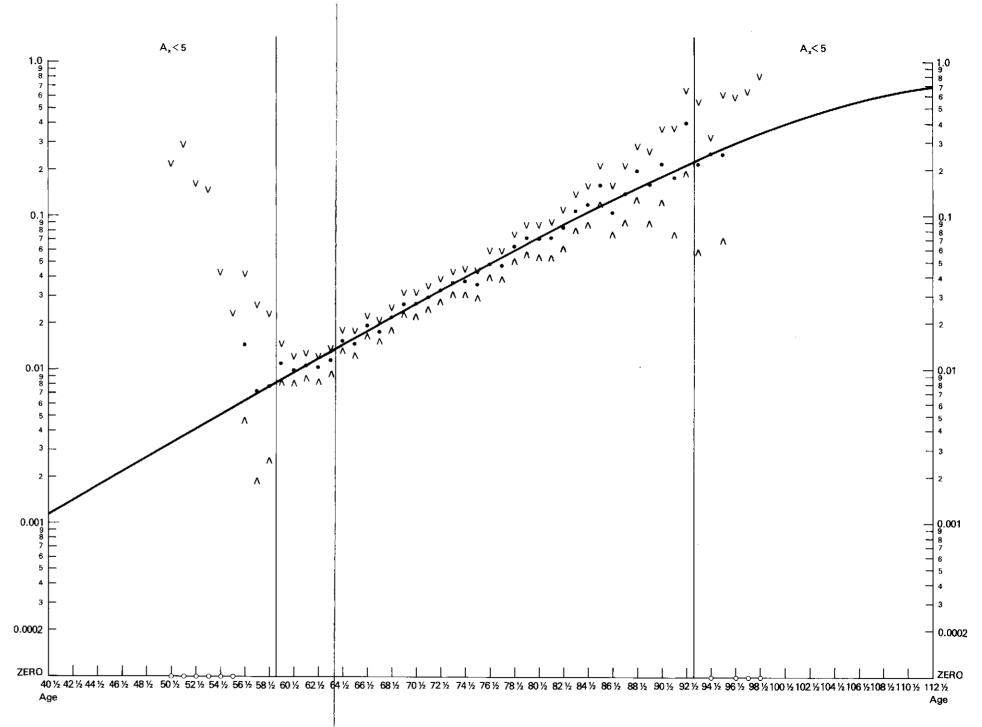


Figure 3. Pensioners 1967-70: Females, Normal, Lives: $ql_x = \wedge qa_x = \cdot qh_x = \vee$ Graduated $q_x = - \cdot ql_x = qa_x = zero = \circ$

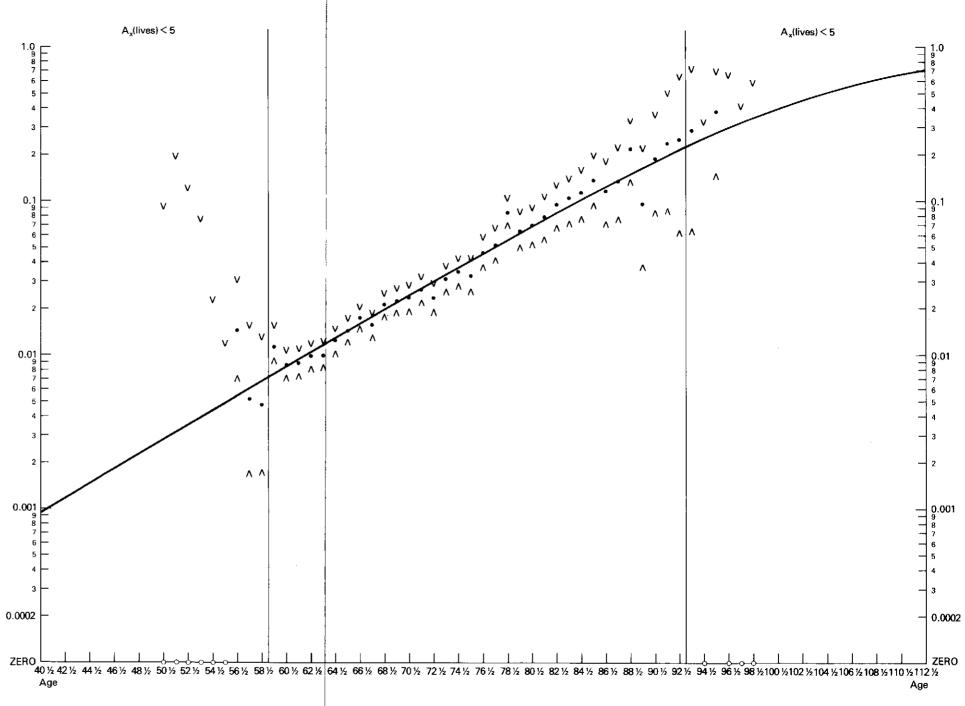
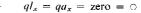



Figure 4. Pensioners 1967–70: Females, Normal Amounts: $ql_x = \wedge qa_x = \cdot qh_x = \vee$ Graduated $q_x = -$

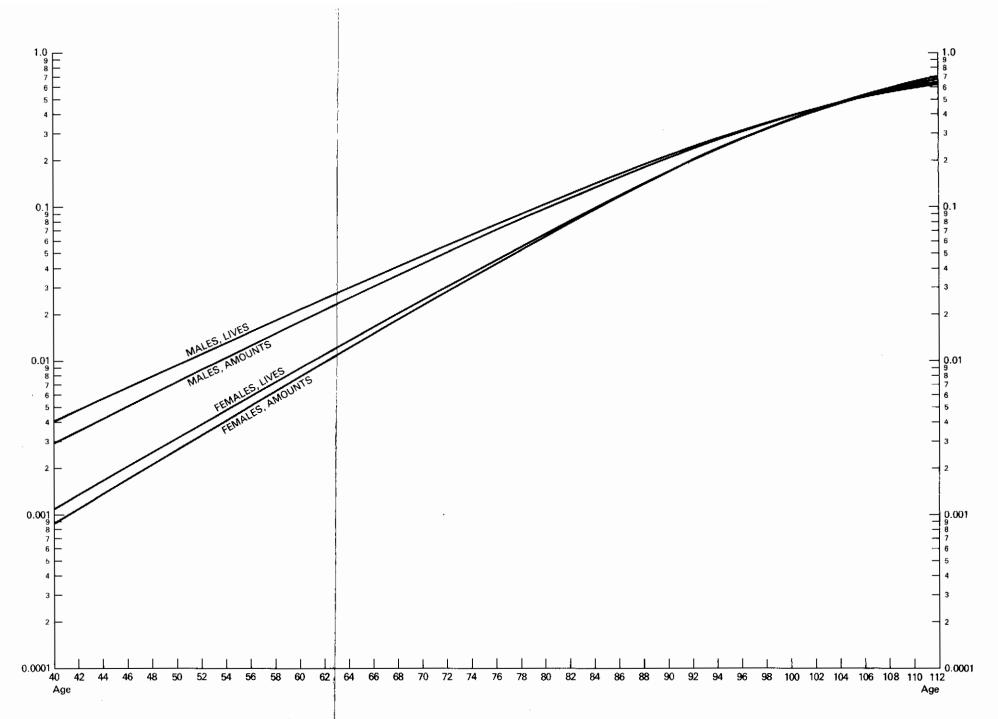
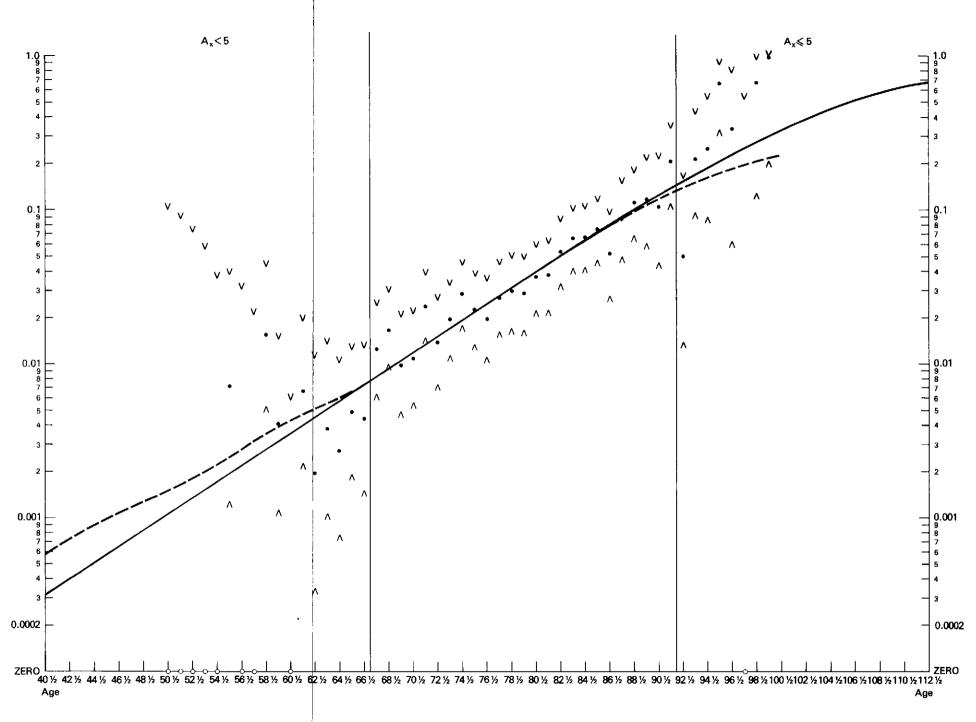
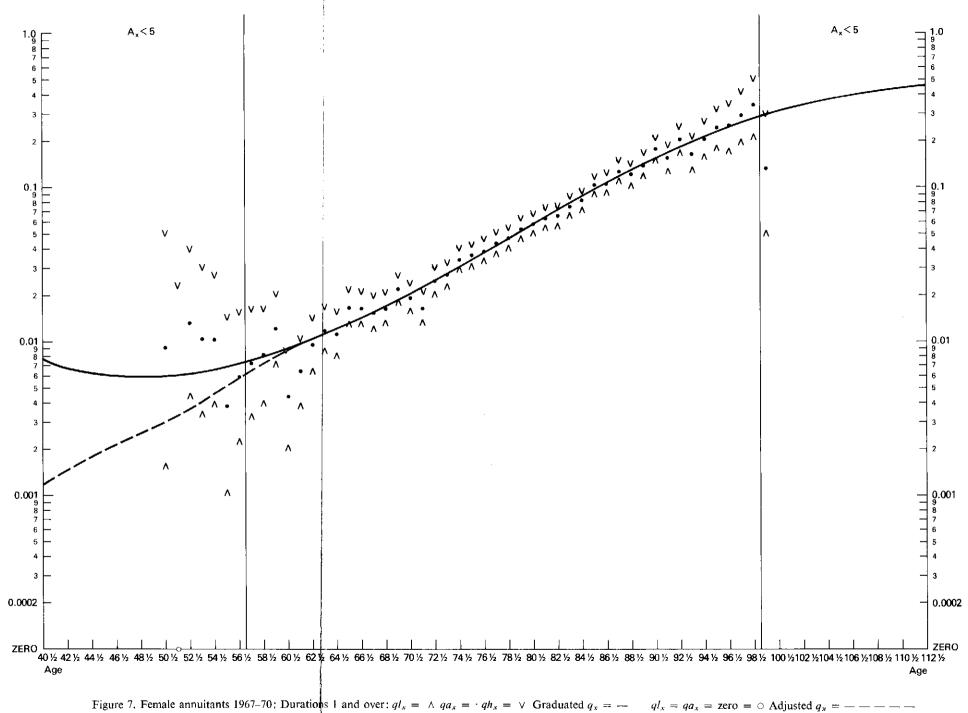




Figure 5. Pensioners Peg 1967-70: Male and Female, Lives and Amounts: q_x on graduated basis

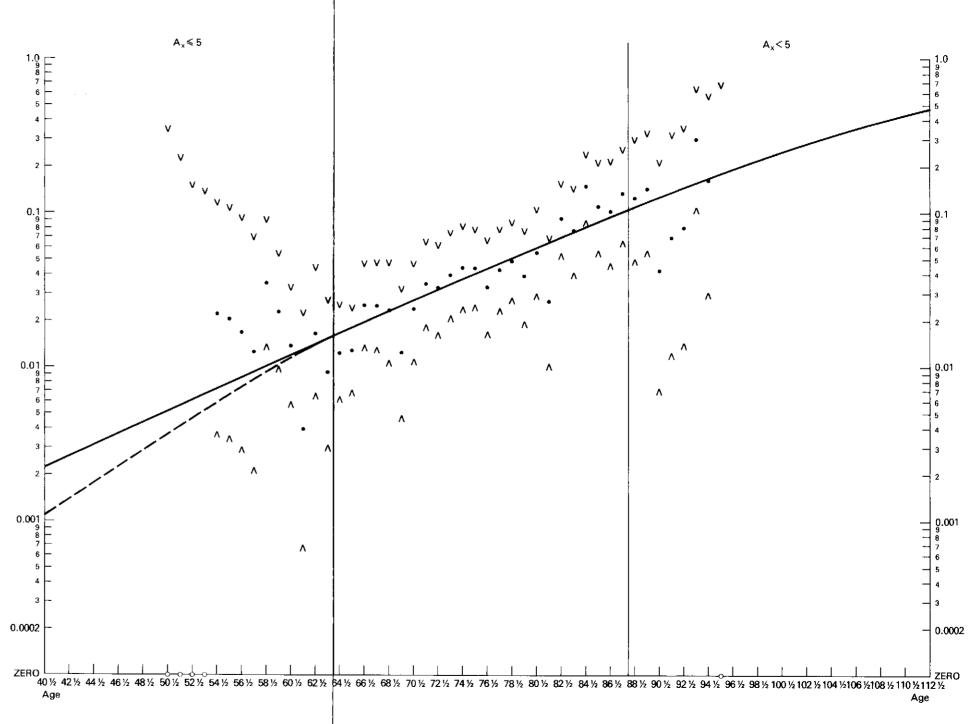
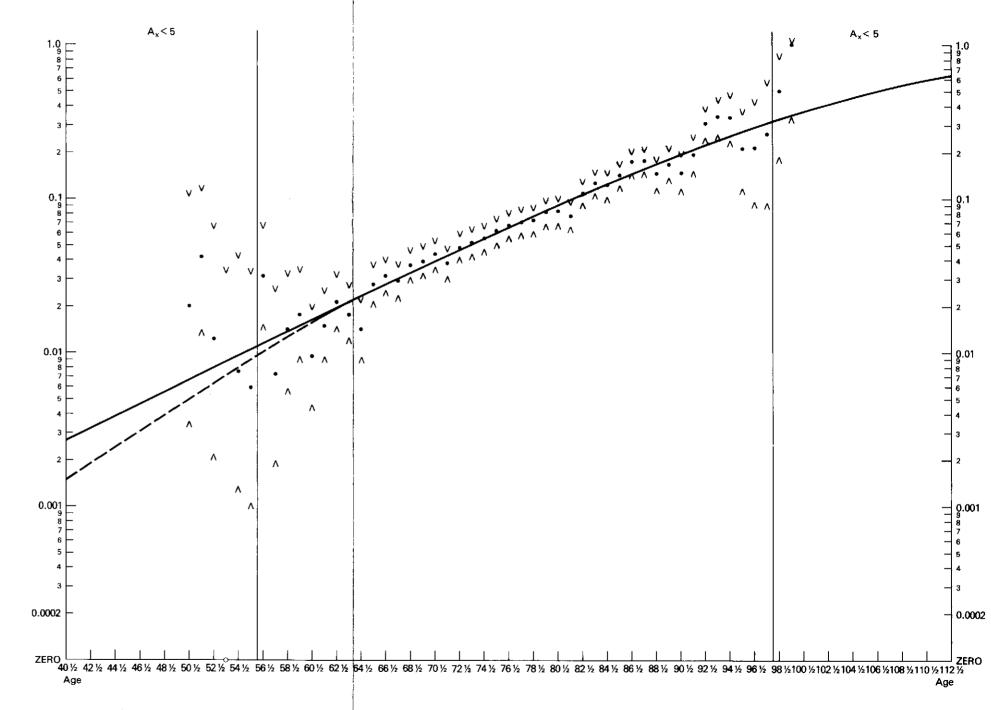



Figure 8. Male annuitants 1967–70: Duration 0: $q_{1x} = \wedge qa_{x} = \cdot qh_{x} = \vee$ Graduated $q_{x} = q_{1x} = qa_{x} = zero = \circ$ Adjusted $q_{x} = -$ - - -

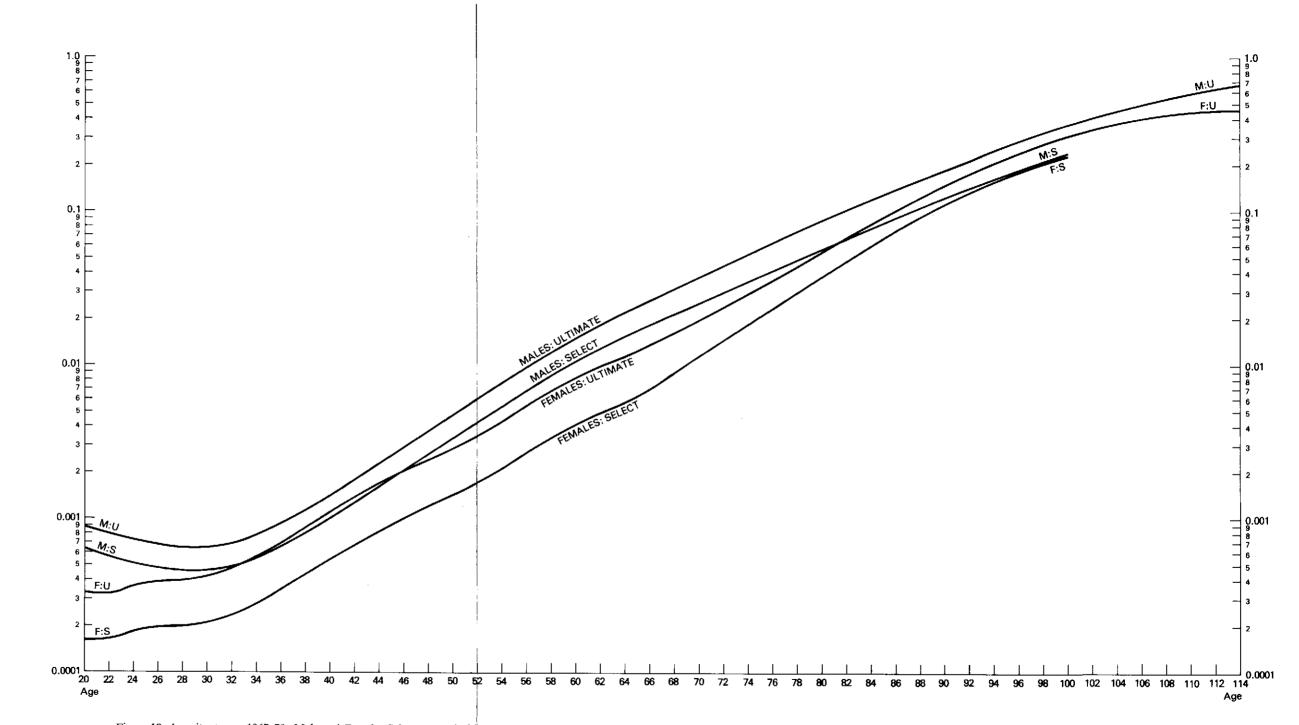


Figure 10. Annuitants aeg 1967-70: Male and Female: Select q_{1x1} and ultimate q_x on graduated and adjusted basis

CONTINUOUS MORTALITY INVESTIGATION REPORTS NUMBER 2

Introduction	iii
Investigation of Sickness Statistics-Individual Policies 1971 and 1973	1
The Graduation of Pensioners and of Annuitants Mortality Experience	57

Printed in Great Britain at the Alden Press, Oxford