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1. Executive Summary 
 

The purpose of this paper is to provide a report from the CMI High Age Mortality Working 

Party on its research and findings to date. The Working Party was established in 2014 with 

the following broad aims (further details are provided in the Terms of Reference listed in 

Appendix A): 

 Provide a broad indication of the potential financial impact of misestimating high age 

mortality. 

 Investigate and summarise published research on high age mortality. 

 Identify potential issues with existing data sources used by CMI (Self-Administered 

Pension Schemes (SAPS), insurers, Office for National Statistics (ONS)) and 

methodology specific to high age mortality. 

 Outline specific analysis to assess the impact of any identified issues and propose 

potential ways to enable the CMI to address them. 

 

The key issues identified and considered are: 

 The expert judgement required to set a high age mortality assumption (in terms of 

level and shape) where portfolio levels of data are currently low. 

 The issues to consider when using population mortality to ‘fill this gap’.  

 The impact of age misreporting and age at death misstatement on reported mortality.  

 

The key findings from our work to date are: 

 There are various issues with the data quality for all the data sources which might be 

used to model mortality at the oldest ages. It is not immediately clear how much the 

differences in results might be due to data issues. As such, it is difficult at this point to 

make any recommendations on a preferred approach or approaches to modelling 

mortality rates at the oldest ages. However, the differences in the resulting mortality 

rates derived using different models are generally not material except at the very 

oldest ages. Hence, it is unlikely that any one approach would produce results which 

are materially different from another except at the oldest ages. Given this and the data 

issues mentioned above, the Working Party does not feel that the choices made to 

extrapolate mortality rates at the oldest ages in recent graduated CMI tables were 

unreasonable. 

 Analyses of historical mortality from extinct cohorts imply that mortality for the 

England & Wales population above age 90 as published by the ONS has been 

underestimated by around 5% for males and about 1-2% for females in the period 

considered. We understand the underestimation of mortality to be driven by 

overestimation of population exposures at very high ages. The Working Party intend 

to consider this feature further in the next phase, including the potential impact on 

both current (base) levels of mortality and on the use of revised estimates on future 

mortality projections. Please see section 7.1 for further details. 

 There is wide variation in the level and shape of mortality assumed at high ages under 

different tables published by the CMI, the ONS and North American actuarial 

associations. If the ranges of methodologies typically adopted are applied to the data 

underlying the S2PML tables then we observe a variation of -4.1% to +0.4% in cohort 
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life expectancy (or -3.7% to +0.3% in annuity value with a 3% discount rate) for a 

male aged 90. Impacts are smaller at age 65, being -0.4% to +0.1% on cohort life 

expectancy and -0.2% to +0.0% on annuity value. Please see section 5.5 for further 

details. 

 The debate on whether the shape of mortality at high ages is exponential or exhibits 

signs of mortality deceleration is inconclusive. The S2PML tables effectively assume 

mortality deceleration occurs. The impact on cohort life expectancy for a male aged 

90 of instead adopting a Gompertz mortality shape at high ages is -2.5% to -0.5% (or 

a -2.0% to -0.4% impact on annuity value). Again, impacts are smaller at age 65, 

being -0.4% to -0.1% on cohort life expectancy and -0.2% to -0.0% on annuity value. 

Please see section 4.2 for further details. 

 We have modelled scenarios considering the impact of late reporting of deaths at high 

ages. The potential impact on annuity values and life expectancies for a male aged 65 

if late reporting is understated is typically in the region of +1% to +2% (and can be as 

high as +5% to +10% at age 90 in some of the scenarios considered). The delay in 

reporting deaths has a more material impact at very high ages where the higher rate of 

mortality will have a bigger impact on restating exposures once all deaths are known. 

Please see section 6.1.4 for further details. 

 We have modelled scenarios considering the impact of age misstatement. This 

suggests the potential impact on annuity values and life expectancies for a male aged 

65 from age misstatement is in the region of 0.0% to +0.1% (and up to +0.5% to 

+1.0% for a male aged 90). We have considered the impact of date of birth 

corrections from data cleansing of large buy-in clients of a bulk annuity provider in 

constructing these scenarios. The impact varies by the range of age misstatements. 

Please see section 6.1.5 for further details. 

 

For the next phase, the Working Party intends considering the following areas: 

 Population mortality at high ages: we intend to consider further the appropriateness of 

estimated mortality for the England & Wales population. In their 2014 paper, 

‘Phantoms Never Die: Living with unreliable mortality data’, Cairns et al indicate 

issues associated with the ONS re-stating their point estimate for population 

exposures above 85 across all high ages using extinct generation methodologies. 

There are also concerns around the mid-year population estimates for particular 

cohorts, most notably for lives born just after the end of the First World War. We 

intend to explore these areas further and consider the appropriateness of the ONS 

approach and whether there are more appropriate alternative approaches. We will also 

explore whether there are any other datasets, such as longitudinal studies, which may 

provide additional useful information. 

 Mortality trend: this paper focuses on issues that may affect historical and recent 

levels of mortality. We intend to explore how the analysis described above might help 

inform a time analysis of mortality trends, in particular for assisting the CMI 

Mortality Projections Committee with their modelling at high ages.  

 International comparators: we also intend to extend our analyses to consider other 

territories and consider where similar features, or otherwise, are observed relative to 

the England & Wales population.  

 

Our intention is to produce a follow-up paper considering these themes in 2016.  
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2. Introduction 
 

This paper reports on the research and findings to date of the CMI High Age Mortality 

Working Party. It sets out our initial findings on data and modelling approaches along with 

consideration of potential issues, implications and areas for further investigation. There has 

been a lot of recent research in this area and this paper seeks to pull together the key areas 

considered. Our intention is to provide a further update to our work in 2016. 

 

The Working Party was drawn predominantly from members of CMI investigation 

committees and comprised: Steve Bale (Chair from April 2015), Mark Cooper, Andrew 

Gaches, Adrian Gallop, Joynur Rahman and Neil Robjohns (Chair until April 2015). 

 

For clarification, we have focused on mortality for ages 90 and above. For the England & 

Wales population, this represents 0.8% of the population in 2013, and is projected by the 

Office for National Statistics (ONS) to grow to 2.6% by 2040. The ONS 2012-based 

population projections forecast the proportion of deaths at ages 90 and above to grow from 

20% of all deaths in 2013 to 36% of all deaths in 2040. Our choice to focus on ages above 90 

reflects the desire to understand features of very high age mortality given the increasing 

impact of higher age mortality from an ageing population. For many insurance companies 

and pension schemes, mortality experience and data coverage will predominantly occur at 

younger ages, so understanding the uncertainty around the very high ages is critical.  

 

In addition, we have focused on pensions and annuities products; with limited consideration 

of the issues affecting whole of life products to the extent that these differ. 

   

Note that throughout the paper we provide future life expectancies as a commonly accepted 

metric of assessing the impact of modelling and data issues.  

  

The subject matter of this paper crosses a number of CMI committees’ work. The Working 

Party wishes to acknowledge and thank Bill Baker, David Bartlett, Deborah Cooper, Mary 

Hall and Steven Rimmer for their valuable review of a draft version of this paper. The 

Working Party is also grateful to Club Vita and Rothesay Life for each supplying the 

Working Party with results from their analysis of pensioner experience. 

 

The structure of this paper is as follows: 

 Section 3 sets out the context to this paper, in particular why high age mortality 

matters; 

 Section 4 summarises a review of theories on the shape of mortality at very high 

ages, in particular whether mortality decelerates or not; 

 Section 5 considers the range of techniques adopted for recent mortality tables and 

their range of financial impacts; 

 Section 6 considers features and issues of high age datasets for both population and 

insured / pension scheme data; 

 Section 7 summarises initial findings from exploring the mortality of closed cohorts, 

including high-level trends; 

 Section 8 considers whether mortality rates converge with increasing age;  

 Section 9 summarises the key findings from sections 4 to 8; and  

 Section 10 lists our intended next steps. 
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3. Context setting 
 

3.1. Why does High Age Mortality matter? 

The understanding of developments in old-age mortality is important for: 

 Governments providing social security, health, housing and welfare programmes; 

 Private healthcare / care home providers;  

 Insurance companies and pension funds providing benefits in retirement;  

 Investment product providers for income drawdown; and 

 Investment markets providing longevity swaps / solutions. 

 

The ONS estimate in their 2012-based population projections that the number of centenarians 

(lives aged 100 and above) could increase from just under 14,000 in 2014 to over 250,000 by 

2051. This observed and expected growth in centenarians is illustrated in Figure 3.1. 

 

The fact that people are living longer has rightly been widely celebrated. However, an ageing 

population leads to higher expenditure on pensions and health, and such expenditure could 

potentially grow faster than tax receipts. The estimation of populations at high ages is 

therefore important for Governments providing social security, health, welfare and housing 

programs. The impact on these programmes will be influenced by the change in the 

proportion of lives requiring social care, along with their expected remaining lifetimes. 

 

Figure 3.1: Number of centenarians – historical and projected, England & Wales 

 
Source: ONS, 2012-based England & Wales principal population projections. Blue bars 

represent historical numbers; red bars represent future projected numbers. 

 

A better understanding of the uncertainty and fluctuations in estimating old-age mortality will 

be important for actuaries involved in the pricing of retirement products and for capital 

allocation and reserving using an internal model under Solvency II. Furthermore, the impact 
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of the 2014 Budget on retirement planning is expected to result in an increased set of 

retirement income provision options through a combination of asset and insurance solutions. 

Consumer behaviour might result in a shift in product preferences at different ages. 

 

The availability of data for setting assumptions will vary according to the volumes of data at 

each age. Shorter duration in-force annuity business may well have a younger average age 

and assumption-setters may need to consider other available data sources, such as industry 

and / or population information to determine appropriate assumptions for high ages. 

 

Figure 3.2 shows the proportions of those born today who are expected to survive to old ages 

based on the survival factors, lx, taken from the UK National Life Tables 2011-13 with no 

allowance for changes in future mortality. We can observe that at age 90 whilst about 20% of 

males are expected to be alive, the expected proportion of females alive is higher at 30%. 

This illustrates the particular importance of setting mortality rates for very high age females, 

particularly for survivor retirement benefits (spouse’s pensions). The impact on the cost of 

meeting the liabilities will depend on the age mix of a particular portfolio. Portfolios where 

there is a high proportion of spouse’s pension benefits and/or a high proportion of insured 

females will be more sensitive to a change in mortality at very high ages, as we illustrate 

later.  

 

Figure 3.2: Proportion alive at each age – UK National Life Tables 2011 – 2013 

 
 Source: National Life Tables 2011-2013, United Kingdom, ONS 
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3.2. Data volumes at high ages 

The graphs in Figure 3.3 compare the levels of exposure and deaths for the period 2007-10 

for the England & Wales population, CMI All Offices Annuities dataset and CMI SAPS 

populations.  

 

Figure 3.3: Deaths and exposure by age for various mortality sets, 2007-2010 

 
Source: ONS, CMI  

 

We observe that for both genders, the lives exposed reduce rapidly, and to particularly low 

levels by age 90. A similar feature is observed for deaths. 

 

At higher ages the England & Wales population mortality data is more than two to three 

times the size of the insured data. Readers may wish to consider the appropriateness of 

moving from reliance on portfolio or CMI experience to population mortality experience 

when setting mortality assumptions for age 90+. We consider this further in this paper. 
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4. Review of competing theories for patterns of high age mortality 
 

4.1. Mortality Deceleration – a discussion 

One of the key areas of debate regarding the extension of mortality curves into higher ages is 

whether the rate of increase of mortality rates “decelerates” away from a Gompertz law (log 

𝜇𝑥 is linear in 𝑥). Observed mortality rates from most datasets tend to plateau or decrease at 

older ages but this is generally ascribed to poor data quality as discussed in section 6. 

However, there remains a debate over whether the Gompertz law holds or whether there is 

indeed evidence that deceleration occurs. This section sets out some of the key contributions 

to this debate. 

 

To illustrate that the idea of mortality deceleration is not new, Greenwood and Irwin (1939) 

suggests a high age plateau, albeit the relevance of their data to the current time is 

questionable. Vaupel (1979) proposes heterogeneous mortality levels between population 

groups as a cause of mortality deceleration and provides a theoretical justification for 

mortality deceleration based on Swedish data. Other studies which observe deceleration 

include Horiuchi and Wilmoth (1998), Thatcher (1999), Thatcher et al. (1998) and Wilmoth 

(1995). A number of these papers cite possible reasons for the observed deceleration, most of 

which focus on the heterogeneity of the data being analysed (see section 6.1.7 for an 

illustration of this effect on the mortality curve). 

 

Whilst most authors acknowledge deceleration in mortality data and have offered up reasons 

as to what is driving this, two authors (Gavrilov and Gavrilova) have made a significant 

contribution to the debate with a robust defence that the Gompertz formula is appropriate for 

modelling 𝜇𝑥 (i.e. log 𝜇𝑥 is linear with age) at least to age 106 in homogeneous populations 

with clean data. We highlight here that 106 is lower than the limit age other authors have 

considered when looking at mortality deceleration. 

 

We note that in their 1991 paper, these authors observe mortality deceleration at advanced 

ages, proposing that a logistic function might be a better fit for mortality at older ages. 

However, in more recent papers (2011 and 2014) they have put forward a clear view that 

deceleration is not observed up to relatively high ages. Their 2014 paper is a comprehensive 

summary of academic work in this area and itself looks at mortality trajectories based on the 

US Social Security Administration Death Master File (DMF) as well as data from the Human 

Mortality Database (HMD) for 1890 – 1899 birth cohorts. They also looked at the mortality 

curves of railroad workers versus the rest of the population since these are easily identifiable 

in the DMF. 

 

Their 2011 paper looks at the impact on observed (and fitted) mortality rates for datasets with 

known differences in quality and shows deceleration is more prevalent in the lower quality 

data (see section 6.1 for worked examples of known data issues). There is also a helpful 

discussion regarding heterogeneity and the deviance in 𝜇𝑥 and 𝑞𝑥, especially at older ages. 

 

In summary, Gavrilov and Gavrilova propose the following reasons why deceleration is 

observed in other studies (including their own), but that a Gompertz form is still the best fit 

for the underlying process: 

 Age misreporting has been shown to lower the mortality curve at older ages (see 

section 6.1.5). 
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 Aggregation of single year birth cohorts – the authors have looked at the force of 

mortality for single year birth cohorts and demonstrate that if heterogeneity is 

introduced across cohorts, deceleration can be observed when we look at the 

combined experience of the birth cohorts. 

 Studying age-specific probabilities of death rather than the force of mortality will lead 

to observations of deceleration at very high ages. Some papers do not provide clarity 

on the distinction between modelling in 𝜇𝑥 and 𝑞𝑥 at old ages. Furthermore, they 

illustrate that studies using wide age intervals that assume a uniform force of 

mortality in each age interval produce bias downward to estimates of 𝜇𝑥 at higher 

ages. 

 Older studies used data from birth cohorts where data recording was less accurate, 

whereas for more recent studies the data is more accurate. 

 

The authors also note that there are other recent studies that support no deceleration, namely 

Stauffer (2002) and Bourbeau and Desjardins (2006). 

 

Picking up on the idea of controlling for heterogeneity between birth cohorts, Beard (1971) 

looked at the theoretical form for 𝜇𝑥 for a heterogeneous population of subgroups where the 

force of mortality for a subgroup with “longevity factor” 𝑠 is 𝜇𝑥
𝑠  and 𝜑(𝑠)𝑑𝑠 is the proportion 

of the initial population with factor 𝑠. The force of mortality for the whole population can be 

written as: 

𝜇𝑥 =
∫𝜑(𝑠)𝜇𝑥

𝑠exp(−∫ 𝜇𝑡
𝑠𝑑𝑡)

𝑥

0
𝑑𝑠

∫𝜑(𝑠)exp(−∫ 𝜇𝑡
𝑠𝑑𝑡)

𝑥

0
𝑑𝑠

 

 

If we assume that each population has a Gompertz force of mortality (where s affects the 

level of 𝑙𝑜𝑔𝜇𝑥
𝑠): 

𝜇𝑥
𝑠 = 𝛽𝑠𝑒𝑥𝑝(𝜆𝑥) 

 

and that 𝜑(𝑠) = 𝜅𝑠𝑝exp(−𝛾𝑠) is a Gamma distribution, then it can be shown that the force 

of mortality for the population can be written as: 

𝜇𝑥 =
(𝑝 + 1)𝛽𝑒𝑥𝑝(𝜆𝑥)

(𝛾𝜆 − 𝛽) + 𝛽𝑒𝑥𝑝(𝜆𝑥)
 

 

With a little rearrangement this can be written as a logistic form, which has been shown 

previously to allow for mortality deceleration at older ages. The above is, as Beard describes 

it to be, an interesting demonstration of how combining homogeneous groups can give rise to 

the logistic form (and hence mortality deceleration) for the aggregate population. However, 

he notes that “it suffers from the disadvantage that it assumes that the mortality of the various 

strata is Makeham in form for which experimental verification seems very difficult”. (Note 

that although Beard refers to Makeham, we used the simpler Gompertz form in our example, 

above.) 

 

In more recent work and in a similar vein, Currie (2010) suggests extrapolating mortality 

curves at high ages effectively using a different Gompertz curve for each year which leads to 

a decelerating curve when averaged through time. He also looks at fitting splines to 𝜇𝑥 at 

older ages which allow for more deceleration driven by the data at younger ages. 
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4.2. Mortality Deceleration – examples of Gompertz, Kannisto and Logistic extensions 

To illustrate the practical impact of the above discussion, we set out below a comparison of 

Kannisto and Gompertz type extensions to the S2PML table. In each case the extension is 

applied from age 95, consistent with the methodology used in constructing that table. 

 

Functional forms for Gompertz, Kannisto and Logistic type extensions 

 Gompertz extension. The traditional Gompertz law assumes that the log of force of 

mortality is a linear function of age. Algebraically this can be expressed as μx = ae
bx

. 

This approach implies that the force of mortality continues to increase (without 

bound) as age increases. 

 Kannisto extension. The Kannisto extension assumes that the logit of force of 

mortality is a linear function of age (where logit(μx) is defined as log(μx/(1-μx)). 

Algebraically this can be expressed as μx = ae
bx

/(1+ ae
bx

). This approach results in the 

force of mortality being bounded, and converging towards 1 at very high ages. 

 Logistic extension. We also consider the more general logistic functional form, 

which can be defined as μx = c + ae
bx

/(1+ αe
bx

). Like the Kannisto form, this 

approach results in the force of mortality being bounded, but in this case it converges 

towards c + a/α at very high ages. 

 

Note that both Gompertz and Kannisto forms are special cases of the logistic form. The 

Gompertz form can be obtained by setting c = α = 0; the Kannisto form is obtained by setting 

c = 0 and α = a. 

 

Regression versus extrapolation 

For each of the above functional forms, we illustrate two methods of fitting the extension, 

which we have labelled as “regression” and “extrapolation” respectively. 

 

Regression to determine high age extension 

Under the regression approach, the high age extension is obtained by fitting the chosen 

functional form to the crude μx observed over the age range 80 to 95. The fitting approach is 

to minimise the weighted sum of square of errors. The error terms are taken to be the 

difference between the log (for Gompertz form) or logit (for Kannisto or Logistic forms) of 

the crude and fitted mortality rates. The weights used are the reciprocal of the variance of 

crude qx. 

 

Extrapolation to determine high age extension 

With the extrapolation approach, the high age extension is determined using constraints at 

age 95 (i.e. where the extension meets the graduated rates) based on matching μx and 

derivatives of μx at that join. In the case of the Gompertz and Kannisto forms (which have 

two parameters) the constraints are to match μx and the first derivative of μx. The Logistic 

form has four parameters and so would require the matching of μx and the first three 

derivatives of μx which seems excessive, so in practice the “c” parameter has been set to zero 

and the constraints are to match μx and the first two derivatives of μx. 
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Figure 4.1: Comparison of qxs at high ages under different extension methods 

Comparison of extended qx Comparison of extended qx (log scale) 

 
 

Figure 4.1 illustrates visually the extensions under each of the approaches described. Note 

that the Gompertz extensions are not a straight line on the log scale as the graph shows qx 

values, whereas the Gompertz extension has been applied to μx. 

 

Period life expectancies at sample ages under each extension are shown in Table 4.1. (Cohort 

life expectancies have also been considered but the results are similar, and the conclusions 

the same as those for period life expectancies, so these are not shown in the paper). 
 

Table 4.1: Period life expectancies under different extension methods (and value relative 

to the “S2” Series extensions)  

Period life 

expectancy 

Logistic 

Regression 

Logistic 

Extrapolation 

Kannisto 

Regression 

Kannisto 

Extrapolation 

Gompertz 

Regression 

Gompertz 

Extrapolation 

e80 
8.027 

(100.0%) 

8.029 

(100.0%) 

8.032 

(100.0%) 

8.029 

(100.0%) 

8.001 

(99.7%) 

8.024 

(99.9%) 

e90 
4.036 

(99.9%) 

4.041 

(100.0%) 

4.050 

(100.2%) 

4.041 

(100.0%) 

3.958 

(97.9%) 

4.028 

(99.7%) 

e100 
2.125 

(100.5%) 

2.118 

(100.1%) 

2.142 

(101.3%) 

2.117 

(100.1%) 

1.698 

(80.3%) 

1.972 

(93.2%) 

e110 
1.486 

(109.8%) 

1.404 

(103.7%) 

1.417 

(104.7%) 

1.403 

(103.7%) 

0.753 

(55.6%) 

0.966 

(71.4%) 

 

The difference in high age values resulting from Gompertz versus Logistic/Kannisto 

extensions of S2PML are immediately apparent, with the Gompertz extensions resulting in 

clearly higher mortality rates (and lower life expectancies, particularly from age 100 and 

110). This illustrates how the Logistic/Kannisto extensions decelerate relative to the 

Gompertz form, as described earlier in this section. 

 

In this example, with the extensions applying from age 95, the differences in period life 

expectancies are relatively small up to age 90. However from age 100 the differences are 

marked with the Gompertz forms resulting in life expectancies around 10-20% lower than 

those under the Logistic/Kannisto extensions at age 100. 
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The Logistic and Kannisto extrapolations (and Kannisto regression) all result in similar 

mortality rates and life expectancies. The Logistic regression provides slightly lower 

mortality rates at the highest ages, and higher life expectancy from age 110. 

 

It is noticeable in the above graphs and tables that there is a much greater difference between 

the regression and extrapolation extensions when using the Gompertz form than when using 

either Kannisto or Logistic forms. This appears to be driven by the Gompertz regression not 

matching the fitted S2PML qx at the join (i.e. age 95) as well as the other extensions, 

including the Gompertz extrapolation, do. Examining the crude μx (and alternatively the fitted 

S2PML μx), there is evidence of “mortality deceleration” between ages 80 and 95. This 

means that while the Gompertz regression fits the crude μx closely over the age range 80-90 

(where there is most data), it results in μx that are higher than the crude μx in the top part of 

that age range, particularly up towards age 95. This is why the Gompertz regression does not 

match the fitted S2PML at age 95 as well as the other extensions, and, as a result, why there 

is a greater difference between extensions based on Gompertz regression and Gompertz 

extrapolation. 
 

4.3. Survey of other theories and studies 

Mortality rates observed in other species 

Mortality rates observed in mammals that exhibit similar survivorship patterns to humans can 

help inform the correct shape of mortality curve. The studies considered have looked at 

animals in captivity as this removes predators and controls for access to food and medical 

care. Species that experience high survival in early and middle life, followed by a rapid 

decline in survivorship in later life are considered due to their similarity with humans. The 

three papers reviewed conclude the following: 

 Bronikowski et al (2011) conclude that, with a few exceptions, the Gompertz function 

is a good fit to the range of captive primates studied.  

 Gavrilova & Gavrilov (2014) consider the shape of mortality for two species 

compared to 22 cohorts of humans, namely rats (10 cohorts) and mice (8 cohorts). 

They conclude that mortality deceleration at advanced ages is not a universal 

phenomenon, and survival of mammalian species follows the Gompertz law up to 

very old ages (106 for humans). 

 Kohler et al (2006) present life tables by single year of age and sex for groups of 

animals and for 42 (mostly mammalian) species. At very high ages there is little 

information. The authors have used the Gompertz function to estimate high mortality 

and state briefly that they believe it is a good fit to the data available; we note that 

they did not fit any other functional forms to the data.  

 

Broken Heart Syndrome 

Various studies have shown that mortality rates for last survivors can be affected by the 

timing of the first life death. It is difficult to use this theory to help inform the general shape 

of the mortality curve at higher ages but it is noted as a potential contributing factor. 

 

Broken heart syndrome (BHS) is seen as being a subset of BHS stress-induced 

cardiomyopathy or takotsubo cardiomyopathy. Typically a person is exposed to an extreme 

surprise or stressful event such as the loss of a loved one.  



 

14 
 

 

Carey et al (2013) demonstrate the statistically significant increased prevalence of myocardial 

infarction amongst those who have suffered the loss of a loved one. Carriere and Valdez 

(1996) illustrate that the pricing of joint life annuities can be reduced by up to 5% by 

allowing for dependant mortality models (compared with assuming independence). 

 

The Working Party has not sought to develop this thinking further into making inference 

about setting mortality rates at old ages but wanted to highlight this as an area of potential 

relevant thinking on the subject. 

 

Estimates of absolute mortality rates at very high ages 

The estimates of mortality rates at very high ages later in this paper mostly reference the 

International Database of Longevity (IDL), which was an initiative set up in 2002 to combine 

validated international data regarding supercentenarians (those over age 110). This would 

appear to be the best dataset available to help inform mortality rates at very high ages.  

 

Gampe (2010) is a study of mortality rates after age 110 using data from the IDL which 

covered 637 individuals, most of whom were US females. The results of the analysis were 

that mortality rates after 110 are flat with µ = 0.7 implying a probability of death of qx = 0.5. 

The authors found no sex specific difference or time trend observed in the studies performed. 

This view is also supported by Kestenbaum and Ferguson (2010), who specifically look at 

325 US supercentenarians born between 1870 and 1889. The validation of ages and dates of 

death of these lives is thorough, using a number of reliable sources. They looked at the 

probability of death above age 110 using an extinct generation methodology. Their results 

show a broadly constant probability of death of 0.5 for ages in advance of 110. 

 

Another study by Robine, Gampe and Vaupel (2005) using the IDL data suggests that there is 

a constant force of mortality after age 110, leading to an annual death rate close to 0.5. 

 

It is difficult to quantify the uncertainty around the estimates set out above since the data 

volumes underlying them are relatively small. However, it is reassuring that the three 

contributors above all have produced results that are consistent, giving readers some comfort 

that these parameters are somewhat robust. 

 

The point should also be made that Gavrilova and Gavrilov do not make suggestions about 

the force of mortality for ages above 106 in their paper and the studies above are looking at 

those over 110, so although one purports no deceleration and the others propose a plateau, 

these do cover different areas of the curve.  
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5. Observed experience and graduated tables 
 

5.1. Summary of graduated tables considered 

To meet users’ needs, mortality tables contain values to high ages – often to age 120, and 

almost always to well over 100. This requires tables to include some form of high age 

extension to cover ages where no experience data is available. In addition, at higher ages 

where some data is available, data volumes are frequently too low for robust statistical 

conclusions to be drawn and in some studies the data itself can be unreliable. Therefore, high 

age extensions also need to cover ages where there are low data volumes or the data is 

unreliable. 

 

This section explores the data available, the (extended) graduated mortality rates, and the 

underlying extension methods at higher ages for a variety of UK and North American tables. 

We include both current and historic tables, as it is useful to observe the broad range of 

extension approaches that have been used now, and in the past. 

 

The tables illustrated are described briefly below. 
 

English Life Tables (ELT) 

Based on population data from England and Wales combined, ELT17, ELT16, ELT15 and 

ELT14 reflect experience over the periods 2010-12, 2000-02, 1990-92 and 1980-82 

respectively. No analysis of the method for graduating mortality rates at the oldest ages used 

for ELT17 is included in this working paper as ELT17 had not been published at the time of 

writing; however, Appendix B contains a brief description of the ELT17 methodology used to 

derive old age mortality rates.  
 

CMI Self-Administered Pension Scheme (SAPS) tables (“S1” and “S2” Series) 

These tables are based on data from UK occupational pension schemes. While a wide range 

of tables are provided, we focus below on the lives-based all-pensioner (excluding 

dependants) tables. 
 

CMI Life Office tables (“80”, “92”, “00” and “08”Series) 

These tables are based on data from UK life offices over the periods 1979-82 (“80” Series), 

1991-94 (“92” Series), 1999-2002 (“00” Series) and 2007-2010 (“08” Series). Again a wide 

range of tables are provided; we focus below on the lives-based combined-pensioner tables. 
 

Canadian Institute of Actuaries tables (CPM2014) 

These tables are based on Canadian registered pension plan experience over the period 1999 

to 2008, projected to 2014. The tables are amounts based. 
 

Society of Actuaries tables (RP-2000 and RP-2014 series) 

These tables are published by the Society of Actuaries’ Retirement Plans Experience 

Committee and are based on uninsured private pension plans in the United States. The RP-

2000 and RP-2014 tables reflect experience over the periods 1990-94 (projected to 2000) and 

2004-08 (projected to 2014) respectively. The tables are primarily amounts based, although in 

the case of the RP-2014 tables, a headcount based variant is also produced and that has been 

used for the comparisons below. 
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Where both lives and amounts tables are available we focus on the lives variants; this 

provides consistency with the ELT tables which we use as a common comparator throughout. 

Key features are illustrated using the male data and tables; similar features apply to the 

corresponding female data and tables. Fuller details of the extension methods used in those 

tables are contained in Appendix B. 

 

5.2. Graphical comparison of data underlying selected graduated tables 

Figure 5.1 provides graphical comparison of the underlying data, the graduations and the 

extensions of the tables described in Appendix B. They also show the 2.5% and the 97.5% 

confidence limits (the “low gate” and the “high gate”) of the crude values of qx. ELT16 is 

provided as a comparator in each case. 

 

Figure 5.1: Graduation and data underlying ELT16 

 
 

ELT16M uses data covering ages up to 108. Graduated mortality rates are determined using a 

variable-knot spline regression approach. There is no separate high age extension 

methodology; high age values are determined directly from the spline regression (with a high 

age constraint of m120=2). With the exception of age 103 (where the crude qx looks 

surprisingly low and the fitted rate exceeds the high gate) the fitted rates adhere reasonably 

closely to the crude data. 
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Figure 5.2: Graduation and data underlying S2PML 

 
S2PML is graduated using data up to age 95. Figure 5.2 shows how the 95% confidence 

intervals around the crude qx increase markedly above age 95 (reflecting the lower volumes 

of data at those ages). In addition the crude qx decrease in value at ages around 100 and above 

(after levelling off in the high 90s), consistent with data distortions at higher ages (the 

potential causes of which are discussed further in section 6).  

 

A high age extension provides qx values at ages 96 to 120. This extension provides qx values 

appreciably lower than ELT16M. 
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Figure 5.3: Graduation and data underlying PML08 

 
PML08 is graduated using data up to age 100. As for the SAPS data, Figure 5.3 shows how 

the 95% confidence intervals around the crude qx increase markedly above age 95 (reflecting 

the lower volumes of data at those ages). The crude qx decrease in value at ages around 100 

and above (after levelling off in the high 90s); again consistent with data distortions at higher 

ages. 

 

The high age extension provides qx values at ages 90 to 120; these are appreciably lower than 

those for ELT16M. 
 

5.3. Comparison of high age shape of graduated tables 

Figures 5.4, 5.5, 5.6 and 5.7 provide a comparison of each family of tables, illustrating 

graphically both the graduated rates and the high age extension in each case. They 

demonstrate the approaches taken in practice and how these approaches have evolved over 

time. 
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Figure 5.4: Comparison of ELT tables 

 
ELT14M and ELT16M contain similar high age values (despite relating to periods 20 years 

apart). ELT15M contains qx values lower than ELT14M or ELT16M at high ages. 

 

Figure 5.5: Comparison of CPM and RP tables 

 
 

The high age qx values are in each case lower than those for ELT16M. Those for RPH-

2014M and RP-2000 are markedly lower, due to 0.5 and 0.4 limits being applied to qx 

respectively. 
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Figure 5.6: Comparison of SAPS tables 

 
The “S1” and “S2” Series SAPS tables contain similar high age extensions. In each case the 

extension provides qx values appreciably lower than and diverging from ELT16M. 

 

Figure 5.7: Comparison of PML tables 

 
The high age qx values are (particularly for PML08, PCML00 and PML92) appreciably lower 

than those for ELT16M. PML08 exhibits a markedly different shape to PCML00 and PML92 

between ages 90 and 100; this reflects the intention for the early part of extension to take 

values close to those from UK population data. 
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5.4. Key features of different extension approaches 

The table in Appendix B demonstrates the broad range of extension approaches adopted. This 

section explores briefly some of their key features. 

 

Extension type 

Continuation of graduation 

The extension used for PML92 was essentially an extrapolation to higher ages of the fitted 

functional form from the main age range. This approach provides smoothness at the join 

between fitted and extended range, but considerable care (and potentially adjustment to 

parameters of the main fitting) is required to ensure values at the highest ages are reasonable. 

 

Continuation of graduation (with constraints) 

The extension of ELT16M was achieved by fitting the main graduation with an explicit 

constraint in the form of a high age limiting mortality rate. This is similar to the “continuation 

of graduation” approach but explicitly defines the mortality rate at the highest age. 

 

Extension relative to another table or data source 

PML80 was extended relative to another table (specifically PMA80). A similar concept was 

adopted for some of the “S2” Series tables. This approach can provide consistency between 

related mortality tables and can enable tables lower in a given hierarchy to inherit desired 

features from tables higher in that hierarchy. An independent extension methodology will 

however be required for at least one of the related tables, and this approach raises the impact 

of any inaccuracy in the core table. CPM2014 uses a variant of this approach, with a 

graduation of population data providing the upper part of the high age extension.  

 

Extension using a functional form 

Many of the tables (including PCML00, PML08, S1PML, S2PML, ELT14M and ELT15M) 

are extended using a specified functional form which applies only to the extended range. 

Functional forms used include cubic splines, logistic and others. Constraints are required to 

derive the parameters of the functional form (and are discussed further below). 
 

Age from which extension applies 

A broad range of ages are used for the age from which the extension applies (ranging from 

ages 90 to 103). This is typically set after consideration of the age above which data appears 

less reliable and / or data volumes reduce to an unsatisfactory level. 
 

High age limiting values or constraints 

Many of the extension methods include a high age limiting value. 

 S1PML, S2PML and PCML00 adopted μ120 = 1. 

 RPH-2014M and RP-2000M adopted maximum qx of 0.5 and 0.4 respectively. 

 ELT16M adopted the rather higher limiting value of m120 = 2. This was obtained by 

setting q120 = 1 and using the approximation qx = mx / (1 + mx/2) which holds for 

x=120 if lx is assumed linear in the age interval [120,121]. 
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 ELT14M adopted what was described as “the somewhat arbitrary” value of m105 = 

0.75 for males and 0.65 for females. This was derived from data collected for an 

investigation of the mortality of centenarians covering the years 1950 to 1979. 

 Several of the tables are artificially closed at some age, e.g. qx is set to equal 1 at age 

112 in ELT14. 

 

Other constraints 

A range of other constraints have been adopted: 

 μx (or some other mortality rate metric) is continuous where the fitted curve meets its 

extension. A constraint of this form is used in almost all the examples above 

(ELT15M and RPH-2014 being the exceptions, although the latter then used blending 

at the join) to avoid a step change in mortality rates. 

 First differential of μx (or some other mortality rate metric) is continuous where the 

fitted curve meets its extension. This has the appeal of avoiding a step change in slope 

at the join. Care is required however as this constraint could serve to extrapolate edge 

effects. 

 ELT14M effectively required the second differential of mx to be continuous where the 

fitted curve met its extension. CPM2014 applies a similar form of constraint (by 

requiring qx to be matched at 3 consecutive ages). This form of constraint provides 

additional smoothness at the join. However significant care is required as the second 

differential of any mortality rate metric at the edge of the fitting may have a very large 

parameter uncertainty, and so this approach may well extrapolate edge effects. 

 First differential of μx (or some other mortality rate metric) is set to a specific value at 

the age associated with the limiting mortality rate. This may be a somewhat arbitrary 

assumption (i.e. will need to be set pragmatically rather than based on specific 

evidence), but can increase the degree of consistency between related tables. 

 A “curvature” parameter, as used in the “00” and “08” Series extensions. This can 

provide a pragmatic means of adjusting the shape of the extension rather than being 

set based on specific evidence. 

 Caps on qx are a feature of both RPH-2014M and RP-2000M tables. 

 

5.5. Comparison of the impact of different extension approaches 

The impact of different extension approaches is illustrated in this section by applying these to 

the S2PML table. Seven alternative extension approaches have been considered: 

 “S2” Series extensions (as used in the published S2PML table); 

 “08” Series extensions. In particular those for PML08 (with a run-in age of 90 and 

curvature parameter of 0.95); 

 “00” Series extensions, focusing on PCML00 (with a run-in age of 97 and curvature 

parameter of 0.8); 

 RP-2014 extension approach from age 100, using a Kannisto regression (of crude μx) 

fitted over age range 75 to 104 and a maximum qx of 0.5; 

 RP-2000 extension approach from age 100, using a cubic polynomial and a maximum 

qx of 0.4; 
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 ELT15M extension approach (using logistic regression of fitted rates for ages 85 to 

103 to determine extension); and 

 ELT14M extension approach (with extension from age 92, as per ELT14M). 

 

The results of these extensions are shown graphically in Figure 5.8, along with sample period 

life expectancies, in Table 5.1. 

 

Figure 5.8: Comparison of extensions of graduated tables at high ages 

 
 

Table 5.1: Period life expectancies under extensions of different tables (and value 

relative to “S2” Series extensions) 

Period life 

expectancy 

“S2” 

Series 

“08” 

Series  

“00” 

Series 

RP-2014 RP-2000 ELT15 ELT14 

e80 8.029 

(100.0%) 

7.973 

(99.3%) 

8.032 

(100.0%) 

8.029 

(100.0%) 

8.030 

(100.0%) 

8.029 

(100.0%) 

8.020 

(99.9%) 

e90 4.041 

(100.0%) 

3.874 

(95.8%) 

4.052 

(100.3%) 

4.042 

(100.0%) 

4.045 

(100.1%) 

4.040 

(100.0%) 

4.014 

(99.3%) 

e100 2.115 

(100.0%) 

2.076 

(98.1%) 

2.227 

(105.3%) 

2.129 

(100.7%) 

2.192 

(103.6%) 

2.101 

(99.3%) 

1.888 

(89.3%) 

e110 1.354 

(100.0%) 

1.399 

(103.3%) 

1.487 

(109.8%) 

1.499 

(110.7%) 

1.991 

(147.1%) 

1.133 

(83.7%) 

0.825 

(60.9%) 
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We discuss below the impacts of the alternative extension approaches. 

 

“S2” Series Extension 

This is as was adopted for the “S2” Series tables. 

 

“08” Series Extension 

Some of the high level features of this extension are similar to those from the “S2” Series 

extension. In particular, the same high age limiting value is assumed.  

 

However, this extension gives by far the lowest life expectancy from age 90, some 4% lower 

than that under the “S2” Series extension. This is driven by the extension applying from a 

younger age than other extensions (i.e. from age 90), combined with a different curvature to 

other extensions, which results in the mortality rates from age 90 to age 100 being higher 

than under other extension approaches. As noted previously, the parameters were selected to 

result in values close to those from UK population data in the early part of the extension. In 

addition, the way the “08” Series rates approached population mortality rates was considered 

when the “08” Series parameters were set, hence had that approach been applied to the “S2” 

Series tables then different parameters may have been adopted.  

 

“00” Series Extension 

The high level features of this extension are similar to those from the “S2” Series extension. 

In particular, the same high age limiting value is assumed. The extension method is closer to 

a straight line (in terms of qx versus age x) than that under the “S2” Series approach, hence 

mortality rates are slightly lower and life expectancies slightly higher. 

 

RP-2014 Extension 

Graphically, this extension appears significantly different to most others due to the maximum 

qx value of 0.5. However the fact that this extension only applies from a relatively high age 

(i.e. 100) and the limiting value (of 0.5) is not attained until around age 110 results in life 

expectancies at ages 80, 90 and 100 that are very similar to those under the “S2” Series 

approach. 

 

RP-2000 Extension 

The most striking feature of this extension is the maximum qx value of 0.4. This results in: 

 a higher life expectancy from age 100 than most other approaches (although lower 

than that under the “00” Series approach); and  

 by far the highest life expectancy from age 110 (nearly 50% higher than that under 

the “S2” Series approach). 

 

ELT15 Extension 

The extension applies from a higher age (i.e. 103) than the other extensions. As the “S2” 

Series extension is in fact very similar to the underlying “S2” Series fitting to that age, the 

ELT15 approach results in very similar mortality rates up to age 103. 
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It can be seen from Figure 5.8 that there is a step change in qx at age 103-104, at which point 

the extension starts to apply. This is a result of the regression approach not requiring the 

extension to have the same value as the underlying fitting at the join. 

 

The high age values are driven by extrapolation of the logistic regression (rather than a high 

age constraint assumption). In this case this results in high age mortality rates clearly higher 

than the “S2” or “00” Series extensions. 

 

Despite the high age differences, sample life expectancies are similar to those under the “S2” 

Series extension approach at ages 80, 90 and 100. 

 

ELT14 Extension 

As for the ELT15 extension, the very high age values are driven by an extrapolation of the 

fitted table (plus a constraint at age 105), with no constraint on the value at the limiting age. 

In this case this approach results in high age mortality rates clearly higher than the “S2”, “00” 

Series or ELT15M extensions. 

 

Despite the very clear high age differences, sample life expectancies are similar to the other 

approaches at ages 80 and 90, with appreciable differences occurring only from age 100. 

Cohort life expectancies have also been considered. The results are similar and the 

conclusions the same as those for period life expectancies. 
 

 

  



 

26 
 

 

6. Analysis of high age mortality 
 

6.1. Illustration of common issues in data and modelling 

6.1.1. Estimation of exposure 

In order to calculate mortality rates at any age, data are needed on the numbers of deaths and 

on the exposed to risk. Depending on the model adopted either a central or an initial exposed 

to risk may be derived from the data. There may be additional factors to consider when 

calculating exposed to risk for the oldest ages which may not be significant at younger ages. 

These can vary depending on whether this is being calculated using life office data or pension 

scheme data for a single entity or aggregated data or population data; there may also be 

different issues to be considered in the deaths data available for each of these. 

 

Life office and pension scheme data 

For most actuarial investigations related to life office or pension scheme mortality experience 

exposure would be calculated at each age. Where the date of birth, date of entry (to the 

exposure being calculated) and date of death (or other movements of individuals in the 

experience) are known, it is usually possible to calculate the amount of time individuals have 

been exposed to the risk of death during the investigation period at each age to the nearest 

day. These data can then be aggregated to give exposed to risk by age over the period under 

consideration. 

 

In theory it is possible to track policyholders or pension scheme members over time whilst 

they are alive and record their eventual dates of death or other exit from the database. In 

particular, the deaths data should be linked to the exposed to risk and it is unlikely that a 

death would be recorded in respect of a person who had not been recorded as an in force case 

at some earlier date. The datasets available should also give a complete count of all the 

individuals covered, albeit there may be duplicates. 

 

Population data 

For population data at a national level, exposed to risk is generally derived using a census 

method based on population estimates by single year of age, since data at an individual level 

are not generally available, unless the country operates a population register system. 

 

Deaths data are usually provided on a calendar year basis and hence an exposed to risk by 

calendar year is also required. If population estimates are available at the mid-point of a 

calendar year, as for the UK, these estimates are often taken as the exposed to risk. If 

estimates are available at the beginning and end of a calendar year then these may be 

interpolated to obtain an estimated exposed to risk for that year. Using these assumptions 

effectively assumes a uniform birth rate profile or at least one in which the weighted average 

birthday is the mid-year point.  

 

Calculating exposed to risk using population data provides, to some extent, a different set of 

problems from those encountered when calculating exposed to risk from life office or pension 

scheme data, at least as far as the UK is concerned. 

 

Issues related to deaths data, calculating exposed to risk and mortality rates at the population 

level are discussed in more detail in section 6.2. 
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6.1.2. Derivation of mortality rates  

In order to derive mortality rates, deaths data is required in addition to exposed to risk. 

Mortality rates can be expressed as the force of mortality (or hazard rate) (µx), central death 

rates (mx) or probabilities of mortality/initial death rates (qx). 

 

Often, central death rates are calculated directly from the data by dividing deaths at age x by 

the exposed to risk at age x, or the force of mortality may be derived by fitting a formula to 

the data. There are various approximations commonly used to convert between μx, qx and mx 

values, for example mx ≈ µx+½, µx+½ ≈ -ln(1 – qx) (or alternatively qx ≈ 1-e
-µ(x+½)

) and 

qx ≈ mx/(1+mx/2). These approximations may not be appropriate at the oldest ages due to 

underlying assumptions such as uniform distribution of deaths over the age interval, which (if 

not true) may cause material distortion in these approximations at high ages. The accuracy of 

all these approximations depends on the underlying assumptions about the force of mortality 

and how it changes over age.  

 

Initial rates of mortality (qx) may not be the most appropriate rates to use when considering 

mortality at the oldest ages, especially where these are calculated on annual intervals. Initial 

rates have an upper bound of 1.0. The application of the qx rate may be correct in deriving the 

numbers of deaths for a given number at the beginning of the year of age, but it does not give 

any indication of the periods spent alive for those who die during the year – at the oldest ages 

deaths may not occur in a linear fashion between ages x and x+1. 

 

6.1.3. Data Issues 

There may be errors in the database, whether life office, pension scheme or population data, 

for an individual arising from: 

 Missing date of birth; 

 Misreporting of date of birth; 

 Misstatement of age (if used instead of calculating from date of birth);  

 Missing date of death; 

 Misreporting of date of death; 

 Delay in reporting death; and 

 Non-reporting of death. 

 

In addition, for life office and pension scheme data there may be errors due to deaths being 

assumed in some cases; for example, if bank accounts appear to have become inactive, or no 

contact has been made for several years so the person is assumed to be dead.  

 

Errors in data for in force members will affect the calculation of the exposed to risk. Errors in 

the deaths data will affect the calculation of mortality rates through both the deaths data and 

the exposed to risk. 

 

For cases where a date of birth is not known, a date may have been imputed or an arbitrary 

date may have been assigned. If a death is notified there should be sufficient detail to link the 

death to an in force record in the dataset, even if the reporter does not know the person’s 

details. 
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Late or non-reporting of deaths may occur if it is not known that the person who died had a 

life insurance policy or a pension. At the oldest ages a significant overstatement of exposed to 

risk can occur even if deaths are reported on a timely basis if there are long delays in 

removing them from the ‘in force’ data. 

 

Errors may also occur if data has been transferred from another life office or pension scheme 

or from administration errors. 

 

The effects of age misstatement, which can in turn be linked to errors in dates of birth or 

death, and of late or non-reporting, have been modelled and are discussed later in the paper. 

 

Any of the above errors are likely to have a greater effect on the calculation of exposed to 

risk at the oldest ages than at younger ages, as there are likely to be comparably fewer people 

at those ages in the database. Hence, any error is a greater proportion of those at the oldest 

ages than at younger ages. For instance if a death at age x is not reported (or for some other 

reason that person is not removed from the ‘in force’ database) then that person will 

effectively add a year of exposed to risk at each age as they age through time. These 

‘phantom’ people will have a greater proportionate effect on the exposed to risk at older ages 

as there are fewer actual people alive at those ages; the measured exposed to risk will be 

higher than it should be and this will reduce the mortality rates calculated at these ages. 

 

There may also be issues arising in respect of individuals residing overseas. This would not 

affect the calculation of the exposed to risk or mortality rates unless any deaths were not 

notified or there were longer delays before notification; in theory, deaths overseas should still 

be linked to an in force person.  

 

Data issues such as those discussed above can be one reason why the rate of increase in 

mortality rates calculated from datasets, such as the CMI life office data, often appears to 

reduce or even turn negative at the oldest ages. The possible effects of delays in reporting 

deaths and in calculating ages are discussed in more detail in the next sections of this working 

paper.  

 

Some of the above issues also apply when estimating exposed to risk and mortality rates at a 

population level; these are discussed in more detail in section 6.2. 
 

6.1.4. Delays in death reporting 

Delays in death reporting have a distorting effect on crude mortality rates for two reasons, the 

first being the understatement of deaths in the numerator and the second being the erroneous 

inclusion in the denominator of exposure from unreported deaths. At older ages, given 

proportionately lower exposures and higher death rates, these effects can be material. 

 

As an illustration of this point, we present two scenarios in which we have solved for the 

levels of unreported deaths which would reconcile the crude rates observed in the CMI  

2007-10 pension annuities in payment dataset  (as used for the “08” Series tables) to 

underlying rates given by: 

a) Mortality rates assuming a simple Gompertz law holds (log 𝜇𝑥is linear in 𝑥); and  

b) The mortality rates underlying the graduated rates at older ages (i.e. population data).  
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We have considered a simplified model tied to the crude rates underlying the PMA08 

mortality tables as published in CMI Working Paper 81 with the following assumptions: 

 Modelling period is 2002 to 2012.  

 We have assumed a ‘stationary’ population, say 1,000 lives at age 65 in each year, 

reducing by age according to the assumed underlying mortality rates.  

 Allowance for mortality improvements in line with the CMI_2014 model from 2001 

onwards (no allowance for mortality improvements in earlier years in constructing the 

initial ‘stationary’ population). 

 A proportion of deaths are assumed unreported by the observation date (end 2011).  

 

Given the table is based on experience over 2007 to 2010 and uses deaths reported by 31 

December 2011, we have assumed various delay patterns in death reporting for the period 

2002 to 2011. This assumes that the population is known and defined in 2002 and so there are 

no long term unreported deaths prior to this year. We have then looked at what percentage of 

deaths would need to be unreported to observe the (known) crude rates if the underlying “true 

experience” were i) a Gompertz law or ii) were the graduated rates, as well as showing the 

sensitivity by illustrating the effect of other delay patterns. 

 

These two illustrations are based on the observed experience by amounts, but the results are 

broadly similar (perhaps surprisingly) on a lives basis.  

  

Distortion from Gompertz  

Figure 6.1 illustrates graphically the distortion in shape of a Gompertz curve under several 

death reporting delay scenarios. In order to illustrate this point, we have fitted a simple 

Gompertz curve to log 𝜇𝑥 rates from the crude 𝑚𝑥 rates for ages 65 to 85. The curve has been 

fitted by minimising the unweighted sum of squares of errors in log 𝜇𝑥 and using the 

approximation 𝜇𝑥+0.5 ≈ 𝑚𝑥. We have modelled assumed true experience on these assumed 

mortality rates (shown by the blue line) and then calculated the observed deaths and 

exposures allowing for 3.5% of deaths (from 2002 onwards) to be unreported as at 31 

December 2011 (shown as mortality rates by the red line). The resulting distortion of 

observed experience is seen as the difference between the blue and red lines. The inference 

here, therefore, is that if the Gompertz law held for this group, and the only distortion were 

from late reporting of deaths, one would need 3.5% of deaths to be unreported (since 2002) to 

support the observed 𝑞𝑥 rates (shown by the red line reasonably matching the purple crude 

experience ‘data points’ line). 
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Figure 6.1: Comparison of unreported death scenarios with Gompertz fit and crude 

rates 

 
 

We have considered other less extreme scenarios to demonstrate the sensitivity to the levels 

of death reporting observed over time. Details of these are shown in Table 6.1 and on the 

graph as well as Table 6.2 which shows life expectancies under the various scenarios. 

 

Table 6.1: Proportion of deaths reported by year under scenarios considered 

(Gompertz) 

Scenario / Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Constant 3.5% 

unreported (from 

2002) 

96.5% 96.5% 96.5% 96.5% 96.5% 96.5% 96.5% 96.5% 96.5% 

Constant 3.5% 

unreported (from 

2007) 

100.0% 100.0% 100.0% 100.0% 100.0% 96.5% 96.5% 96.5% 96.5% 

Taper unreported 

3.5% to 100% in 

2006 

100.0% 100.0% 100.0% 100.0% 100.0% 99.1% 98.3% 97.4% 96.5% 

Taper unreported 

3.5% to 100% in 

2002 

100.0% 99.6% 99.1% 98.7% 98.3% 97.8% 97.4% 96.9% 96.5% 
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Table 6.2: Gompertz life expectancies versus levels of late reporting 

  

Gompertz 

Curve 

Constant 

3.5% 

unreported 

(from 2002) 

Constant 

3.5% 

unreported 

(from 2007) 

Taper 

unreported 

3.5% to 

100% in 

2006 

Taper 

unreported 

3.5% to 

100% in 

2002 

Period Life Expectancy  

65 20.33 20.76 20.63 20.51 20.60 

80 9.17 9.56 9.39 9.30 9.38 

90 4.31 4.75 4.49 4.41 4.50 

Percentage difference versus Gompertz  

65 100.0% 102.1% 101.4% 100.9% 101.3% 

80 100.0% 104.3% 102.5% 101.4% 102.4% 

90 100.0% 110.1% 104.0% 102.2% 104.4% 
 

Distortion from Graduated Rates  

The second illustration is similar, but the “true experience” has been assumed to be in line 

with the final PMA08 qx rates, which have been calibrated at older ages to trend towards 

population mortality rates. These rates are higher than the crude rates but decelerate on a log 

scale as can be seen in Figure 6.2. We refer to these rates in this paper as the “graduated 

rates”. For this example we find an assumed non-reporting rate of 2% reconciles the 

underlying mortality rates to the actual observed crude rate. In line with the previous 

illustration, we also show two further sensitivities. Given the assumed level of misreporting is 

lower, we have had to extend the unreported deaths back to 2004 to move the curve 

materially down, and tapering from any year later than 2002 also does not move the curve 

materially. 

 

Figure 6.2: Comparison of unreported death scenarios with Graduated and crude rates 
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Table 6.3: Proportion of deaths reported by year under scenarios considered 

(Graduated) 

Scenario / Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 

Constant 2% 

unreported (from 

2002) 

98.0% 98.0% 98.0% 98.0% 98.0% 98.0% 98.0% 98.0% 98.0% 

Constant 2% 

unreported (from 

2004) 

100.0% 100.0% 98.0% 98.0% 98.0% 98.0% 98.0% 98.0% 98.0% 

Taper unreported 2% 

to 100% in 2002 
100.0% 99.8% 99.5% 99.3% 99.0% 98.8% 98.5% 98.3% 98.0% 

Taper unreported 2% 

to 100% in 2003 
100.0% 100.0% 99.7% 99.4% 99.1% 98.9% 98.6% 98.3% 98.0% 

 

Table 6.4: Graduated Rates Life Expectancies versus levels of late reporting 

  

Graduated 

Rates 

Constant 2% 

unreported 

(from 2002) 

Constant 2% 

unreported 

(from 2004) 

Taper 

unreported 2% 

to 100% in 

2002 

Period Life Expectancy       

65 20.22 20.46 20.43 20.37 

80 8.95 9.17 9.13 9.07 

90 4.10 4.36 4.29 4.22 

Percentage difference versus Graduated Rates  

65 100.0% 101.2% 101.0% 100.7% 

80 100.0% 102.5% 102.0% 101.4% 

90 100.0% 106.3% 104.5% 102.7% 

 

The analysis in Tables 6.3 and 6.4 illustrates that unreported deaths could have a significant 

distorting impact on the 𝑞𝑥 curve at older ages. Of course, the graduated rates would also 

need to be ‘grossed up’ at younger ages for the assumed non-reporting but the effect is less 

marked. 

  

The level of 3.5% required to distort an assumed Gompertz curve to the crude rates observed 

at high ages may be considered a little high, and the level of 2% needed to reconcile the 

graduated rates to the crude observations seems a little more reasonable. We note that an 

initial analysis of the Annuitant experience dataset by the CMI Annuities Committee 

suggested that around 0.9% of deaths are reported 3-4 years after the event and 0.6% 4-5 

years after, so a rate of late reporting of 2% for years 4+ is not implausible (although in our 

central case we assume this level persists). 

 

The analysis also shows that these effects can have of the order of 1-2% impact on life 

expectancy at age 65 depending on the level of distortion assumed, with the impacts being 

higher at older ages. 
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6.1.5. Misstatement of age 

The purpose of this section is to investigate the impact on the mortality curve of misstatement 

of age in deaths and exposures data. Preston, Elo and Stewart demonstrate in their 1997 paper 

that regardless of net over-, symmetric- or understatement of age, misstatement tends to 

underestimate mortality rates at older ages, due to the slope of the age distribution at higher 

ages. This is because erroneous data flowing into older ages will have a larger effect than 

when flowing into younger ages (even if they are proportionately larger) due to the dramatic 

reduction in lives in force as age increases. In the examples below we consider symmetric 

misstatement of age only. 

 

We have looked at the impact of age misstatement on mortality rates using a similar approach 

to that above, repeating both the Gompertz and graduated rates examples. We have looked at 

four scenarios where we allow for a given percentage of the observed deaths and exposures to 

have a misstated age that is uniformly distributed across a predefined age range relative to the 

age in question. We have looked at this analysis across ages 65 to 105 and for ages at the 

edge of the analysis, we have allowed for misstatement to be restricted to the ages in scope of 

the investigation (e.g. for age 67 with a 1% misstatement allowance +/- 10 years, we have re-

distributed 1% of the deaths and exposures to ages 65-66 and 68-77 from those at age 67). 

 

The analysis below shows the distortion to the assumed “true” experience for each of the 

examples. As for late reporting, we have included the impact of the adjustments on life 

expectancies. 

 

Scenarios Considered 

To help inform what a reasonable level of age misstatement might be, we have conducted 

some straw man analyses of date of birth (DOB) corrections resulting from data cleanse 

exercises on a number of large buy-in clients of a bulk annuity provider and due diligence 

findings from checks of dates of birth on system data against those recorded on death 

certificates, with the results shown in Tables 6.5 and 6.6. 

 

Table 6.5: Date of birth changes as a result of data cleanses for 3 schemes 

Data Cleanse Changes to in force DOB Scheme 1 Scheme 2 Scheme 3 

Number of members in scheme 25,693 5,813 8,811 

Number of affected members 16 9 13 

Percentage Affected 0.06% 0.16% 0.15% 

Average Age of affected members 81 72 80 

Average Age of Scheme 75 71 72 

Correct DOB number of years younger (average) 0.66 2.33 2.29 

Correct DOB number of years younger (std dev) 3.75 15.17 4.54 
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Table 6.6: Date of birth errors versus death certificates from due diligence exercises 

Death Certificate checks of random sample of 

deaths 

Insured 

Block 1 
Scheme 4 Scheme 5 

Number of records in sample 109 248 85 

Number of affected members 3 2 1 

Percentage Affected 2.75% 0.81% 1.18% 

Average Age of affected members 83 87 105 

Average Age of Sample 82 89 86 

Correct DOB number of years younger (average) -5 0.5 

No DOB 

in pricing 

data 

Correct DOB number of years younger (std dev) 7.88 0.71 n/a 

 

The levels implied by the data cleanse analysis may understate the occurrence of age 

misstatement since changes to dates of birth are only made as the errors become evident as 

part of business as usual processes. The due diligence results, although much smaller 

samples, indicate a level of misstatement of something closer to 1%, with it being difficult to 

draw a strong conclusion on the spread of age misstatement given the low number of 

samples. In light of these results, we have included scenarios of 1% misstatement with a 10 

and 20 year spread as scenarios at the worse end of the spectrum. 

 

In Figures 6.3 and 6.4 and Tables 6.7 and 6.8, we have included a scenario of 8% age 

misstatement with a spread of +/-2 years as a representation of the level of age misstatement 

observed in Hill, Preston and Rosenwaike (2000) who completed a comprehensive study 

comparing ages on death certificates against social security records in the US. Although this 

is not directly comparable to the UK situation, with dates of birth being recorded on death 

certificates, it is helpful to see this level of “real world” misstatement alongside the other 

scenarios considered. 

 

We have also included a scenario based on analysis of raw data provided to the Club Vita 

dataset (i.e. reflecting the age misstatements typically identified by Club Vita’s routine data 

cleansing). From this we believe a reasonable assumption could be that 0.1% of data contains 

age misstatement which is distributed uniformly across the age spectrum (in our example this 

is ages 65 to 105).  
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Figure 6.3: Comparison of age misstatement scenarios with Gompertz fit and crude 

rates  

 
 

 

Table 6.7: Gompertz Life Expectancies versus levels of age misstatement 

  

Gompertz 

Curve 

8% Age 

Misstatement 

spread +/- 2 

years 

1% Age 

Misstatement 

spread +/- 10 

years 

0.1% Age 

Misstatement 

spread 

uniformly 

1% Age 

Misstatement 

spread +/- 20 

years 

Period Life Expectancy  

65 20.33 20.34 20.34 20.34 20.36 

80 9.17 9.18 9.18 9.18 9.23 

90 4.31 4.33 4.34 4.34 4.40 

Percentage difference versus Gompertz  

65 100.0% 100.0% 100.0% 100.0% 100.1% 

80 100.0% 100.1% 100.2% 100.1% 100.7% 

90 100.0% 100.3% 100.6% 100.5% 102.1% 
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Figure 6.4: Comparison of unreported death scenarios with Graduated and crude rates  

 
 

Table 6.8: Graduated Rates Life Expectancies versus levels of age misstatement 

  

Graduated 

Rates 

8% Age 

Misstatement 

spread +/- 2 

years 

1% Age 

Misstatement 

spread +/- 10 

years 

0.1% Age 

Misstatement 

spread 

uniformly 

1% Age 

Misstatement 

spread +/- 20 

years 

Period Life Expectancy       

65 20.22 20.23 20.23 20.23 20.25 

80 8.95 8.96 8.97 8.96 9.01 

90 4.10 4.12 4.13 4.13 4.20 

Percentage difference versus Graduated Rates  

65 100.0% 100.0% 100.0% 100.0% 100.1% 

80 100.0% 100.1% 100.2% 100.1% 100.7% 

90 100.0% 100.4% 100.7% 100.6% 102.3% 
 

It is clear from the examples above that the key driver of the impact of age misstatement is 

the number of years by which ages are misstated rather than the proportion of records 

affected by age misstatement. Relatively narrow age ranges hardly distort the curves, even if 

a reasonably large proportion of records are affected (see 8% +/- 2 year example). For this 

example, life expectancy at 65 is materially unchanged and reduced by 0.1% at age 80. With 

a large spread and a relatively small proportion affected (0.1% spread uniformly scenario), 

we see again relatively no change in life expectancy at 65 and a 0.1% reduction in life 

expectancy at age 80. 
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The most severe misstatement scenario we have considered (1% +/-20 years) has a 0.1% 

impact on life expectancy at 65, 0.7% at age 80, and 2.3% at age 90. 

 

6.1.6. Interaction between delays in death reporting and age misstatement 

We have attempted to illustrate the interaction between age misstatement and death reporting 

delays given both of these effects lead to a lowering of the mortality curve at higher ages. 

Figure 6.5 looks at a particular scenario of age misstatement and death reporting and 

compares the joint impact. We have found that the results of this analysis are not particularly 

sensitive to the order in which age misstatement and reporting delays are applied. The 

example illustrated in Figure 6.5 and Table 6.9 assumes age misstatement then reporting 

delays. 

 

Figure 6.5: Interaction of age misstatement and late reporting of deaths scenarios: 1% 

Age Misstatement spread +/- 10 years; Constant 3.5% deaths unreported from 2007 
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Table 6.9: Gompertz Life Expectancies versus levels of late reporting and age 

misstatement 

  

Gompertz 

Curve 

Constant 

3.5% 

unreported 

(from 2007) 

1% Age 

Misstatement 

spread +/- 10 

years 

Late 

reporting of 

deaths then 

age 

adjustment 

Period Life Expectancy     

65 20.33 20.63 20.34 20.64 

80 9.17 9.39 9.18 9.41 

90 4.31 4.49 4.34 4.51 

Percentage difference versus Gompertz  

65 100.0% 101.4% 100.0% 101.5% 

80 100.0% 102.5% 100.2% 102.7% 

90 100.0% 104.0% 100.6% 104.6% 

 

Figure 6.5 shows that the age misstatement effects applied after the late reporting of deaths 

adjustments seem to be relatively additive which is confirmed in the life expectancy 

calculations under the various scenarios. 

 

6.1.7. Heterogeneity in high age data 

Section 4.1 introduced the idea that mortality deceleration observed in portfolio and 

population data could be explained by heterogeneity in the underlying data being analysed. 

That is to say that the data is comprised of various homogeneous groups which individually 

exhibit mortality in line with a Gompertz law but when analysed concurrently lead to the 

derivation of a mortality curve which falls away from a Gompertz curve with increasing age. 

 

The purpose of this section is to examine the extent to which this theory can be demonstrated 

using a model population and a real life example. 

 

Heterogeneity in mortality level 

To conduct this analysis we consider a starting population which exhibits mortality in line 

with the Gompertz curve derived in sections 6.1.3 and 6.1.4 using the crude data from the 

PMA08 graduations. We have then considered three populations, the central population 

exhibiting mortality in line with this curve and the other two populations in line with level 

adjustments around this curve. 

 

In line with sections 6.1.3 and 6.1.4, we have assumed our three populations have the same 

number of members alive at age 65 and the annuitants alive at older ages are then derived 

from the assumed underlying mortality rates. 

 

We have considered adjustments to mortality level of + / - 0.5 to log 𝜇𝑥. This example was 

chosen as a relatively extreme difference and gives rise to differences in life expectancy at 

age 65 of around 7 years between the highest and lowest longevity groups. This compares to 

differences in life expectancy between rich and poor of 8 years according to Bennett et al 

(2015). 
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We have created combined mortality curves by summing the derived deaths and exposures 

for each age from each of the three populations for comparison with the underlying three 

curves. In Table 6.10 we set out the life expectancies for each group and the combined group 

as well as the differences in survival and qx curves. 

 

Table 6.10: Gompertz Life Expectancies versus adjustments to log µx and results on qx 

curves of combining all three populations 

  

Gompertz 

graduated qx 

rates 

Gompertz graduated 

qx rates with -0.5 

adjustment to log µx 

Gompertz graduated 

qx rates with 0.5 

adjustment to log µx 

Combined qx 

curve 

Period Life Expectancy       

65 20.34 23.94 16.93 20.41 

80 9.17 11.81 6.89 9.54 

90 4.31 6.01 3.00 4.98 

Percentage difference       

65 100.0% 117.7% 83.2% 100.3% 

80 100.0% 128.8% 75.2% 104.1% 

90 100.0% 139.2% 69.5% 115.4% 

 

 

Figure 6.6: Survival curves for 3 homogeneous populations with level differences 

relative to survival curve from combined experience 
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Figure 6.7: qx curves for 3 homogeneous populations with level differences in µx relative 

to qx curve from combined experience 

 
The survival curves in Figure 6.6 illustrate how the effect of combining the populations 

differs at the younger and older ages with the heavier mortality group dominating at younger 

ages (the combined curve sits below the central case / graduated rates) and the lighter group 

at older ages since most of the heavy group are deceased (the combined curve sits above the 

central case / graduated rates). 

 

It is interesting to see in Figure 6.7 that the combined qx curve fits the crude rates at older 

ages quite well, illustrating that heterogeneity in mortality level could explain some of the 

observed deceleration in the crude rates. 

 

The impact on life expectancy at 65 of the combined curve versus the original curve is low, 

most likely due to the offset between differences at low and high ages. However, the impact 

at older ages is large, with a 4% difference at age 80 and 16% at age 90. 

 

This section has demonstrated that heterogeneity in portfolio and population data is a 

plausible explanation for plateauing of the mortality curve even if the underlying process 

driving mortality of each homogeneous group follows a Gompertz law. Therefore, it would 

seem reasonable to allow for some level of deceleration in mortality curves since actuaries 

are not often able to isolate homogeneous groups when pricing / reserving. 
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6.2. Data and modelling issues for key datasets 

6.2.1. UK population data 

UK population data – exposed to risk 

Gathering and publishing population data for the constituent countries of the UK is the 

responsibility of different bodies; data for England & Wales are published by the ONS, data 

for Scotland by National Records of Scotland (NRS) and data for Northern Ireland by the 

Northern Ireland Statistics and Research Agency (NISRA). Some data at a UK level is 

published by ONS but usually this can only be obtained by aggregating data published by the 

three separate bodies. There can be some differences in data or definitions between the bodies 

for both population estimates and for deaths; for example, arising from differences in the 

registration process. However, whilst this means that data from the different countries may 

not be available on entirely consistent bases, the differences are generally small for the 

purposes of calculating national mortality rates. (Note that for the analyses included in this 

paper, the Working Party has used population data for England & Wales only.) 

 

As discussed earlier, exposed to risk for population data is usually calculated using 

population estimates. For the UK and constituent countries, the exposed to risk for a given 

age in a calendar year is usually taken as the age last birthday mid-year population estimate 

for that year. These, in turn, are based on census data which are rolled forward to future mid-

years by adding in the births, subtracting the deaths and allowing for net migration. This 

gives rise to specific issues, some of which are discussed in Cairns, Blake, Dowd & Kessler, 

(2014). 

 

Estimates of the population at mid-year by sex and single year of age last birthday up to age 

89 and at ages 90 and over are published annually for each of the constituent countries of the 

UK. Additionally, estimates of the mid-year populations by single year of age last birthday 

for ages 90 and over are also published. These are produced using a different methodology 

from that used to roll forward the census data but the resulting age-specific estimates are 

constrained to add up to the rolled-forward estimates of the population aged 90 and over by 

sex. Published data are provided to the nearest ten but estimates to the nearest integer are 

available on request. 

  

If the census population estimates are significantly different from the rolled-forward 

estimates then historical population estimates may be revised following a census.  

 

It should be remembered that these figures are all estimates rather than counts. Whilst the 

registration systems in the UK mean that data on births and deaths are thought to be reliable, 

there are some cases where deaths may not be registered for several months or years (e.g. if 

an inquest is involved). There are no accurate measures of internal or international migration, 

so this introduces an element of uncertainty in the figures; in particular, even if there is 

relatively little international migration at high ages, migration between the constituent 

countries of the UK may have some effect if mortality rates for each country are calculated. 

Even if the movement data used to roll forward were all accurate, the census data itself is an 

estimate, not a count, and is subject to data misstatements, entry errors, imputations etc. 

 

There are likely to be similar problems as for life office and pension scheme datasets with 

‘phantom’ people being included in population estimates. If there are more people estimated 

at age x in one census than there really were in the population at the census date then, even if 
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the data on subsequent deaths and migration were totally accurate, these people would never 

be removed from the database. (This is a slightly different issue from the phantoms in life 

office and pension scheme data which normally relate to people who did exist but were not 

subsequently removed from the database following death.) For the population data there can 

also be ‘negative phantoms’ if fewer people were estimated at the census date than were 

actually in the population. For such a case this could result in deaths at some old age in a 

given year that outnumber the number of people who could have died at that age in that year.  

 

As well as the general issues discussed above, there are other specific issues which affect 

population data, including: 

 The mid-year population estimate may be a poor approximation of the actual exposed-

to-risk, particularly where there is a period of non-uniform births in a calendar year 

(for example, the 1918, 1919 and 1920 birth cohorts).  

 Historical estimates may be revised following a new census; if this is done, the 

methodology used may still give rise to phantoms in the data in past years, as it is 

generally assumed that the previous census figures were correct. 

 The rolling forward of the 2001 census figures to mid-2001 assumed an even spread 

of birthdays during each year at all ages. This is reasonable for years where birth rates 

were relatively stable over the year and from year to year. However, as mentioned 

above, there are some birth cohorts for whom this is not a good approximation. This 

was not an issue for rolling forward the 2011 census to mid-2011 where the actual 

incidence of birth was allowed for. 

 As noted earlier, the method used by ONS for producing population estimates by 

single year of age at ages 90 and over is different from that used to produce 

population estimates at younger ages. This can produce a discontinuity in the 

estimates for ages 89 and 90. It should also be noted that the historical estimates at 

these ages are revised each year when the estimates for the following year are 

produced. 

 

These issues are discussed in more detail in Cairns, Blake, Dowd and Kessler (2014). 

  

UK population data – deaths 

At a national level, deaths in England & Wales have to be registered within five days of 

occurring, except in certain circumstances, such as if a coroner or an inquest is required. 

Deaths resulting from external causes give rise to the longest delays (e.g. transport accidents). 

The situation in Scotland is slightly different as deaths must be registered within eight days 

and deaths can be registered even if a cause of death is not known at the time (this should 

lead to shorter reporting delays with Scottish data).  

 

Hence, in theory, for population data there should be no problems arising from deaths not 

being notified, which might arise in life office or pension scheme datasets. However, there 

are other data issues similar to those for life office or pension scheme data as well as others 

which are specific to population data. 

 

Deaths of those whose usual residence is outside England & Wales are included in the total 

figures for England & Wales but not in any subdivision of England & Wales. Deaths of Her 

Majesty’s Forces occurring outside England & Wales are included whilst deaths to foreign 
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Armed Forces stationed in England & Wales are excluded. ONS mortality statistics exclude 

deaths of all residents of England & Wales that occur and are registered outside England & 

Wales. 

 

Information collected on death registration in England & Wales is recorded on the 

Registration Online (RON) system by registrars. Most of the information is supplied by the 

informant (normally a close relative of the deceased). The date of birth is recorded rather than 

the age at death and, where required, age at death is derived from the data of birth and the 

date of death. Hence problems with age misstatement will only arise in cases where an 

incorrect date of birth (or possibly date of death) is provided or recorded. 

 

The informant must visit the registrar’s office in the district within which the death occurred. 

The registrar will ask the informant to check that the information is correct before the 

registration is submitted. Since April 1997 information can be given to a registrar elsewhere 

(registration by declaration) who will then send the information to a registrar in the district 

where the death took place. Information supplied by an informant is generally believed to be 

correct as knowingly supplying false information may render the informant liable to 

prosecution for perjury. 

 

The registrar is instructed to make the following checks: 

 the death is in their area; 

 the death occurred in the last 12 months; 

 the informant is qualified to give information; 

 the correct medical certificate of cause of death has been used; 

 the certificate relates to the correct person; 

 the certificate has been filled in properly – it is signed, it has not been amended, it has 

the doctor’s qualifications, the last date seen alive and whether the certifier saw the 

deceased after death; and 

 the death does not need to be referred to the coroner. 

 

The register page is signed by the registrar and the informant. 

 

Quarterly checks are carried out on the entries that they are in sequence, there is a medical 

certificate/coroner’s form to accompany each death entry, each entry has been signed by an 

informant (if required) and the registrar and a general check is carried out on any manual 

entries for illegibility, erasures etc. 

 

When data is entered into RON, validation checks are carried out to help ensure the details 

entered are correct. Any issues identified are resolved with the individual registrar. The 

checks include: 

 identification of missing entries; 

 checks for duplicate records; 

 checks for misplaced records; 

 for paper records – that the date of death and date of registration are in the correct 

range and are complete prior to keying in; and 
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 checks on registrars whose returns are not received by the fourth working day after 

the end of each week. 

 

Once on the ONS database, data are passed through a series of automatic validation processes 

which highlight any inconsistencies. Simple validations include examination of dates or 

employment status to ensure they are likely. More complicated checks include checks for 

consistency between dates of birth, death and registration or between age and marital status. 

Further checks are carried out before the annual mortality dataset is finalised; such as 

checking the underlying cause of death is compatible with the sex, frequency checks on a 

range of fields such as age, sex, underlying cause and area of residence.  

 

Deaths data at the national level are published on a registration basis i.e. deaths are allocated 

to the year in which they are registered. This may be later than the year in which they 

occurred, for example for deaths which occur at the end of a calendar year but are not 

registered until early in the following year or, for England & Wales data, because a coroner 

or an inquest is involved. Deaths are also available on a year of occurrence basis. These are 

obtained by taking an extract from the deaths database at a given date; deaths which occurred 

before this date but which are not registered until a later date will not be included in this 

published occurrence data. Hence in general the dataset of registered deaths will contain all 

deaths that have been registered in a calendar year so historically are complete on a 

registration basis, but will contain deaths which occurred in earlier years. Deaths on an 

occurrence basis will contain deaths allocated to the correct year in which they occurred but 

will not be complete, at least for more recent years. 

 

Note that for 1993 to 2005, deaths data in England & Wales were published on an occurrence 

basis rather than a registration basis so there are some issues in using the time series of 

published deaths data for England & Wales; data on deaths on a registration basis are 

available from ONS for these years. 

 

Table 6.11 shows the numbers of deaths registered in England & Wales for 2001 to 2014, the 

percentage of those registered which occurred in the same year and the number of deaths 

which occurred in the year (note that the latter is not a complete count of occurrences in each 

year). As can be seen there is relatively little difference in the numbers of deaths registered in 

a year and those that occurred in a year (for most years the difference is less than 0.5% – this 

is also the case just considering deaths at ages 95 and over). The percentage of registered 

deaths which occurred in the same year has been gradually falling over time although it is not 

clear why this should be happening. 
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Table 6.11: Deaths by year in England & Wales on a registration and occurrence basis 

Year Deaths registered 

in year 

Percentage of 

registered deaths 

which occurred in 

same year 

Deaths occurring 

in year  

(not complete) 

2014 501,424 95.3% N/a 

2013 506,790 95.2% N/a 

2012 499,331 95.9% 499,240 

2011 484,367 95.7% 481,156 

2010 493,242 96.0% 491,449 

2009 491,348 95.9% n/a 

2008 509,090 96.0% n/a 

2007 504,052 96.2% n/a 

2006 502,600 96.5% n/a 

2005 512,993 97.0% 512,692 

2004 514,250 97.1% 512,541 

2003 539,151 97.3% 538,254 

2002 535,356 97.3% 533,527 

2001 532,498 97.1% 530,373 

Source: ONS 

 

Of the 501,424 deaths registered in 2014, 477,752 occurred in 2014, 21,474 occurred in 2013, 

1,655 occurred in 2012 and 543 occurred prior to 2012. 

 

An analysis by ONS of deaths registered in 2011 showed that around 78% were registered 

within five days and 94% within one month of the date of death. Delays in registration varied 

by cause of death, the median delay was around two days for some forms of cancer but 139 

days for deaths from external causes. No information was provided broken down by age at 

death. 

 

Assuming a correct estimation of the relevant exposed to risk, the use of registration deaths 

data will give mortality rates which may be higher or lower than the actual mortality rate as 

not all the deaths registered occurred in that year; the use of occurrence deaths data will 

underestimate the mortality rate as not all the deaths which actually occurred in the year 

would be included in the published data. 

 

Deaths which occurred in England & Wales should all be registered by law; this includes 

deaths of non-England & Wales residents (for years for which a split has been published, 

deaths of overseas residents accounted for between 0.2% and 0.3% of all deaths in England & 

Wales on an occurrence basis). However, as mentioned earlier, deaths of England & Wales 

residents who died outside England & Wales are not included in the data. Hence, the deaths 

data do not always correspond to the exposed to risk as some deaths of England & Wales 

residents are not included, whereas deaths of non-residents who died in England & Wales are 

included. 

 

Some deaths may be allocated an incorrect age, particularly where the informant is not a 

relative of the deceased (for example if the deceased had no family) and the correct date of 

birth is not known. 



 

46 
 

 

Another issue that can cause problems is that deaths data are published by deaths in a 

calendar year by age last birthday at death, whereas the population estimates are published by 

age last birthday at the mid-year. Hence, the age definitions for the exposed to risk are not the 

same as those for the deaths. 

 

6.2.2. The Human Mortality Database 

The Human Mortality Database (HMD) contains mortality rates and life tables for various 

countries and the original raw data (births, deaths, census counts or population estimates) 

from which they were derived. 

 

Various adjustments are made to the raw data to derive data in the same format for each 

country as far as possible by single year of age to 109 and 110 and over. Hence, it should be 

remembered when using data from the HMD that these may have been obtained by adjusting 

raw data, particularly at the oldest ages. 

 

For computing mortality rates and life tables, further adjustments may be made as follows: 

 For the deaths data collected, adjustments are made to distribute any deaths of 

unknown age proportionately across the age range and to split aggregated deaths into 

finer categories. Deaths provided on a calendar year basis are also split into deaths 

within a year by year of birth using a prescribed methodology. 

 Population estimates below age 80, as at 1
st
 January, are either taken directly from 

official estimates or derived using intercensal survival. Above age 80, population 

estimates are derived by the method of extinct generations for all cohorts that are 

extinct and by the survivor ratio method for non-extinct cohorts who are older than 

age 90 at the end of the observation period. Non-extinct cohorts aged 80 to 90 at the 

end of the observation period are obtained either from official estimates or by a 

method of intercensal survival. 

 Exposed to risk during an age-time interval is based on 1 January population 

estimates with a correction that reflects the timing of deaths during the interval.  

 

Further details on the methodologies adopted by the HMD to adjust and clean data are 

available at http://www.mortality.org/  

 

  

http://www.mortality.org/
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6.2.3. Data and modelling issues for CMI datasets 

This section summarises how the data and modelling issues set out in section 6.1 affect the 

CMI SAPS and Annuities datasets, as described in CMI working papers. 

 

Estimation of exposure 

The SAPS investigation uses member by member data (including dates of birth, death and 

retirement as supplied by the actuarial consultancy that submitted the data). Exposure periods 

and ages (for both exposure and deaths) can therefore be calculated using exact day counts 

rather than census methods. 

 

The data underlying the Annuities Committee’s most recent analyses (“08” Series tables) is 

primarily at an individual policy / benefit level, enabling calculation of exposure periods on a 

day count basis. 

 

Derivation of the force of mortality 

The SAPS graduations use central exposed to risk (calculated using exact day counts as noted 

above), and assume that deaths follow a Poisson distribution. First, the force of mortality is 

fitted to the data. Then, initial rates of mortality are derived from the fitted force of mortality 

using the formula: 

 
 

and approximating the integral using Boole’s rule, i.e. 

 

 
 

The “08” Series use a consistent approach, noting that those graduations fit central rates of 

mortality, and it is then assumed that mx equates to μx+½. 

 

Delays in death reporting 

The SAPS investigation deals with delays in death reporting by excluding data relating to the 

period 30 days prior to the extract date. CMI Working Paper 65 includes a description of an 

investigation into the impact of this assumption, and concludes that there was no evidence to 

suggest that extending the 30 day exclusion period would give significantly different results. 

 

The data underlying the “08” Series tables is assumed to have negligible under-reporting of 

deaths as it relates to deaths incurred in 2007-2010 and reported by 31 December 2011. 

 

Duplication 

The data underlying the “08” Series tables has very limited de-duplication applied. Offices 

supplying data were asked not to remove duplicate policies; however, it was not possible to 

combine duplicate deaths and exposures for lives with multiple policies across offices or even 

– in many cases – within an office. 
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7. Mortality of closed cohorts 
 

7.1. Pattern of high age mortality by age 

We have assessed the accuracy of the mid-year population estimates for England & Wales, as 

reported by the ONS and the HMD. This enables us to further assess the impact of data issues 

and modelling assumptions on population mortality.  

 

We have considered registered deaths for cohorts of older lives for the England & Wales 

population where we believe the cohorts are essentially extinct (i.e. all lives in the cohort 

have died); we refer to these as “closed cohorts”. To that extent, we have looked at the deaths 

registered for all cohorts in the England & Wales population that have reached at least their 

110
th

 birthday. Cohorts that have not yet reached their 110
th

 birthday are deemed to be 

incomplete in terms of mortality records and have not been considered further, to avoid 

making assumptions about the mortality of incomplete cohorts.  

 

Where a cohort is known to be completely (or nearly) extinct, we can estimate populations 

directly from recorded deaths. This provides a different estimate of population than using 

ONS population estimates which are linked to census information. The latter approach 

quickly becomes out of date, as census surveys are only performed every 10 years, leading to 

retrospective adjustments to population estimates.  

 

Past population estimates for different cohorts are estimated by recursively adding back 

registered deaths at each age. For a given cohort aged x in calendar year y, we have used the 

following formulae:  

 Population for age x in calendar year y = Px,y 

 Deaths for age x in calendar year y = Dx,y 

 Pmax,y = Dmax,y, where max reflects the highest age banding used – for the ONS this is 

age 125+, for the HMD this is age 110+ 

 Px,y = Px+1,y+1 + Dx,y. 

 

The extinct generation approach assumes: 

 The recording of deaths is accurate and complete. We note however that the data is 

subject to the quality issues set out earlier in this paper.  

 There is no international migration. We believe net migration for England & Wales is 

low at old ages, and we expect migration to be negligible at very old ages. 

 

Key data issues include territorial changes over time, significant war mortality and estimation 

of military population, and changes in recording and validating deaths over time. These have 

not been addressed in our investigation, but may be considered for further analysis. 

 

The extinct generation method returns the population at the start of each year and hence 

naturally provides qx rates. We have also determined crude mx from ONS data, and converted 

those to qx rates using the approximate formula: qx ≈ mx / (1+mx/2). This is necessary for 

comparison purposes, as the ONS population estimates are at mid-year. This approach 

enables us to compare the mortality estimates on a like-for-like basis.  

 



 

49 
 

 

We present below mortality rates as implied by closed cohorts under the extinct generation 

method approach relative to mortality as implied by the death and mid-year population 

estimates as provided by the ONS and HMD. We have presented mortality for males and 

females separately, with heat maps showing the relative mortality differences for each age 

between 60 and 95 for the period 1961-2003. We have focused on ages up to 95 to remove 

the increased volatility observed from conducting an extinct generation approach to very 

small numbers.  

 

The ONS and HMD record (almost exactly) the same numbers of deaths by gender and by 

individual age. However, the ONS and HMD apply different approaches to determining the 

mid-year population estimates at very high ages (in addition to slightly different approaches 

overall): 

 The ONS currently publishes population estimates by single year of age up to age 90, 

with a final category for ages 90 and above. They then apply a Kannisto-Thatcher 

approach to effectively consider the ratio of the number of survivors belonging to a 

cohort still alive against that of a cohort where the lives have died in the last few 

years. By making an assumption about the maximum age that everyone in a cohort 

lives to, the ONS then apply an algorithm to apply survival ratios that will return 

estimates of the number of lives in each cohort alive at earlier ages. These estimates 

are then constrained to the official mid-year population estimate of the total England 

& Wales population aged 90 and over. The over-90s estimates are revised each year.  

 The HMD takes a different approach to modelling population exposures above age 

80, as follows. For all cohorts that are extinct, population estimates are determined by 

the method of extinct generations. For non-extinct cohorts who are older than age 90 

at the end of the observation period, the survivor ratio method is used. To reflect that 

different cohorts may observe different mortality trends, there is a further scalar 

adjustment to ensure that the official population at age 90 is reproduced by the 

survivor method. For non-extinct cohorts aged 80 to 90 at the end of the observation 

period, population estimates are obtained by applying the method of inter-censal (or 

post-censal) survival. Acknowledging that recent mortality rates have been reducing 

and that survival ratios change over time, an adjustment is applied so that the official 

estimate of the population size for age 90 and above is maintained. This last feature 

means that for non-extinct cohorts the level of the population is the same as the ONS 

but that the shaping by age will be different.  

 

Note that, in its analysis, the Working Party sought to replicate the application of the HMD 

methodology to ONS data but we have not yet been able to fully reconcile this; as a result the 

conclusions set out in this section should be regarded as provisional. 

 

Both the ONS and HMD approaches apply a form of survival ratios. The HMD approach 

applies extinct cohort mortality direct from the death information where all lives belonging to 

a cohort are known to have died.  
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Figure 7.1: Comparison of extinct generation mortality against ONS estimates 
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The four graphs in Figure 7.1 compare the historical mortality rates for England & Wales 

determined using the extinct generation approach against the ONS and HMD approaches for 

males and females. Warmer colours (brown/orange) represent higher extinct generation 

mortality rates, whereas colder (blue) represent higher ONS (or HMD) mortality. The pale 

blue triangle in the bottom right of each graph represents cohorts that have not been 

considered as their cohorts are not yet extinct. 

 

We can observe a number of key features from these graphs: 

 There are strong cohort features, as demonstrated by the diagonal cohort lines. 

 ONS mortality is higher than extinct generation mortality for ages 85+ prior to 1969, 

and lower after this point. The CMI Mortality Projections Committee reported on this 

age range’s data, including data errors that have not been retrospectively corrected, 

and excluded calendar year data prior to 1974 from the CMI_2014 version of the CMI 

Mortality Projections Model for this reason. This analysis confirms the data anomaly, 

and supports the decision to exclude this data. 

 Broadly speaking, for recent years as age increases the extinct generation returns 

higher mortality and the gap between extinct generation and ONS increases with age.  

 The difference between the approaches is more pronounced for males above age 90 

than females. In recent years, mortality for ages 90 and above is typically greater than 

5% above ONS, whereas for females it is typically around 1-2%. 

 The difference between extinct generation and ONS approaches tend to increase 

during each decade (i.e. the colours show larger differences late in the decade than 

they do early in each decade). This is consistent with census inaccuracies underlying 

the ONS data increasing (in relative terms) as census data is projected over the course 

of each decade. 

 We can observe that the wider differences observed in the ONS heat maps are not 

present in the HMD heat map analysis, confirming that the HMD approach adopted is 

a closer fit. We would expect the HMD mortality rates to be close to our own analysis 

given the HMD’s approach to using a similar approach for extinct cohorts. There do 

remain some small cohort differences, as shown by the diagonal lines.  

 

In their paper ‘Phantoms Never Die’ (2014), Cairns, Blake, Dowd and Kessler have assessed 

the level and shape of high age population mortality within the ONS data. They explored the 

use of concavity functions to describe how consecutive high ages deviate from linearity. If 

the log of death rates is linear then the concavity function should stay close to zero with no 

systematic bias exhibited either above or below. They concluded two potential features in 

population estimates. The first is that the mid-year population estimates for cohorts born 

immediately after the end of the First World War do not appear to be reasonable estimates for 

exposures given the non-uniform birth profile that occurred for these lives. The second was 

that the Kannisto-Thatcher approach employed to estimate populations for individual ages 

above 90 does not fit smoothly to individual age population estimates. 

 

Both the Cairns et al and our own analyses indicate that there would be merit in considering 

the accuracy of the ONS population data further, with a particular focus on the mid-year 

population estimates as a proxy for exposure. This may result in recommended revisions to 

population estimates. Once this work has completed, we intend to then consider the historical 
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mortality trends at high ages, and the implications for the CMI Mortality Projections 

Committee in its modelling of mortality improvements. 

 

7.2. Time trends in high age mortality for closed cohorts 

7.2.1. Background 

The purpose of this analysis is to look at available data and investigate whether evidence 

exists of trends in mortality at very high ages. The analysis is separated out into 

nonagenarians (lives aged 90-99) and centenarians. 

 

Method 

In a similar vein to the previous section, we have used deaths registration data from the ONS 

for closed cohorts to construct lx tables. In contrast to the previous section, we have assumed 

that cohorts that have not yet reached their 116
th

 birthday are not closed and so have not been 

considered in this analysis. 

 

We have constructed lx tables starting from age 100 and also starting from age 90 by working 

backwards from the deaths data, in a similar way to the approach followed in section 7.1. 

 

Summary of data 

We have used the ONS deaths data by single year of age at death for England & Wales 

covering the period 1963 to 2013. We have 146,634 male and 526,527 female deaths aged 90 

and above spanning the 15 birth-cohorts to 1898. We have 5,333 male and 37,897 female 

deaths aged 100 and above spanning the 25 birth-cohorts to 1898. 

 

Both centenarian and nonagenarian populations have been steadily increasing, particularly 

females, as can be seen in Figures 7.2 and 7.3 which set out the number of lives reaching age 

100 and age 90, respectively, from the oldest to the youngest birth cohorts. 
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Figure 7.2: Number of lives who reached age 100 in birth cohorts from 1874 to 1898 

 
 

Figure 7.3: Number of lives who reached age 90 in birth cohorts from 1884 to 1898 
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7.2.2. Median age at death 

To investigate whether mortality rates at the highest ages have changed over time, we have 

looked at the median age at death through time for those who have reached age 100 and age 

90 respectively within the closed cohorts being considered. By comparing the progression of 

median age at death through time for both groups we can observe whether mortality rates are 

changing and compare any differences between the 90+ and the 100+ groups. 
 

We assume a uniform distribution of deaths between two integer ages. To calculate the 

median age, we have interpolated between the relevant ages such that the median life sits 

between the respective lx and lx+1. For example if 1000 people died over age 100 (l100 =1000), 

the median life would be life 500. If l101 =700 and l102 = 400, the median age at death would 

be 101.67. 

 

We have considered the median age of death for centenarians and for those reaching age 90 

and set out the results in Figures 7.4 and 7.5, noting that we consider a lower number of birth 

cohorts for those reaching age 90. 

 

Figure 7.4: Median age at death for those who reached age 100 in birth cohorts from 

1874 to 1898 

 
 

If we compare the average of the figures for 1874-1885 to the figures for 1886-1898 we see 

that both male and female median age at death have increased by 1 month. From this it does 

not appear that centenarians have seen a significant improvement in survival probabilities 

after age 100.  

 

We now turn our attention to nonagenarians. In Figure 7.5, we see a more stable trend due to 
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This could mean that mortality improvements in ages under 100 have been higher than those 

over age 100. 
 

Figure 7.5: Median age at death for those who reached age 90 in birth cohorts from 

1884 to 1898 

 
 

7.2.3. Probability of Survival 

As an alternative way to look at how mortality rates at older ages have progressed over time 

we have analysed the probability of survival from ages 100 to 105 and ages 90 to 105 for the 

closed cohorts under consideration. In order to quantify confidence intervals around these 

probability of survivals we have assumed that the number of survivors X for a given birth 

cohort to age 105 follows a Binomial distribution with number of trials l100 and probability of 

survival p≈
𝑙105

𝑙100
. 

 

The standard error of the survival probability can therefore be estimated as: 

√
𝑝(1 − 𝑝)

𝑙100
 

 

The 5-year survival probabilities after age 100 (determined directly from the extinct 

generation death rates) are shown in Figure 7.6 together with the 95% confidence intervals. 

The interval for males is wider than for females because there are fewer males at the starting 

age 100. 
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Figure 7.6: Probability of survival to age 105 from age 100  

 
 

In line with the analysis of median age at death, it is difficult to conclude that the survival 

probability has changed much between birth cohorts. Figure 7.7 sets out the probability of 

surviving from age 90 to 105. 
 

Figure 7.7: Probability of survival to age 105 from age 90 
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For each of the 15 cohorts analysed, the chance of a 90 year-old reaching age 105 does not 

appear to have improved for males whilst there seems to have been a marginal increase for 

females, with the increase in survival probability being of the order of 0.1%.  

 

7.2.4. Conclusions 

These results show no clear evidence for a material change in mortality patterns for England 

& Wales centenarians born between 1874 and 1898.  

 

For those who have reached age 90, we see modest improvements in the median age at death 

and the survival probability from age 90 to 105 for females. For males we see a smaller 

increase in the median age at death and broadly no change in survival probabilities.  

 

It should be appreciated that a simple model has been used here. For example, the survival 

analysis combines mortality across a range of ages, and as such may not reflect the changing 

shape of mortality by age. The Working Party is considering exploring time trends building 

on its work in section 7.1 as part of further activity in this area. 
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8. Do mortality rates converge with age? 
 

Datasets often show heterogeneity at younger ages expressed as differences in absolute levels 

of mortality. We now consider the issues that readers may wish to take into account when 

deciding how far to extend this heterogeneity into the oldest ages. 

 

Distinction needs to be made when drawing conclusions about convergence between 

(heterogeneous) “populations” and “individuals” as we can have divergence in relative 

mortality between individuals yet still see convergence with age for the population as a 

whole.  

 

For example, in section 6.1.7 we considered a hypothetical example where the combined 

experience of three homogeneous populations with mortality level differences at all ages 

converged to the lightest mortality group curve. This demonstrated that observing 

convergence could be driven in part by the survival of lives who are the least frail, despite 

starting with heterogeneous populations with no old age convergence. 

 

We now consider the theories for and against this.  

 

Arguments for convergence 

We cite possible reasons for convergence as provided by Hoffmann (2008): 

1. Biological ageing acts as a leveller of social differences because biological processes 

assume dominance over social determinants and eventually everyone must die 

regardless of social circumstance. 

2. The welfare state reduces old age socio-economic inequality through benefits and 

policy. 

3. The effects of experiences from earlier life (i.e. working conditions) fade out. 

4. The observed mortality differences get smaller in old age but only on the aggregate 

level because the surviving population is more homogeneous than in the younger ages 

where there is more unobserved heterogeneity - selective mortality. 

 

Arguments against convergence 

Hoffmann also gives arguments against convergence. These seem plausible too: 

1. The effect of past unhealthy experiences is postponed until older ages. 

2. There is a mutual accumulation of disadvantages in health and social status resulting 

in a “health stock”. 

3. Vulnerability increases in old age and makes differential exposures more harmful. 

 

Results from different datasets 

In Appendix C we investigate whether we observe convergence in different datasets by (1) 

socio-economic circumstance or levels of deprivation, (2) pension size, (3) health status at 

retirement, (4) lifestyle choices and (5) education. 
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Summarising these results we see:  

1. Social deprivation and socioeconomic circumstance – little evidence for convergence 

by social deprivation but some mortality crossover. Data by socioeconomic 

circumstance shows convergence. 

2. Pension size – clear evidence of convergence by pension size with some crossover. 

3. Health status at retirement – clear evidence of convergence by health status with some 

crossover. 

4. Lifestyle choices – evidence of convergence between smokers and non-smokers. 

5. Education – conflicting evidence for convergence. 

 

Conclusion 

The majority of datasets we have presented show convergence. If we believe the population 

becomes more homogeneous with increasing age then we should consider the empirical 

results observed at these oldest ages. 

 

On the other hand some may believe there is still some underlying heterogeneity even at the 

oldest ages. This point of view would not necessarily contest any observed convergence as 

that would be explained by the observed rates quickly becoming dominated by the experience 

of the lives with the lighter mortality. If they used these converged rates they would expect to 

overstate life expectancy for the heavier mortality lives that happened to be alive at the oldest 

ages as section 6.1.7 demonstrates. 

 

This dilemma suggests we should avoid choosing a run in age that is too low otherwise 

heterogeneity can distort the results. By run in age we mean the age at which we start to 

converge to the level of the population mortality or a formula based extrapolation. Longevity 

actuaries might consider graduating to their own data as high up the age curve as possible in 

preference to using a hypothetical curve providing they have sufficiently credible data. 

Section 5.4 discusses options here.  
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9. Implications for modelling and graduating high age mortality  
 

We hope that this paper serves as a starting point with which to consider the implications for 

modelling and graduating high age mortality. The paper has focused on collating recent and 

past research for this topic to provide an initial point from which we intend to expand our 

modelling.  

 

The key findings from our analyses to date are: 

 There are various issues with the data quality for all the data sources which might be 

used to model mortality at the oldest ages. It is not immediately clear how much the 

differences in results might be due to data issues. As such, it is difficult at this point to 

make any recommendations on a preferred approach or approaches to modelling 

mortality rates at the oldest ages. However, the differences in the resulting mortality 

rates derived using different models are generally not material except at the very 

oldest ages. Hence, it is unlikely that any one approach would produce results which 

are materially different from another except at the oldest ages. Given this and the data 

issues mentioned above, the Working Party does not feel that the choices made to 

extrapolate mortality rates at the oldest ages in recent graduated CMI tables were 

unreasonable. 

 Analyses of historical mortality from extinct cohorts imply that mortality for the 

England & Wales population above age 90 as published by the ONS has been 

underestimated by around 5% for males and about 1-2% for females in the period 

considered. We understand the underestimation of mortality to be driven by 

overestimation of population exposures at very high ages. The Working Party intend 

to consider this feature further in the next phase, including the potential impact on 

both current (base) levels of mortality and on the use of revised estimates on future 

mortality projections. Please see section 7.1 for further details. 

 There is wide variation in the level and shape of mortality assumed at high ages under 

different tables published by the CMI, the ONS and North American actuarial 

associations. If the ranges of methodologies typically adopted are applied to the data 

underlying the S2PML tables then we observe a variation of -4.1% to +0.4% in cohort 

life expectancy (or -3.7% to +0.3% in annuity value with a 3% discount rate) for a 

male aged 90. Impacts are smaller at age 65, being -0.4% to +0.1% on cohort life 

expectancy and -0.2% to +0.0% on annuity value. Please see section 5.5 for further 

details. 

 The debate on whether the shape of mortality at high ages is exponential or exhibits 

signs of mortality deceleration is inconclusive. The S2PML tables effectively assume 

mortality deceleration occurs. The impact on cohort life expectancy for a male aged 

90 of instead adopting a Gompertz mortality shape at high ages is -2.5% to -0.5% (or 

a -2.0% to -0.4% impact on annuity value). Again, impacts are smaller at age 65, 

being -0.4% to -0.1% on cohort life expectancy and -0.2% to -0.0% on annuity value. 

Please see section 4.2 for further details. 

 We have modelled scenarios considering the impact of late reporting of deaths at high 

ages. The potential impact on annuity values and life expectancies for a male aged 65 

if late reporting is understated is typically in the region of +1% to +2% (and can be as 

high as +5% to +10% at age 90 in some of the scenarios considered). The delay in 
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reporting deaths has a more material impact at very high ages where the higher rate of 

mortality will have a bigger impact on restating exposures once all deaths are known. 

Please see section 6.1.4 for further details. 

 We have modelled scenarios considering the impact of age misstatement. This 

suggests the potential impact on annuity values and life expectancies for a male aged 

65 from age misstatement is in the region of 0.0% to +0.1% (and up to +0.5% to 

+1.0% for a male aged 90). We have considered the impact of date of birth 

corrections from data cleansing of large buy-in clients of a bulk annuity provider in 

constructing these scenarios. The impact varies by the range of age misstatements. 

Please see section 6.1.5 for further details. 

 

We hope that the areas explored in this paper provide some useful reference for readers 

considering high age mortality. Each reader will need to consider how each of the areas 

explored in this paper might impact their own portfolio or population of lives given their 

quantity and quality of data, age profile, and product terms, as well as the impact of applying 

expert judgment in this area. 

 

Areas of future research are set out in section 10 of this paper.  
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10.  Future research 
 

The High Age Mortality Working Party intends to explore further modelling impacts. These 

include: 

 Population mortality at high ages: we intend to consider further the appropriateness of 

estimated mortality for the England & Wales population. In their 2014 paper, 

‘Phantoms Never Die: Living with unreliable mortality data’, Cairns et al indicate 

issues associated with the ONS re-stating their point estimate for population 

exposures above 85 across all high ages using extinct generation methodologies. 

There are also concerns around the mid-year population estimates for particular 

cohorts, most notably for lives born just after the end of the First World War. We 

intend to explore these areas further and consider the appropriateness of the ONS 

approach and whether there are more appropriate alternative approaches. We will also 

explore whether there are any other datasets, such as longitudinal studies, which may 

provide additional useful information. 

 Mortality trend: this paper focuses on issues that may affect historical and recent 

levels of mortality. We intend to explore how the analysis described above might help 

inform a time analysis of mortality trends, in particular for assisting the CMI 

Mortality Projections Committee with their modelling at high ages.  

 International comparators: we also intend to extend our analyses to consider other 

territories and consider where similar features, or otherwise, are observed relative to 

the England & Wales population.  

 Mortality convergence: we intend to consider the case for mortality convergence 

between groups of lives at very high ages. 

 Mortality table construction: we recognise that this topic is of interest across the CMI 

committees. We intend to consider proposing approaches to graduating assurance, 

annuitant and pensioner mortality rate tables for the oldest ages. 

 Seasonal mortality: we intend to consider the seasonal shape of mortality at the very 

high ages and how this differs relative to other ages. 

 High Age mortality datasets: we intend to consider working further with CMI 

committees on the data issues and modelling features raised within this report, namely 

late-reporting and age of death reporting. 

 

Our intention is to produce a follow-up paper considering these themes in 2016. 

 

We welcome feedback both on this paper and our intended plans. We can be contacted at 

HighAgeMortality@cmilimited.co.uk. 

 

 

  

mailto:HighAgeMortality@cmilimited.co.uk
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Appendix A Terms of Reference 
 

The CMI High Age Mortality Working Party was established in May 2014 with the Terms of 

Reference listed below. 
 

1.   Context setting 

– Broad indication of potential financial impact of misestimation of high age mortality 

– Data volumes required for credible assessments of high age mortality. 

 

2.   Investigate and summarise published research on high age mortality, including 

– The report of the CMI Graduation and Modelling Working Party 

– Commenting on likely absolute mortality rates at very high ages (compared with, for 

example, μ120 = 1 for the “S1”/“S2” Series tables) and the uncertainty around these 

estimates 

– Commenting on data and modelling issues particular to high age mortality data, for 

example: IBNR, data quality 

– Whether there is convergence with age (i.e. rates start to plateau) 

– Variation by sex, locale and socio-economic type (if any) 

– How high age mortality might vary in the future (noting the run-off to zero rates of 

change at high ages in the current CMI Mortality Projections Model) 

– Whether variation by socio-economic type at earlier ages adds materially to the 

uncertainty surrounding high age mortality extrapolation 

– Possible data sources for further investigation, with particular (but not exclusive) 

attention to the UK. 

  

3.   In relation to existing data sources used by the CMI (SAPS, insurers, ONS) 

– Issues with existing data sources specific to high age mortality, for example: ONS 

high age mortality methodology; effectiveness/prevalence of existence checking 

methods (current and past) 

– Determine what data the CMI could request from them that would assist with 

understanding high age mortality 

– Outline any selection criteria or other tactics the CMI might apply in order to reduce 

the scale of the data collection problem 

– Outline specific analysis that could be undertaken given that data. 

  

4.   New research / analysis 

If/once the CMI has the data from 3 above, carry out the proposed analysis or such other 

analysis as appears appropriate with the objective of providing general guidance to CMI 

committees on how to incorporate high age mortality in their graduations and models. 
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Appendix B  Graduations and extensions to the oldest ages 
 

A wide variety of approaches have been used in the past for both graduating mortality rates 

and extending these to the oldest ages where the data are more scarce or less reliable. Three 

general approaches for extending graduations to the oldest ages are discussed in CMI 

Working Paper 77, namely: 

 Using the same model as was used for the graduated age range. Some models will 

produce better results than others 

 Blending the old age mortality rates into those from another known table. This would 

depend on a suitable known table being available. 

 Applying a ‘bolt-on’ approach using a different formula for the older ages. This will 

typically be made to satisfy constraints of continuity and smoothness at the join and 

also to provide trajectories at the oldest ages which are thought plausible (e.g. that 

male mortality rates will be higher than female mortality rates for the same population 

type at all ages). 

 

Extrapolation techniques 

Thatcher, Kannisto and Vaupel (1998) provides a very good introduction to a number of 

alternative models for high-age mortality. The authors consider 7 models, which they 

describe as: 

 Gompertz: μx = ae
bx

 

 Makeham: μx = c + ae
bx

 

 Logistic: μx = c + ae
bx

/(1+ αe
bx

) 

 Kannisto: μx = c + ae
bx

/(1+ ae
bx

) or logit(qx)=ln(a)+bx 

 Weibull: μx = ax
b
 

 Heligman & Pollard: qx = ae
bx

/(1+ ae
bx

) or logit(qx)=ln(a)+bx 

 Quadratic: ln(μx) = a + bx + cx
2
 

 

Excluding the Makeham model, as it is broadly the same as a Gompertz model at high ages 

the above six models were fitted using a maximum likelihood method to data for ages 80 to 

98 collected from 13 countries (western European plus Japan) for the period 1960 to 1990. 

The resulting rates for ages 99 to 109 were compared against the observed values. The 

authors conclude that the Gompertz model gave estimates which were furthest away from the 

observed values followed by the Weibull model and then the Heligman & Pollard model. The 

other three models gave results far closer to the observed values. 

 

Whilst the quadratic method is pragmatic it has little theoretical support and will usually fail 

at some ages; as the coefficient of the x
2
 term will typically be negative, due to mortality 

deceleration (as described in section 4.1) resulting in mortality rates decreasing above some 

age. 

 

The logistic model is more general than the other models and will work in situations where 

the others do not fit the data sufficiently well. It also has some explanatory backing; for 

example, it results from assuming that individuals are subject to the force of mortality in the 

form of Makeham’s law but with the parameter a varying between individuals such that they 

have a gamma distribution at birth. 



 

67 
 

 

The Kannisto model is a special case of the logistic model which works if the constant c in 

the logistic model is small, the function µx can be fitted reasonably well by a function which 

tends to 1 and that the sex ratio of mortality rates is close to 1 at high ages. If these conditions 

hold it is easy to fit as it has one fewer parameter than the logistic model. 

 

The paper concludes that the best models are the logistic model and its Kannisto 

approximation. On the data used for the analysis the fitted logistic model gave an estimated 

value of µ120 of between 0.7 and 1.0. 

 

The favoured models all assume mortality decline (i.e. mortality rates increase more slowly 

than log-linearly at the highest ages). The element of shape by age is a recurring 

consideration in papers looking at high age mortality. However, not all authors agree that 

there is mortality decline at the oldest ages. 

 

It should also be remembered that the results will be sensitive to the data and that results 

which held in 1998 may no longer do so (and some which performed less well may perform 

better) for more recent data. In particular, the Kannisto method assumes that μx tends to 1 

(and hence qx tends to around 63%). This may be a pragmatic solution that works with certain 

datasets and at certain times, but should not be expected to hold in general. 
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High age extensions in graduated tables 

As referred to in section 4, the table below summarises the high age extension approaches used in a variety of UK and North American tables. 

 
Table Description Comments Summary of high age approach / constraints 

ELT17M Based on population data from 

England and Wales, ELT17, 

ELT16, ELT15 and ELT14 

reflect experience over the 

periods 2010-12, 2000-02, 

1990-92 and 1980-82 

respectively. 

A set of models are derived depending on a choice of threshold age, 

x0, where the model transitions to the assumed model for old age 

mortality with a choice of a Gompertz or logistic model for the old 

age mortality. For both models, the graduated mortality rates for x 

< x0 are provided by a generalised additive model.  

 

Each model is then evaluated on the basis of how well it predicts a 

set of data (the validation data) using a separate set of data (the 

training data). In this case the number of deaths by age for 2010 

and 2012 formed the training data and the numbers of deaths for 

2011 the validation data. Probabilities are then computed, which 

account for the extent to which the data support different values of 

threshold age, x0, and each of the two models, using a Bayesian 

approach. The final graduations of mx then represent a weighted 

average of the values produced by each model and threshold age. 

This method is carried out separately for males and for females. 

Extension based on weighted average of values 

produced by Gompertz and logistic models with a 

range of transition ages. Probabilities for each model 

and transition age computed using a Bayesian 

approach based on actual data. 

ELT16M Uses data covering ages up to 108. Graduated mortality rates are 

determined using a variable-knot spline regression approach. There 

is no separate high age extension methodology; high age values are 

determined directly from the spline regression (with a high age 

constraint of m120=2). With the exception of age 103 (where the 

crude qx looks surprisingly low) the fitted rates adhere closely to the 

crude data. 

Continuation of graduation (with constraints) 

 m120 = 2 

ELT15M Used data covering ages up to 103. Was extended above age 103 by 

extrapolating a linear regression of ln(qx/(1-qx)) fitted from age 85 

to 103. 

Extension using logistic regression above age 103 

 Extrapolation of a linear regression of  

ln(qx/(1-qx)) fitted from age 85 to 103 

ELT14M Used data covering ages up to 99. The crude qx at ages 95 and 

above appear surprisingly low – in that they do not follow the usual 

pattern of qx increasing with age – which is suggestive of data 

distortions at higher ages. As a result was extended above age 92 

using a cubic polynomial fitted around the join and a constraint of 

m105=0.75.  

Extension using cubic polynomial above age 92 

 value, first and second derivatives at age 92 equal 

to those of quadratic defined by m90, m91 and m92 

 m105 = 0.75 
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Table Description Comments Summary of high age approach / constraints 

CPM2014M Published by the Canadian 

Institute of Actuaries, these 

tables are based on Canadian 

registered pension plan 

experience over the period 1999 

to 2008, projected to 2014. The 

tables are amounts based. 

Graduated using amounts data up to age 100. The graduated table is 

markedly lighter than the crude mortality rates; this is due to the 

data (centred around early 2004) being projected to 2014 before 

being graduated. The 95% confidence intervals around the crude qx 

increase markedly above age 95 (reflecting the lower volumes of 

data at those ages) and decrease in value at age 100, consistent with 

data distortions at higher ages (although as data is only published at 

sample ages this could just be statistical volatility). 

 

From age 103 to 114 the high age extension reflects a graduation of 

the broader Canadian population; at ages 95 to 102 a quartic 

polynomial is used to blend from the graduated rates to the high age 

rates. 

Extension using quartic polynomial for ages 95 to 

102 and a graduation of population data from age 

103 to 114 

 Quartic polynomial constrained to match 

graduated rates at ages 92, 93 and 94 and 

graduated population data rates at ages 103 and 

104 

 Canadian population data graduated from age 95 

to 110 using Whittaker-Henderson approach. 

RPH-2014M These tables are published by 

the Society of Actuaries’ 

Retirement Plans Experience 

Committee and are based on 

uninsured private pension plans 

in the United States. The RP-

2000 and RP-2014 tables reflect 

experience over the periods 

1990-94 (projected to 2000) and 

2004-08 (projected to 2014) 

respectively. The tables are 

primarily amounts based, 

although in the case of the RP-

2014 series a headcount based 

variant is also produced and that 

has been used for the 

comparisons in Section 4. 

Both RPH-2014M (the headcount based variant of the RP-2014M 

table) and RP-2000M are graduated using data up to age 100. The 

RP-2014M graduated table is lighter than the crude mortality rates; 

this is due to the graduated rates incorporating a projection to 2014 

(whereas the data is centred around 2006). This feature is not 

apparent in the RP-2000M table, despite the rates being projected 

from 1992 (the central year of the underlying data) to 2000. 

 

In both cases high age extensions provides qx values from ages 101 

to 120; RPH-2014M uses a Kannisto regression, capped at a qx of 

0.5 and with Lagrange smoothing to blend into the graduation and 

RP-2000M uses a cubic then level extension designed to reach a qx 

of 0.4 with a slope of 0 at the join. Both extensions provide qx 

values appreciably lower than ELT16M. 

Extension using Kannisto regression above age 

100, capped at a qx of 0.5 

 Kannisto regression (of crude μx) fitted over age 

range 75 to 104, using weighted nonlinear least 

squares procedure 

 qx capped at 0.5 

 Lagrange interpolation used to transition 

smoothly from graduated rates to extension 

RP-2000M Extension using Cubic polynomial above age 100 

 qx matches graduated rates at x=99 and x=100 

 slope of qx is 0 at value of x where qx reaches 0.4 

and no inflection points between age 100 and that 

value of x 

 qx set equal to 0.4 at ages above which it first 

attains 0.4 

S2PML Published by the CMI, these 

tables are based on data from 

UK occupational pension 

schemes. While a wide range of 

tables are provided, we focus in 

Section 4 on the lives-based all-

Both S2PML and S1PML are graduated using data up to age 95. 

The 95% confidence intervals around the crude qx increase 

markedly above age 95 (reflecting the lower volumes of data at 

those ages). In addition the crude qx decrease in value at ages 

around 100 and above (after levelling off in the high 90s), 

suggesting of data distortions at higher ages. 

Extension using cubic spline above age 95 

 μx is continuous where the fitted curve meets its 

extension 

 first differential of μx is continuous at the same 

point, to ensure relatively smooth progression 

 μ120 =1  
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Table Description Comments Summary of high age approach / constraints 

pensioner (excluding 

dependants) tables. 

 

In both cases a high age extension provides qx values at ages 96 to 

120. This extension provides qx values appreciably lower than 

ELT16M. 

 first differential of μx with respect to t (where t = 

(x-70)/50) is constrained to be 1 at age 120 

(Certain other steps were taken to avoid anomalies 

between related tables – principally constraining the 

values of certain tables between 90 and 95 so they 

converged by 95, and constraining the value of other 

tables above age 95 to avoid crossings.) 

S1PML Extension using cubic spline above age 95 

 μx is continuous at age 95 

 first differential of μx is continuous at 95 

 μ120 =1 

 gradient (with respect to t where t = (x-70)/50) of 

the curve of μx is 1 at age 120 

PML08  Also published by the CMI, 

these tables are based on data 

from UK life offices over the 

periods 1979-82 (“80” Series), 

1991-94 (“92” Series), 1999-

2002 (“00” Series) and 2007-

2010 (“08” Series). Again a 

wide range of tables are 

provided; we focus in Section 4 

on the lives-based combined-

pensioner tables. 

PML08 and PCML00 are graduated using data up to age 100 and 

97 respectively. In contrast PML92 and PML80 were graduated 

using all available data (i.e. up to ages 108 and 107 respectively). 

As for the SAPS data, the 95% confidence intervals around the 

crude qx increase markedly above age 95 (reflecting the lower 

volumes of data at those ages) and decrease in value at ages around 

100 and above (after levelling off in the high 90s), suggesting of 

data distortions at higher ages. 

 

For PML08 and PCML00, high age extensions provide qx values at 

ages 90 to 120 and 98 to 120 respectively. High age values for 

PML92 are in contrast taken from the graduated curve (noting that 

the graduation parameters were adjusted somewhat to achieve 

consistency between males / females and lives / amounts). For 

PML80, qx values at ages 91 and above effectively inherit their 

Extension using non-linear interpolation above 

age 90 

Same approach as for PCML00 (see below), but with 

a=90 and c=0.95 for PML08  

PCML00 Extension using non-linear interpolation above 

age 97 

At the oldest ages, values of μx for x > a were 

blended into an arbitrary μ120 equal to 1 using the 

formula: 

 
For PCML00 a=97 and c=0.80 

PML92 Continuation of graduation 

Graduation parameters adjusted somewhat to achieve 

consistency between M/F and L/A tables 



 

71 
 

 

Table Description Comments Summary of high age approach / constraints 

PML80 shape from the corresponding amounts table, which in turn was 

adjusted at ages 93 and above to provide greater consistency with 

permanent assurances duration 2+ at the highest ages. 

 

The high age qx values are (particularly for PML08, PCML00 and 

PML92) appreciably lower than those for ELT16M. 

Extension based on PMA80 above age 91 

 μx set to be constant multiple of PMA80 table for 

x>=91 

 multiple set so μ91
extended

 = μ91
graduated

 

(PMA80 table was itself adjusted at ages 93+ to 

provide greater consistency with permanent 

assurances duration 2+ at the highest ages) 

 

Further detail on the high age extension methods underlying the ELT tables can be found in Gallop’s 2002 paper, ‘Mortality at high ages in the 

United Kingdom’. Details of the approaches underlying the CMI SAPS and life office tables can be found various CMI working papers (in 

particular CMI Working Paper 35 and CMI Working Paper 71 for SAPS tables, and CMI Report 10, CMI Report 16, CMI Working Paper 22 

and CMI Working Paper 81 for life office tables). Details on the Canadian Institute of Actuaries’ and Society of Actuaries’ tables can be found 

via www.cia-ica.ca and www.soa.org respectively. 

http://www.cia-ica.ca/
http://www.soa.org/
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Appendix C Results from different datasets on the question of 

convergence of mortality with age 
 

In this Appendix we summarise results from different datasets focusing on whether or not we 

observe convergence of mortality with increasing age. This has relevance to those who are 

considering fitting to “population” mortality at the oldest ages, as discussed in section 8. 

 

Most research studies show converging mortality with increasing age. We present the 

evidence for convergence for lives with different (1) socio-economic circumstance or levels 

of deprivation, (2) pension size, (3) health status at retirement, (4) lifestyle choices, and (5) 

education. Some studies have shown no convergence and even divergence though these are in 

the minority (a number of studies are highlighted by Hoffman (2008)).  

 

C.1 Social deprivation and socioeconomic circumstance 

The National End of Life Care Intelligence Network is a government programme run through 

the Department of Health. The patients studied are close to death. They use the Income 

Deprivation Affecting Older People Index (IDAOPI). For England 2006-2008 we see little 

evidence of convergence across deprivation quintiles with increasing age though there is 

some crossover with the most deprived group, as shown in Figure C.1. A caveat on this study 

is that over one fifth of deaths over age 75 were in care homes (likely significantly higher for 

older age groups) which are more likely to be represented in more deprived areas, so uneven 

flows between deaths and exposures into care homes could distort results. Bale and Lu (2013) 

report socio-economic convergence is observed in larger datasets, including the General 

Practice Research Database and Office for National Statistics total English population. 
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Figure C.1: Comparison of deaths by deprivation quintile 

 
Source: Public Health England, 2006-2008. Information request, from National end of life 

care intelligence network, “Deaths in Older Adults in England”, (2010). 

 

C.2 Pension Size  

Convergence by pension size has been observed in SAPS investigations, as can be seen from 

the executive summary accompanying Working Paper 76, covering the period from 1 January 

2006 to 31 December 2013. Figures C.2 and C.3 show that, as age increases, the difference in 

mortality between the pension bands at higher ages narrows. The differences between 

pension bands are less pronounced for females and the convergence is less distinct.  
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Figure C.2: 100 A/E values for Male Pensioners Amounts compared to S2PMA 

 
Source: CMI Working Paper 76, Executive Summary 

 

Figure C.3: 100 A/E values for Female Pensioners Amounts compared to S2PFA 

 
Source: CMI Working Paper 76, Executive Summary 
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C.3 Health status at retirement  

There is a view that ill-health mortality gradually converges to that of standard health. This 

view is often drawn from experience analyses which appear to show such a convergence with 

increasing age, as seen in Figures C.4 and C.5, based on the dataset used for the graduation of 

the SAPS “S2” series tables. There are two possible explanations for this outcome: (1) ill-

health retirees may recover from their ailment (2) normal health retirees fall ill as they age. 

The message is not that ill-health wears off with time; within the ill-health retirees we would 

expect the lightly impaired lives to be the survivors. 

 

Figure C.4: Death rate in normal and ill heath males in the SAPS “S2” Series dataset 

 
 

Figure C.5: Death rate in normal and ill heath females in the SAPS “S2” Series dataset 
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Definition of ill-health retirement 

It is possible that ill health retirement rates have fallen since the 1970s as scheme practices 

and rules have tightened up the eligibility criteria for granting such a benefit. One might 

question whether some of the “ill-health” retirements of the 70’s and 80’s were actually in 

normal health. If lives were mislabeled, or re-defined over a period of time then this might 

result in the ill-health experience converging faster to the normal experience at the older ages 

of an experience analysis.  

 

Progressive diseases 

A progressive disease is one whose course in most cases is the worsening, growth, or spread 

of the disease. The means the mortality for progressive diseases increases with duration from 

diagnosis (e.g. diabetes, Alzheimer’s). We investigate if there is a convergence in relative 

risk even for progressive diseases.  

 

As an example of how relative risk ratio develops with age for a progressive disease, we have 

reproduced a graph of the relative risk ratio for type 1 and type 2 diabetes sourced from the 

National Diabetes Audit 2011-2012 - Report 2: Complications and Mortality. This shows that 

for type 2 diabetes (which is more common) the relative risk is around 1.7 for ages 35-64, 

reducing to 1.4 for ages 65-74, and is around 1.1 for the population above age 85. It is a 

matter of opinion whether it gets to 1 at an older age.  

 

We have not investigated how relative risk behaves for other progressive diseases so the 

convergence we see for diabetes may not necessarily apply. 

 

Figure C.6: Age-specific mortality rate ratios by type of diabetes and sex 

 
 

Source: National Diabetes Audit 2011-2012 Report 2: Complications and Mortality 
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Note that if one changes the focus from relative mortality to excess mortality the picture 

could be quite different. Received (but unproven) medical wisdom is that organ damage 

accumulates with duration since diabetes diagnosis. Hence in general excess mortality for a 

diabetic increases with advancing age but relative mortality reduces as the excess does not 

increase as quickly as average all-cause mortality. 

 

C.4 Lifestyle choices 

Data on the relative mortality between smokers and non-smokers was collected for CMI 

Working Paper 42. The excess mortality index for smokers versus non-smokers for durations 

2+ decreases after the 71-75 age group (apart from a very small increase at ages 86-90 which 

could be due to low levels of data), as seen in Figure C.7, which supports the idea that excess 

mortality converges. 

 

Note: the Excess Mortality Index is calculated as the percentage by which the standardised 

mortality ratio for smokers exceeds the corresponding ratio for non-smokers, i.e.: 

100 x (100A/E Smokers / 100A/E Non-smokers) 

 

Figure C.7: Excess mortality amongst male smokers compared to male non-smokers 

 
Source: CMI Working Paper 42. 
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C.5 Education 

Liang et al (2002) analysed mortality differences over age with a panel study of health and 

wellbeing of older adults (60+) in Japan with five waves from 1987 to 1999. Their main 

finding is an educational mortality crossover for men. That is to say that, at advanced ages, 

those men with less education live longer than those with higher education, whereas this is 

reversed at younger ages and a gap maintained for females. 

 

Contrary to this at the 2014 Longevity and Mortality Symposium plenary session Robert L 

Brown presented the results of a US study which does not appear to show convergence by 

education. If fewer people went to university or college say in the 1930’s than in 1970’s then 

this might explain why higher educated lives have lighter mortality far into the advanced ages 

as the former is expected to be a more select group. Indeed, it is not clear whether the data 

has been standardised by other factors to isolate the “education” effect. 


