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1. Introduction 

The CMI Mortality Projections Committee has been critically reviewing the CMI Mortality Projections Model 
(“the Model”) and proposes a number of changes. Subject to consultation, these changes would be made in the 
next version of the Model, CMI_2016, which is planned to be released in March 2017. The proposed changes 
to the Model were described in Working Paper 90, released in June 2016. An updated version was issued on 
19 July 2016, incorporating changes relating to the timing of life expectancies calculated using the proposed 
model. Section 14 of Working Paper 90 sets out a series of consultation questions. We originally requested 
responses by 9 September 2016. We have extended the deadline for responses to 30 September 2016.  
  
This paper, referred to in Working Paper 90 as the “Technical Working Paper”, is intended to be read in 
conjunction with Working Paper 90 and contains supplementary information. 
 
This paper falls into three broad parts. 
 
The first part of the paper relates to the proposals made in Working Paper 90.  

 Section 2 considers the data used to calibrate the Model. We discuss concerns with exposure data, 
particularly at high ages, and illustrate the method used to adjust exposures. 

 Sections 3 and 4 concern the APCI model that we propose to use to determine the initial rates of 
mortality improvements, and their components. Section 3 contains technical detail of the algorithm 
used to fit the APCI model. Section 4 sets out how we have determined the fitted parameters and the 
derived mortality improvements, and considers how the hyperparameters affect the amount of 
smoothing. 

 Section 5 looks at aspects of the projection of mortality improvements, including the tapering of the 
long-term rate by age, and the difficulty of estimating direction of travel. 

 Sections 6 and 7 show how projected life expectancy varies for different assumptions. Section 6 
considers the sensitivity of the proposed model to a wide range of assumptions based on data to 
31 December 2015. Section 7 places these results in a wider context by comparing them to CMI_2014 
and CMI_2015. 

 
The second part of the paper, in Sections 8 to 11, discusses options that the Committee considered as part of 
its review of the Model but decided not to include in its proposals. These include convergence functions 
(Section 8), alternative models for initial improvements (Section 9), an “integrated approach” (Section 10) and 
discussion of why the predictive power of a model was not considered to be an important factor in model choice 
(Section 11). 
 
Finally, Section 12 describes the software that accompanies this working paper. This software is intended to 
allow interested parties to replicate the results in Working Paper 90 and this paper, and to consider the impact 
of particular parameter choices.  
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2. Exposure adjustment 

This section considers the adjustment to exposure data, described in Section 5.9 of Working Paper 90, in more 
detail. 

2.1. Background 

The Model currently derives initial rates of improvement from population data for England and Wales from the 
Office for National Statistics (“ONS”). Actual numbers of registered deaths are divided by mid-year population 
estimates to derive historical central mortality rates at each age. 
 
It has been observed for some time that the raw mortality improvements derived from these rates contain some 
unusual features for certain years of birth. 
 
The most obvious of these is around the 1919 and 1920 birth cohorts where plots of historical mortality 
improvements by age and calendar year highlight a strong diagonal pattern for these lives, seemingly indicating 
very strong positive or negative mortality improvements compared to those born the year before, or the year 
after. Similar patterns appear to exist for some other cohorts, for example the 1947 cohort. Some of these year 
of birth patterns are only noticeable for limited time periods. 
 
The Committee highlighted these issues in its June 2014 presentation to the Staple Inn Actuarial Society

1
, 

observing that they also appear in many other (particularly European) datasets and commenting how they 
directly contribute to the overdispersion seen when fitting the Model to the historical data. 
 
At that presentation we referred to Cairns et al (2014)

2
 in which the authors: 

1) Highlighted the concept of how errors in population estimates in census years continue without 
exposure to decrements and therefore become progressively more significant in subsequent population 
estimates, particularly at high ages, until the next census year (i.e. the “Phantoms Never Die” 
reference). 

2) Described how the ONS “backfills” over the intercensal period to adjust for discrepancies that they find 
between the population measured by the census and its previous estimate for the population in the 
census year. 

3) Described a specific issue with the 2001 Census (which might also have affected other censuses) that 
would cause errors in the mid-year population estimate for that year, and calculated (using the 
distribution of births) the effect that the error would have had on the population estimates in 2001. 

4) Described in general why the mid-year population estimate aged 𝑥 in year 𝑡 is not necessarily a good 
proxy for the central exposure aged 𝑥 in year 𝑡, and derived a method to adjust for this based on the 
distribution of births in each year. 

5) Proposed a set of graphical diagnostics to help identify potential anomalies in any population and death 
data. 

6) Developed an objective technique to try and correct for apparent anomalies in any population data, with 
or without detail on the underlying distribution of births. 

 
The issues highlighted by Cairns et al appeared to tie in with some of the suspected anomalies that we saw in 
the ONS data which we used for the Model, and certainly suggested that these strong patterns for individual 
years are unlikely to be true reflections of the experience. They appear more likely to be effects of the way that 
population estimates are derived and the implicit assumption when estimating historical population mortality 
rates that births are evenly-distributed throughout the year. 
 

                                                
1
 https://www.actuaries.org.uk/documents/projecting-future-mortality-trends  

2
 That paper has since been updated and will be published as Cairns et al (2016). 

https://www.actuaries.org.uk/documents/projecting-future-mortality-trends
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2.2. CMI_2014 

Following the publication of Cairns et al (2014), which gave strong support for our suspicion that some of the 
historical patterns seen in mortality improvements were artefacts rather than true reflections of experience, it 
seemed appropriate that we try to allow for these issues in the data used in the Model. 
 
The generic method proposed in (6) above was not particularly simple to implement, or to describe and make 
available to users, and so for CMI_2014 (and again for CMI_2015) we adopted a simple and transparent 
method of: 

a) fitting the penalised spline (p-spline) model to our data as normal; 

b) identifying cells with an absolute deviance residual of more than 3.891 (i.e. significant at the 0.01% 
level); 

c) adjusting the exposure in those cells so that the raw mortality rates match those fitted in a); and 

d) re-fitting our p-spline model using these adjusted exposures. 
 
This appeared to reduce some of the anomalies that were observed in the population data, as well as reducing 
the overdispersion in the final model-fitting. It did, though, feel slightly circular (although it generally only affects 
cells where we have good reason to doubt the original data) and it potentially misses some of the other issues 
in other parts of our data. Additionally the method was based on our continued use of the p-spline model, and 
so the Committee wanted to investigate alternate approaches to adjusting for these data issues. 

2.3. Investigatory work 

In our presentations in Edinburgh and London in 2015
3
, the Committee presented the results of trying to allow 

explicitly for the issues highlighted in Cairns et al (2014) – i.e. points 3) and 4) in Section 2.1 – by making the 
adjustments in the way that the authors described. 
 
Although this showed promising results for many historical periods, there were still strong artefacts remaining, 
particularly for the 1919 and 1920 cohorts from around 2005 onwards. This period also runs in to when these 
cohorts join the 90+ age group, for which it is suspected there are other issues with the data. 
 
Considering also that some Subscribers had expressed a preference to be able to run the Model against 
alternative datasets the Committee decided instead to retain a generic approach which requires no detailed 
knowledge of the issues underlying the dataset being used. 

2.4. Proposal 

Our proposed model, as with CMI_2014 and CMI_2015, again uses a pragmatic and simple approach to target 
and “clean” the most extreme-looking cells in any dataset. 
 
The principle of our proposed method is that we expect mortality rates to vary smoothly with age. While there 
may be some inaccuracy in the deaths data, for example the age recorded at death, we expect deaths data to 
be much more reliable then exposure data; so any outliers from the assumption of smooth mortality rates 
suggest a problem with the exposure data. 
 

We start with ONS data consisting of registered deaths 𝐷𝑥,𝑡 and exposure estimates 𝐸𝑥,𝑡 for a range of ages 𝑥 

and years 𝑡. For each specific combination (𝑋, 𝑇) of age and year we want to decide whether to use the existing 

exposure 𝐸𝑋,𝑇 or to adjust it. 

 
  

                                                
3
 https://www.actuaries.org.uk/documents/future-cmi-mortality-projections-model  

https://www.actuaries.org.uk/documents/future-cmi-mortality-projections-model


Working Paper 91 

CMI Mortality Projections Model consultation – technical paper 

 

Page 6 of 80 
 

We assume that the smoothed mortality rate 𝑚𝑥,𝑇 in the age range [𝑋 − 𝑛, 𝑋 + 𝑛] in year 𝑇 is exponential (i.e. 

follows Gompertz’s law) and so can be expressed as: 

log 𝑚𝑥,𝑇  = 𝑎𝑋,𝑇  + 𝑏𝑋,𝑇 𝑥 

for some parameters 𝑎𝑋,𝑇 and 𝑏𝑋,𝑇. We fit these parameters using least squares regression over that age range, 

to minimise the expression: 

∑ (𝑎𝑋,𝑇 + 𝑏𝑋,𝑇𝑥 − log (
𝐷𝑥,𝑇

𝐸𝑥,𝑇

))

2

𝑥∈[𝑋−𝑛,𝑋+𝑛]
 

 

The approach taken means that our estimate of the smoothed mortality rate 𝑚𝑥,𝑇 for the specific point that we 

are considering is given by: 

log𝑚𝑥,𝑇 =
1

2𝑛 + 1
∑ log(

𝐷𝑥,𝑇

𝐸𝑥,𝑇

)
𝑥∈[𝑋−𝑛,𝑋+𝑛]

 

 
We then calculate the deviance residual 𝑟𝑋,𝑇 (described in Section 3.1) as: 

𝑟𝑋,𝑇 = sign(𝐷𝑋,𝑇 − 𝐸𝑋,𝑇𝑚𝑋,𝑇)√2(𝐷𝑋,𝑇 log (
𝐷𝑋,𝑇

𝐸𝑋,𝑇𝑚𝑋,𝑇

) − (𝐷𝑋,𝑇 − 𝐸𝑋,𝑇𝑚𝑋,𝑇)) 

 
If our assumption that smoothed mortality is exponential in the age range [𝑋 − 𝑛, 𝑋 + 𝑛] in year 𝑇 holds, then 
we would expect the deviance residual to be Normally-distributed with a mean of zero and a variance of one. If 
this is not the case, then this suggests a potential problem with exposure data. 
 
We write Φ for the cumulative distribution function of the standard Normal distribution, and specify a probability 
threshold, 𝑝. Then: 

 if |𝑟𝑋,𝑇| ≤ Φ−1(1 −
𝑝

2
) we use the unadjusted exposure 𝐸𝑋,𝑇. 

 However if |𝑟𝑋,𝑇| > Φ−1(1 −
𝑝

2
) we use the adjusted exposure 𝐸𝑋,𝑇

′ =
𝐷𝑋,𝑇

𝑚𝑋,𝑇
. 

 
For ages at and near the edges of the data we need to use a lower value of 𝑛, e.g. for ages 21 and 99 we use 
𝑛 = 1, and for ages 20 and 100 we make no adjustment. 

2.5. Parameterisation and impact 

Our proposed approach to adjusting the exposure requires two parameters: 

 𝑛, which defines the age range [𝑋 − 𝑛, 𝑋 + 𝑛] used to determine the smoothed mortality rate; and 

 𝑝, the probability threshold used to decide whether or not to adjust an exposure. 
 
There is an element of subjectivity in the choice of values for these parameters; we propose to use 𝑛 = 2 and 
𝑝 = 1%. 
 
We initially considered various combinations of parameter values, and the impacts of some of these are shown 
in Charts 2A, 2B and 2C below as resulting adjustments to the exposures, and as crude mortality 
improvements. 
 
A value of 1% for the probability threshold, 𝑝, seemed reasonable given that the method is effectively applied to 
individual calendar years on their own, and the ONS dataset used by the CMI has 81 rates in each year. 
 
Together with a value for 𝑛 of 2 this combination seemed to meet quite well our intention of targeting the known 
areas of doubt (i.e. the diagonal patterns around the 1919 and 1920 cohorts, as well as to an extent around the 
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1947 cohort) without too much effect in the younger and very older areas of the charts which are expected to 
be naturally more noisy anyway. 
 
Applying the adjustment in this way, to effectively smooth out some of the outliers in the data before fitting our 
proposed model, obviously makes for a closer fit to the adjusted data and so improves the deviance of the fitted 
model to the adjusted data.  
 
In this section we illustrate our method using data for ages 20-100 and years 1975-2015 for England & Wales 
males. The deviances for various combinations of 𝑛 and 𝑝 are illustrated in Table 2.1; these compare to a 
deviance of 9,584 when fitted to the original unadjusted data. 
 

Table 2.1: Deviance for different parameter values (England & Wales males, 20-100, 1975-2015) 

 

 
 
In practice the final impact of the adjustments is actually very minor. The only parts of our fitted historical model 
that feed into our projections are the initial rates for the final year of the calibration data. Chart 2A illustrates the 
limited variation in the fitted initial rates from our proposed model for the same combinations of 𝑛 and 𝑝. 
 

Chart 2A: Initial rates for 2015 for various combinations of parameters 𝒏 and 𝒑 
(England & Wales males, 20-100, 1975-2015) 

 
 
  

 𝒑 = 𝟎. 𝟎𝟏% 𝒑 = 𝟎. 𝟏% 𝒑 = 𝟏% 𝒑 = 𝟏𝟎% 

𝑛 = 2 7,934 7,720 7,393 6,289 

𝑛 = 3   7,049  

𝑛 = 4   6,892  



Working Paper 91 

CMI Mortality Projections Model consultation – technical paper 

 

Page 8 of 80 
 

Table 2.2 shows life expectancies at age 65, calculated as at end 31 December 2015, using S2PMA and 
projected using our proposed model calibrated with the various combinations of 𝑛 and 𝑝 and with an illustrative 
long-term rate of 1.5% p.a. These compare to the base level (i.e. with no data adjustments) of 22.35. 
 

Table 2.2: Life expectancy at age 65 for different parameter values 
(England & Wales males, 20-100, 1975-2015) 

 
 
 
 
 
 
 
 
 
Table 2.2 confirms that the exposure adjustments have very little impact on life expectancies at age 65. In 
particular the choice of 𝑛 has a negligible impact. Similarly, life expectancy values for other sample ages (not 
shown) also show low variation. 
 
In Section 6 we consider the sensitivity of life expectancies to various parameters and model choices, and we 
consider there the impact of adjusting exposures or using unadjusted values. 
 
Chart 2B shows which age/year cells have their exposures adjusted, for different choices of 𝑛 and 𝑝; and Chart 
2C shows the resulting crude mortality improvements.  
  

 𝒑 = 𝟎. 𝟎𝟏% 𝒑 = 𝟎. 𝟏% 𝒑 = 𝟏% 𝒑 = 𝟏𝟎% 

𝑛 = 2 22.36 22.35 22.33 22.32 

𝑛 = 3   22.33  

𝑛 = 4   22.33  
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Chart 2B: Adjustments made to exposures for different combinations of parameters 𝒏 and 𝒑 
(England & Wales males, 20-100, 1975-2015) 

 

𝒏 = 𝟐;  𝒑 = 𝟎. 𝟎𝟏% 𝒏 = 𝟐;  𝒑 = 𝟎. 𝟏% 𝒏 = 𝟐;  𝒑 = 𝟏% 𝒏 = 𝟐;  𝒑 = 𝟏𝟎% 
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𝒏 = 𝟒;  𝒑 = 𝟏% 
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Chart 2C: Crude mortality improvements for different combinations of parameters 𝒏 and 𝒑 
(England & Wales males, 20-100, 1975-2015) 

 

𝒏 = 𝟐;  𝒑 = 𝟎. 𝟎𝟏% 𝒏 = 𝟐;  𝒑 = 𝟎. 𝟏% 𝒏 = 𝟐;  𝒑 = 𝟏% 𝒏 = 𝟐;  𝒑 = 𝟏𝟎% 
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2.6. Discussion 

The key advantages of the proposed method are that: 

 It is based solely on the assumption of a smooth progression of mortality rates by age. There is no 
assumption of smoothness over time so the method is unaffected by, and should not inadvertently 
remove, the impact of annual noise. 

 It is not dependent on the form of the model used subsequently. In particular, it is helpful to move away 
from the previous use of a p-spline model for exposure adjustment as we propose not to use such a 
model for fitting mortality rates. 

 It is not affected by the number of years included within the dataset, and only the highest and lowest 𝑛 
ages are affected by the age range used. 

 It is quick and easy to apply, and can be replicated by users with spreadsheet formulae. 

 It can be applied to any dataset with no knowledge required of the particular data issues. 

 If the individual user wishes, the strength of the adjustment can be increased or reduced by adjusting 
the smoothness parameter (𝑛) and the probability threshold (𝑝). 

 
We note that: 

 The simple “locally Gompertz” assumption is not necessarily appropriate at all ages, particularly the 
youngest ages for males. However the probability threshold used means that the method is unlikely to 
result in many adjustments at the extreme ages. 

 The method should not be seen as an attempt to “correct” the exposure estimates, and hence no 
attempt has been made to redistribute the adjustments to exposures across other ages. We are simply 
adjusting the cells with the most extreme and questionable values in order to improve our subsequent 
model-fitting. 

 In fact because we are only targeting, and then adjusting, the most extreme cells, we are aware that 
the method will result in some discontinuities in the adjusted exposures. 

 As the method does not compare an adjusted exposure to that for the same cohort in adjacent years, 
this can give rise to “false positives” where the adjusted exposure does not seem plausible. An 
example of this is shown in Table 2.3 where the adjusted exposure for age 25 in 2014 is significantly 
different to surrounding figures. This occurs due to the unusually low number of deaths for that age and 
year. 

Table 2.3: Adjusted exposure data and deaths for England & Wales males 

Age Adjusted exposure Deaths 

2013 2014 2015 2013 2014 2015 

24 389,408 400,763 407,895 203 208 204 

25 391,983 323,341 403,085 227 182 226 

26 380,756 395,587 395,601 226 267 224 

 
 
The proposed approach is seen simply as an alternative to accurately adjusting the exposures to allow for 
some of the issues within the data, such as those raised by Cairns et al. 
 
The Committee is still keen to better understand the underlying issues with the ONS dataset and notes that the 
CMI High Age Mortality Working Party is investigating some of the issues with the data at the highest ages. It is 
likely that the Committee will revisit this topic to consider it further once their work is complete. 
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3. APCI model – fitting algorithm 

Section 7 of Working Paper 90 describes the Age-Period-Cohort Improvement (APCI) model that we propose to 
use to calculate initial mortality improvements. The APCI model is defined by: 

log𝑚𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥(𝑡 − 𝑡̅) + 𝜅𝑡 + 𝛾𝑡−𝑥  

where: 

 𝑥 is age at last birthday 

 𝑡 is time; i.e. calendar year 

𝑡̅  is the mean of the years within the calendar year range that is used to fit the model; e.g. if we 

calibrate to years 1975 to 2015, then 𝑡̅ is 1995 

𝑐 is cohort, with 𝑐 = 𝑡 − 𝑥. Note that this does not correspond exactly to birth year. 

 𝛼𝑥 are parameter values for terms by age relating to mortality rates 

 𝛽𝑥 are parameter values for fitted terms by age relating to mortality improvements 

 𝜅𝑡 are parameter values for terms by period (i.e. calendar year) 

 𝛾𝑡−𝑥 are parameter values for terms by cohort (i.e. birth year) 
 
This section provides full algorithmic detail for the process of fitting the APCI model. 
 
In Section 3.1 we describe deviance, a component of the objective function for the model, described in 3.2. In 
Section 3.3 we describe the derivation of mortality improvements and the “direction of travel”. In Sections 3.4 
and 3.5 we describe the iterative fitting process of Newton’s method for a general case and for the APCI model. 
Identifiability is covered in Sections 3.6 and 3.7, and overdispersion in Section 3.8. 

3.1. Deviance 

This section defines and discusses the deviance statistic that we use to determine the goodness of fit of the 
APCI model. 
 

If a particular age and year “cell” has exposure 𝐸𝑥,𝑡 then the expected number of deaths is 𝐸𝑥,𝑡𝑚𝑥,𝑡. If the actual 

number of deaths is 𝐷𝑥,𝑡 then under a Poisson assumption the log-likelihood for that cell is:  

LL𝑥,𝑡 = 𝐷𝑥,𝑡 log 𝐸𝑥,𝑡𝑚𝑥,𝑡 − 𝐸𝑥,𝑡𝑚𝑥,𝑡 − log(𝐷𝑥,𝑡!)  

and the log-likelihood over the whole of the data is: 

LL = ∑ LL𝑥,𝑡𝑥,𝑡 = ∑ (𝐷𝑥,𝑡 log 𝐸𝑥,𝑡𝑚𝑥,𝑡 − 𝐸𝑥,𝑡𝑚𝑥,𝑡 − log(𝐷𝑥,𝑡!))𝑥,𝑡   

 
The log-likelihood reaches a maximum for the “saturated model” with a parameter for every observation, so that 

𝐷𝑥,𝑡 = 𝐸𝑥,𝑡𝑚𝑥,𝑡 for each age and year. In this case we have for one cell: 

LL𝑥,𝑡
𝑠𝑎𝑡 = 𝐷𝑥,𝑡 log𝐷𝑥,𝑡 − 𝐷𝑥,𝑡 − log(𝐷𝑥,𝑡!)  

and for the whole of the data: 

 LL𝑠𝑎𝑡 = ∑ LL𝑥,𝑡
𝑠𝑎𝑡

𝑥,𝑡 = ∑ (𝐷𝑥,𝑡 log𝐷𝑥,𝑡 − 𝐷𝑥,𝑡 − log(𝐷𝑥,𝑡!))𝑥,𝑡   

 
Note that in the case where 𝐷𝑥,𝑡 = 0 we have LL𝑥,𝑡

𝑠𝑎𝑡 = 0. 

 
The deviance is defined as twice the difference between the actual log-likelihood and the log-likelihood for the 
saturated model; i.e.: 

Deviance𝑥,𝑡 = 2(LL𝑥,𝑡
𝑠𝑎𝑡 − LL𝑥,𝑡) = 2(𝐷𝑥,𝑡 log𝐷𝑥,𝑡 − 𝐷𝑥,𝑡 − 𝐷𝑥,𝑡 log 𝐸𝑥,𝑡𝑚𝑥,𝑡 + 𝐸𝑥,𝑡𝑚𝑥,𝑡)  

and:  

Deviance = ∑ Deviance𝑥,𝑡𝑥,𝑡 = 2∑ (𝐷𝑥,𝑡 log𝐷𝑥,𝑡 − 𝐷𝑥,𝑡 − 𝐷𝑥,𝑡 log 𝐸𝑥,𝑡𝑚𝑥,𝑡 + 𝐸𝑥,𝑡𝑚𝑥,𝑡)𝑥,𝑡   
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The deviance can be expressed as the sum of squares of deviance residuals: 

Deviance = ∑ DevianceResidual𝑥,𝑡
2

𝑥,𝑡    

Where:   

DevianceResidual𝑥,𝑡 = sign(𝐷𝑥,𝑡 − 𝐸𝑥,𝑡𝑚𝑥,𝑡)√2(𝐷𝑥,𝑡 log𝐷𝑥,𝑡 − 𝐷𝑥,𝑡 − 𝐷𝑥,𝑡 log 𝐸𝑥,𝑡𝑚𝑥,𝑡 + 𝐸𝑥,𝑡𝑚𝑥,𝑡)  

 
As deviance has a linear relationship with log-likelihood, minimising the deviance is equivalent to maximising 
the log-likelihood (i.e. it will give the same fitted parameters).  

3.2. The objective function  

For the purpose of the Model, we want to extract the underlying trends in mortality improvements and smooth 
out short-term fluctuations (e.g. due to winter temperatures and infectious diseases) and artefacts of the data. 
To achieve this we define an objective function that is a combination of the deviance (as a measure of 
goodness of fit) and penalty functions (as a measure of the smoothness of each set of parameters). 
 
We have: 

 Objective = Deviance + Penalty(𝛼𝑥) + Penalty(𝛽𝑥) + Penalty(𝜅𝑡) + Penalty(𝛾𝑡−𝑥) 

where the penalties are as described in Section 7.4 of Working Paper 90: 

Penalty(𝛼𝑥) = 𝜆𝛼 ∑ (∇𝑥
3𝛼𝑥)

2
𝑥 = 𝜆𝛼 ∑ (𝛼𝑥 − 3𝛼𝑥−1 + 3𝛼𝑥−2 − 𝛼𝑥−3)

2
𝑥   

Penalty(𝛽𝑥) = 𝜆𝛽 ∑ (∇𝑥
3𝛽𝑥)

2
𝑥 = 𝜆𝛽 ∑ (𝛽𝑥 − 3𝛽𝑥−1 + 3𝛽𝑥−2 − 𝛽𝑥−3)

2
𝑥   

Penalty(𝜅𝑡) = 𝜆𝜅 ∑ (∇𝑡
2𝜅𝑡)

2
𝑡 = 𝜆𝜅 ∑ (𝜅𝑡 − 2𝜅𝑡−1 + 𝜅𝑡−2)

2
𝑡   

Penalty(𝛾𝑐) = 𝜆𝛾 ∑ (∇𝑐
3𝛾𝑐)

2
𝑐 = 𝜆𝛾 ∑ (𝛾𝑐 − 3𝛾𝑐−1 + 3𝛾𝑐−2 − 𝛾𝑐−3)

2
𝑐   

and the hyperparameters 𝜆𝛼, 𝜆𝛽, 𝜆𝜅 and 𝜆𝛾 can be used to control the smoothness of the parameters to which 

they relate. 
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3.3. Mortality improvements and direction of travel 

Under our definition of mortality improvements, described in Section 6 of Working Paper 90: 

𝑀𝐼𝑥,𝑡 = log𝑚𝑥,𝑡−1 − log𝑚𝑥,𝑡  

so: 

𝑀𝐼𝑥,𝑡 = −𝛽𝑥 + 𝜅𝑡−1 − 𝜅𝑡 + 𝛾𝑡−1−𝑥 − 𝛾𝑡−𝑥  

 

These aggregate improvement are then decomposed into age, period and cohort components: 

𝑀𝐼𝑥,𝑡 = 𝑀𝐼𝑥,𝑡
𝐴𝑔𝑒

+ 𝑀𝐼𝑥,𝑡
𝑃𝑒𝑟𝑖𝑜𝑑 + 𝑀𝐼𝑥,𝑡

𝐶𝑜ℎ𝑜𝑟𝑡  

where: 

𝑀𝐼𝑥,𝑡
𝐴𝑔𝑒

= −𝛽𝑥  

𝑀𝐼𝑥,𝑡
𝑃𝑒𝑟𝑖𝑜𝑑 = 𝜅𝑡−1 − 𝜅𝑡   

𝑀𝐼𝑥,𝑡
𝐶𝑜ℎ𝑜𝑟𝑡 = 𝛾𝑡−𝑥−1 − 𝛾𝑡−𝑥  

 
“Direction of travel” is defined as: 

𝐷𝑜𝑇𝑥,𝑡 =  𝑀𝐼𝑥,𝑡
𝑃𝑒𝑟𝑖𝑜𝑑 − 𝑀𝐼𝑥,𝑡−1

𝑃𝑒𝑟𝑖𝑜𝑑   

i.e.: 

 𝐷𝑜𝑇𝑥,𝑡 = −𝜅𝑡 + 2𝜅𝑡−1 − 𝜅𝑡−2 

3.4. Newton’s method for a general function 

We minimise our objective function by using Newton’s method. This is an iterative approach: we repeatedly 
adjust the parameters to improve the objective function, and stop when the objective function stabilises. 
 
We first consider the generic case, where we have a function 𝑓 of multiple parameters (𝜙1, … 𝜙𝑛) that we want 
to minimise. 
 

A necessary condition for (𝜙1, …𝜙𝑛) to be a minimum of 𝑓 is that 
𝜕𝑓

𝜕𝜙𝑖
(𝜙1, …𝜙𝑛) = 0 for all 𝑖 = 1… 𝑛. 

 

The general form of a first-order multivariate Taylor series approximation to a function 𝑔 is: 

𝑔(𝜙1 + ∆𝜙1, … 𝜙𝑛 + ∆𝜙𝑛) ≈ 𝑔(𝜙1, … 𝜙𝑛) + ∆𝜙1
𝜕𝑔

𝜕𝜙1
(𝜙1, …𝜙𝑛) + ⋯∆𝜙𝑛

𝜕𝑔

𝜕𝜙𝑛
(𝜙1, …𝜙𝑛)  

 

Substituting 
𝜕𝑓

𝜕𝜙1
 to 

𝜕𝑓

𝜕𝜙𝑛
for 𝑔 in turn gives the 𝑛 Taylor series approximations: 

𝜕𝑓

𝜕𝜙1
(𝜙1 + ∆𝜙1, … 𝜙𝑛 + ∆𝜙𝑛) ≈

𝜕𝑓

𝜕𝜙1
(𝜙1, … 𝜙𝑛) + ∆𝜙1

𝜕2𝑓

𝜕𝜙1𝜕𝜙1
(𝜙1, …𝜙𝑛) + ⋯∆𝜙𝑛

𝜕2𝑓

𝜕𝜙1𝜕𝜙𝑛
(𝜙1, …𝜙𝑛)  

… 

𝜕𝑓

𝜕𝜙𝑛
(𝜙1 + ∆𝜙1, …𝜙𝑛 + ∆𝜙𝑛) ≈

𝜕𝑓

𝜕𝜙𝑛
(𝜙1, … 𝜙𝑛) + ∆𝜙1

𝜕2𝑓

𝜕𝜙𝑛𝜕𝜙1
(𝜙1, … 𝜙𝑛) + ⋯∆𝜙𝑛

𝜕2𝑓

𝜕𝜙𝑛𝜕𝜙𝑛
(𝜙1, … 𝜙𝑛)  

 
These can be expressed in matrix form as: 

[
 
 
 

𝜕𝑓

𝜕𝜙1
(𝜙1 + ∆𝜙1, … 𝜙𝑛 + ∆𝜙𝑛)

⋮
𝜕𝑓

𝜕𝜙𝑛
(𝜙1 + ∆𝜙1, … 𝜙𝑛 + ∆𝜙𝑛)]

 
 
 

≈

[
 
 
 

𝜕𝑓

𝜕𝜙1
(𝜙1, …𝜙𝑛)

⋮
𝜕𝑓

𝜕𝜙𝑛
(𝜙1, …𝜙𝑛)]

 
 
 

+

[
 
 
 
 

𝜕2𝑓

𝜕𝜙1𝜕𝜙1
(𝜙1, …𝜙𝑛) …

𝜕2𝑓

𝜕𝜙1𝜕𝜙𝑛
(𝜙1, … 𝜙𝑛)

⋮ ⋮
𝜕2𝑓

𝜕𝜙𝑛𝜕𝜙1
(𝜙1, … 𝜙𝑛) …

𝜕2𝑓

𝜕𝜙𝑛𝜕𝜙𝑛
(𝜙1, … 𝜙𝑛)]

 
 
 
 

[
∆𝜙1

⋮
∆𝜙𝑛

]  
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Now if all of ∆𝜙1, … ∆𝜙𝑛 satisfy:  

[
0
⋮
0
] ≈

[
 
 
 

𝜕𝑓

𝜕𝜙1
(𝜙1, … 𝜙𝑛)

⋮
𝜕𝑓

𝜕𝜙𝑛
(𝜙1, … 𝜙𝑛)]

 
 
 

+

[
 
 
 
 

𝜕2𝑓

𝜕𝜙1𝜕𝜙1
(𝜙1, …𝜙𝑛) …

𝜕2𝑓

𝜕𝜙1𝜕𝜙𝑛
(𝜙1, …𝜙𝑛)

⋮ ⋮
𝜕2𝑓

𝜕𝜙𝑛𝜕𝜙1
(𝜙1, …𝜙𝑛) …

𝜕2𝑓

𝜕𝜙𝑛𝜕𝜙𝑛
(𝜙1, …𝜙𝑛)]

 
 
 
 

[
∆𝜙1

⋮
∆𝜙𝑛

]       

then 
𝜕𝑓

𝜕𝜙1
(𝜙1 + ∆𝜙1, …𝜙𝑛 + ∆𝜙𝑛), …

𝜕𝑓

𝜕𝜙𝑛
(𝜙1 + ∆𝜙1, … 𝜙𝑛 + ∆𝜙𝑛) will all be approximately zero. So starting from 

(𝜙1, …𝜙𝑛), we expect that (𝜙1 + ∆𝜙1, …𝜙𝑛 + ∆𝜙𝑛) will be closer to a minimum of 𝑓. 
 
This gives an iterative procedure, the multivariate version of Newton’s method, for optimising 𝑓.  

3.5. Newton’s method for the APCI model  

In our implementation we will update each set of parameters separately, rather than updating them all in one 
step (i.e. we update the 𝛼𝑥, then the 𝛽𝑥, then the 𝜅𝑡, then the 𝛾𝑡−𝑥). This simplifies the algebra and computer 
code, while still converging quickly. 
 
In pseudocode we have (using subscripts 𝐿 and 𝐻 for the lowest and highest values of an index): 

1. Initialise the procedure: 

     1a. Initialise all parameters: 𝛼𝑥, 𝛽𝑥, 𝜅𝑡 and 𝛾𝑡−𝑥.  

     1b. Calculate mortality rates based on the initial parameters 

     1c. Calculate the objective function 

2.  Do repeatedly, until the objective function stabilises: 

     2a. Calculate (∆𝛼𝑥𝐿
, … ∆𝛼𝑥𝐻

) and adjust the parameters to (𝛼𝑥𝐿
+ ∆𝛼𝑥𝐿

, … 𝛼𝑥𝐻
+ ∆𝛼𝑥𝐻

) 

     2b. Calculate updated mortality rates 

     2c. Calculate (∆𝛽𝑥𝐿
, … ∆𝛽𝑥𝐻

) and adjust the parameters to (𝛽𝑥𝐿
+ ∆𝛽𝑥𝐿

, … 𝛽𝑥𝐻
+ ∆𝛽𝑥𝐻

) 

     2d. Calculate updated mortality rates 

     2e. Calculate (∆𝜅𝑡𝐿 , … ∆𝜅𝑡𝐻) and adjust the parameters to (𝜅𝑡𝐿 + ∆𝜅𝑡𝐿 , … 𝜅𝑡𝐻 + ∆𝜅𝑡𝐻) 

     2f. Calculate updated mortality rates 

     2g. Calculate (∆𝛾𝑐𝐿
, … ∆𝛾𝑐𝐻

) and adjust the parameters to (𝛾𝑐𝐿
+ ∆𝛾𝑐𝐿

, … 𝛾𝑐𝐻
+ ∆𝛾𝑐𝐻

) 

     2h. Calculate updated mortality rates 

     2i. Update parameters to allow for identifiability 

     2j. Calculate the objective function 

3. Calculate mortality improvements 
 
We will consider the case of updating the 𝛼𝑥 (i.e. step 2a in the pseudocode above) in detail, and state the 
analogous results for other parameters. 
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In order to implement Newton’s method for the APCI model we need to be able to calculate  

𝜕Objective

𝜕𝛼𝑖
  

and  

𝜕2Objective

𝜕𝛼𝑖𝜕𝛼𝑗
  

for all 𝛼𝑖 and 𝛼𝑗. 

 
Since:  

Objective = Deviance + Penalty(𝛼𝑥) + Penalty(𝛽𝑥) + Penalty(𝜅𝑡) + Penalty(𝛾𝑡−𝑥)  

we have: 

𝜕Objective

𝜕𝛼𝑖
=

𝜕Deviance

𝜕𝛼𝑖
+

𝜕Penalty(𝛼𝑥)

𝜕𝛼𝑖
+

𝜕Penalty(𝛽𝑥)

𝜕𝛼𝑖
+

𝜕Penalty(𝜅𝑡)

𝜕𝛼𝑖
+

𝜕Penalty(𝛾𝑡−𝑥)

𝜕𝛼𝑖
  

but, because Penalty(𝛽𝑥), Penalty(𝜅𝑡) and Penalty(𝛾𝑡−𝑥) are not affected by the 𝛼𝑥, this simplifies to: 

𝜕Objective

𝜕𝛼𝑖
=

𝜕Deviance

𝜕𝛼𝑖
+

𝜕Penalty(𝛼𝑥)

𝜕𝛼𝑖
  

 
Similarly:  

𝜕2Objective

𝜕𝛼𝑖𝜕𝛼𝑗
=

𝜕2Deviance

𝜕𝛼𝑖𝜕𝛼𝑗
+

𝜕2Penalty(𝛼𝑥)

𝜕𝛼𝑖𝜕𝛼𝑗
  

Deviance terms 

Using the chain rule we have: 

𝜕Deviance𝑥,𝑡

𝜕𝛼𝑖
=

𝜕Deviance𝑥,𝑡

𝜕𝑚𝑥,𝑡

𝜕𝑚𝑥,𝑡

𝜕 log𝑚𝑥,𝑡

𝜕 log 𝑚𝑥,𝑡

𝜕𝛼𝑖
  

 
Since:  

Deviance𝑥,𝑡 = 2(𝐷𝑥,𝑡 log𝐷𝑥,𝑡 − 𝐷𝑥,𝑡 − 𝐷𝑥,𝑡 log 𝐸𝑥,𝑡𝑚𝑥,𝑡 + 𝐸𝑥,𝑡𝑚𝑥,𝑡)  

we have: 

𝜕Deviance𝑥,𝑡

𝜕𝑚𝑥,𝑡
= 2(𝐸𝑥,𝑡 −

𝐷𝑥,𝑡

𝑚𝑥,𝑡
)  

 
Also: 

𝜕𝑚𝑥,𝑡

𝜕 log 𝑚𝑥,𝑡
= 𝑚𝑥,𝑡  

so: 

 
𝜕Deviance𝑥,𝑡

𝜕𝛼𝑖
= 2(𝐸𝑥,𝑡𝑚𝑥,𝑡 − 𝐷𝑥,𝑡)

𝜕 log𝑚𝑥,𝑡

𝜕𝛼𝑖
 

 
For the APCI model: 

𝜕 log 𝑚𝑥,𝑡

𝜕𝛼𝑖
= 1   if 𝑥 = 𝑖   and 0 otherwise 
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So:  

 
𝜕𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝜕𝛼𝑖
= 2∑ (𝐸𝑥,𝑡𝑚𝑥,𝑡 − 𝐷𝑥,𝑡)𝑥,𝑡|𝑥=𝑖   where the sum is over those cells where 𝑥 = 𝑖 

as it only involves those cells where 𝑥 = 𝑖.  
 
For the other parameters we have similarly: 

𝜕𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝜕𝛽𝑖
= 2∑ (𝐸𝑖,𝑡𝑚𝑖,𝑡 − 𝐷𝑖,𝑡)𝑥,𝑡|𝑥=𝑖 (𝑡 − 𝑡̅)  where the sum is over those cells where 𝑥 = 𝑖  

and the term (𝑡 − 𝑡̅) arises from 
𝜕 log 𝑚𝑥,𝑡

𝜕𝛽𝑖
 

𝜕𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝜕𝜅𝑖
= 2∑ (𝐸𝑥,𝑖𝑚𝑥,𝑖 − 𝐷𝑥,𝑖)𝑥,𝑡|𝑡=𝑖    where the sum is over those cells where 𝑡 = 𝑖 

𝜕𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝜕𝛾𝑖
= 2∑ (𝐸𝑥,𝑡𝑚𝑥,𝑡 − 𝐷𝑥,𝑡)𝑥,𝑡|𝑡−𝑥=𝑖    where the sum is over those cells where 𝑡 − 𝑥 = 𝑖 

 
Turning to the second-order derivatives: 

𝜕2Deviancex,t

𝜕𝛼𝑖𝜕𝛼𝑗
= 2

𝜕

𝜕𝛼𝑗
((𝐸𝑥,𝑡𝑚𝑥,𝑡 − 𝐷𝑥,𝑡)

𝜕 log 𝑚𝑥,𝑡

𝜕𝛼𝑖
) = 2

𝜕

𝜕𝛼𝑗
(𝐸𝑥,𝑡𝑚𝑥,𝑡 − 𝐷𝑥,𝑡)

𝜕 log 𝑚𝑥,𝑡

𝜕𝛼𝑖
+ 2(𝐸𝑥,𝑡𝑚𝑥,𝑡 − 𝐷𝑥,𝑡)

𝜕2 log𝑚𝑥,𝑡

𝜕𝛼𝑖𝜕𝛼𝑗
  

 
Applying the chain rule again: 

𝜕

𝜕𝛼𝑗
(𝐸𝑥,𝑡𝑚𝑥,𝑡 − 𝐷𝑥,𝑡) =

𝜕

𝜕𝑚𝑥,𝑡
(𝐸𝑥,𝑡𝑚𝑥,𝑡 − 𝐷𝑥,𝑡)

𝜕𝑚𝑥,𝑡

𝜕 log 𝑚𝑥,𝑡

𝜕 log 𝑚𝑥,𝑡

𝜕𝛼𝑗
= 𝐸𝑥,𝑡𝑚𝑥,𝑡

𝜕 log 𝑚𝑥,𝑡

𝜕𝛼𝑗
  

 
For the APCI model:  

𝜕2 log 𝑚𝑥,𝑡

𝜕𝛼𝑖𝜕𝛼𝑗
= 0    

so we have: 

 
𝜕2Deviancex,t

𝜕𝛼𝑖𝜕𝛼𝑗
= 2𝐸𝑥,𝑡𝑚𝑥,𝑡

𝜕 log 𝑚𝑥,𝑡

𝜕𝛼𝑖

𝜕 log 𝑚𝑥,𝑡

𝜕𝛼𝑗
 

So: 

𝜕2𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝜕𝛼𝑖𝜕𝛼𝑗
= 0  if 𝑖 ≠  𝑗  

and 

 
𝜕2𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝜕𝛼𝑖
2 = 2∑ 𝐸𝑖,𝑡𝑚𝑖,𝑡𝑥,𝑡|𝑥=𝑖   

 
Similarly for the other parameters: 

𝜕2𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝜕𝛽𝑖
2 = 2∑ 𝐸𝑥,𝑡𝑚𝑥,𝑡𝑥,𝑡|𝑥=𝑖 (𝑡 − 𝑡̅)2   where the term (𝑡 − 𝑡̅) arises from 

𝜕 log 𝑚𝑥,𝑡

𝜕𝛽𝑖
 

𝜕2𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝜕𝜅𝑖
2 = 2∑ 𝐸𝑥,𝑡𝑚𝑥,𝑡𝑥,𝑡|𝑡=𝑖   

𝜕2𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒

𝜕𝛾𝑖
2 = 2∑ 𝐸𝑥,𝑡𝑚𝑥,𝑡𝑥,𝑡|𝑡−𝑥=𝑖     
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Penalty terms 

Again we will focus on the case of 𝛼𝑥, and then state the analogous results for other parameters.  
 
The penalty function is:  

Penalty(𝛼𝑥) = 𝜆𝛼 ∑ (∇𝑥
3𝛼𝑥)

2
𝑥 = 𝜆𝛼 ∑ (𝛼𝑥 − 3𝛼𝑥−1 + 3𝛼𝑥−2 − 𝛼𝑥−3)

2
𝑥   

 
It is helpful to write this in matrix form as: 

Penalty(𝛼𝑥) = 𝜆𝛼𝛼𝑇𝐷𝛼
𝑇𝐷𝛼𝛼  

where 𝛼 is a vector of the parameters 𝛼𝑥, and 𝐷𝛼 is the difference matrix:  

𝐷𝛼 = [

+1 −3 +3 −1 0 0 0
0 +1 −3 +3 −1 0 0
0 0 +1 −3 +3 −1 0

⋱

]  

 
This has size (𝑁 − 3) × 𝑁 where 𝑁 is the size of 𝛼; i.e. the number of ages in the calibration data. 

 

The penalty matrix 𝐷𝛼
𝑇𝐷𝛼 has size 𝑁 × 𝑁 and is: 

 

𝐷𝛼
𝑇𝐷𝛼 =

[
 
 
 
 
 
 
 
 
 
+1 −3 +3 −1 0 0 0 0
−3 +10 −12 +6 −1 0 0 0
+3 −12 +19 −15 +6 −1 0 0
−1 +6 −15 +20 −15 +6 −1 0
0 −1 +6 −15 +20 −15 +6 −1
0 0 −1 +6 −15 +20 −15 +6
0 0 0 −1 +6 −15 +20 −15
0 0 0 0 −1 +6 −15 +20

⋱
+1]

 
 
 
 
 
 
 
 
 

    

 
The elements of:  

𝜕Penalty(𝛼𝑥)

𝜕𝛼𝑖
  

are given by:  

2𝜆𝛼𝐷𝛼
𝑇𝐷𝛼𝛼  

and the elements of:  

𝜕2Penalty(𝛼𝑥)

𝜕𝛼𝑖𝜕𝛼𝑗
   

are given by:  

2𝜆𝛼𝐷𝛼
𝑇𝐷𝛼  

 
A similar result holds for derivatives of the penalty functions for the other parameters. For the 𝜅𝑡 terms, which 
have a second-order penalty function, the difference matrix is: 

𝐷𝜅 = [

+1 −2 +1 0 0 0
0 +1 −2 +1 0 0
0 0 +1 −2 +1 0

⋱

]  
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3.6. Identifiability 

There are multiple sets of parameters that could give exactly the same value for log𝑚𝑥,𝑡 and hence the 

deviance. Specifically, the following transformations leave the values of log𝑚𝑥,𝑡 unchanged for any values of 

𝜃1, … , 𝜃5: 

𝛼𝑥 ⟼ 𝛼𝑥 + 𝜃1 − 𝜃2(𝑥 − �̅�) + 𝜃3(𝑥 − �̅�)2 + 𝜃4  

𝛽𝑥 ⟼ 𝛽𝑥 − 2𝜃3(𝑥 − �̅�) + 𝜃5  

𝜅𝑡 ⟼ 𝜅𝑡 + 𝜃2(𝑡 − 𝑡̅) + 𝜃3(𝑡 − 𝑡̅)2 − 𝜃4 − 𝜃5(𝑡 − 𝑡̅)  

𝛾𝑐 ⟼ 𝛾𝑐 − 𝜃1 − 𝜃2(𝑐 − 𝑐̅) − 𝜃3(𝑐 − 𝑐̅)2  

 
So that the parameter values are uniquely determined, we use the following five identifiability constraints: 

∑ 𝜅𝑡𝑡 = ∑ 𝑡𝜅𝑡𝑡 = 0  i.e. a linear fit to 𝜅𝑡 would be zero for all years 𝑡 

∑ 𝛾𝑐𝑐 = ∑ 𝑐𝛾𝑐𝑐 = ∑ 𝑐2𝛾𝑐𝑐 = 0 i.e. a quadratic fit to 𝛾𝑐 would be zero for all cohorts 𝑐. 

 
It would be possible to implement these constraints as part of the objective function, using Lagrangian 
multipliers. However we have found that doing so makes convergence extremely slow. Instead we allow for the 
identifiability constraints by making explicit adjustments to the parameters (in step 2i of the pseudocode). 
 
The steps are: 

(a) quadratic regression of 𝛾𝑐 against 𝑐 − 𝑐 ̅to determine values of 𝜃1, 𝜃2 and 𝜃3. 

(b) make the adjustments relating to 𝜃1, 𝜃2 and 𝜃3. 

(c) linear regression of 𝜅𝑡, after the adjustments in step (b), against 𝑡 − 𝑡̅ to determine 𝜃4 and 𝜃5. 

(d) make the adjustments relating to 𝜃4 and 𝜃5. 
 
For step (a) define: 

𝐸 = ∑ (𝜃1 + 𝜃2(𝑐 − 𝑐̅) + 𝜃3(𝑐 − 𝑐̅)2 − 𝛾𝑐)
2

𝑐   

 
If we choose parameters 𝜃1, 𝜃2 and 𝜃3 to minimise 𝐸 then we will make a quadratic fit to 𝛾𝑐 identically equal to 

zero. To minimise 𝐸 we require that its partial derivatives with respect to the parameters that we are fitting are 
all zero:  

𝜕E

𝜕𝜃1
=

𝜕E

𝜕𝜃2
=

𝜕E

𝜕𝜃3
= 0  

 
We have:  

𝜕E

𝜕𝜃1
= 2∑ (𝜃1 + 𝜃2(𝑐 − 𝑐̅) + 𝜃3(𝑐 − 𝑐̅)2 − 𝛾𝑐)

2
𝑐   

𝜕E

𝜕𝜃2
= 2∑ (𝜃1(𝑐 − 𝑐̅) + 𝜃2(𝑐 − 𝑐̅)2 + 𝜃3(𝑐 − 𝑐̅)3 − 𝛾𝑐(𝑐 − 𝑐̅))

2
𝑐   

𝜕E

𝜕𝜃3
= 2∑ (𝜃1(𝑐 − 𝑐̅)2 + 𝜃2(𝑐 − 𝑐̅)2 + 𝜃3(𝑐 − 𝑐̅)4 − 𝛾𝑐(𝑐 − 𝑐̅)2)2

𝑐   

 
We can express the requirement that all of these are zero in matrix form as: 

[

∑ (𝑐 − 𝑐̅)0
𝑐 ∑ (𝑐 − 𝑐̅)1

𝑐 ∑ (𝑐 − 𝑐̅)2
𝑐

∑ (𝑐 − 𝑐̅)1
𝑐 ∑ (𝑐 − 𝑐̅)2

𝑐 ∑ (𝑐 − 𝑐̅)3
𝑐

∑ (𝑐 − 𝑐̅)2
𝑐 ∑ (𝑐 − 𝑐̅)3

𝑐 ∑ (𝑐 − 𝑐̅)4
𝑐

] [

𝜃1

𝜃2

𝜃3

] = [

∑ 𝛾𝑐(𝑐 − 𝑐̅)0
𝑐

∑ 𝛾𝑐(𝑐 − 𝑐̅)1
𝑐

∑ 𝛾𝑐(𝑐 − 𝑐̅)2
𝑐

]  

and then solve for the values of 𝜃1, 𝜃2 and 𝜃3. 
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Step (c) is similar. We solve the matrix equations: 

[
∑ (𝑡 − 𝑡̅)0

𝑡 ∑ (𝑡 − 𝑡̅)1𝑡

∑ (𝑡 − 𝑡̅)1𝑡 ∑ (𝑡 − 𝑡̅)2
𝑡

] [
𝜃4

𝜃5
] = [

∑ 𝜅𝑡(𝑡 − 𝑡̅)0
𝑡

∑ 𝜅𝑡(𝑡 − 𝑡̅)1
𝑡

]  

for the values of 𝜃4 and 𝜃5. 

3.7. Identifiability and the objective function 

The identifiability transforms have no impact on the values of log𝑚𝑥,𝑡 and so have no impact on the deviance. 

They also have no impact on the penalty functions for 𝛼𝑥, 𝛽𝑥, and 𝛾𝑡−𝑥 as they use third-order differences and 
the transforms only involve second-order terms. 
 
However the identifiability transforms do affect the penalty function for 𝜅𝑡 slightly. This means that when 
applying the iterative fitting process described in Section 3.4, the value of the objective function can rise slightly 
before converging. This is illustrated in Table 3.1. It shows the objective function falling for the first 40 iterations, 
and later rising slightly. We consider the impact of this to be minor and do not take any further action to address 
it. 
 

Table 3.1: Change in deviance, penalty, and objective, by iteration (every ten, and final) 

Iteration Deviance Penalty Objective 

0 51296859.84490 0.00000 51296859.84490 

10 7657.84617 644.65329 8302.49946 

20 7414.68540 676.42404 8091.10945 

30 7396.36453 684.95146 8081.31599 

40 7394.02202 687.03116 8081.05318 

50 7393.57911 687.52884 8081.10795 

60 7393.48025 687.64735 8081.12761 

70 7393.45711 687.67554 8081.13265 

80 7393.45163 687.68225 8081.13388 

90 7393.45033 687.68384 8081.13417 

93 (final) 7393.45019 687.68401 8081.13420 

 

3.8. Overdispersion 

Under the Poisson assumption for deaths, we expect the deviance to be equal to the number of degrees of 
freedom. In practice we see overdispersion; i.e. the deviance is higher than expected. 
 
In CMI_2014 and CMI_2015 we made an allowance for overdispersion when fitting the p-spline model, by using 
the Quasi-Bayesian Information Criterion (QBIC) to determine the optimal amount of smoothing. For the 
proposed model the degree of smoothing is controlled through the hyperparameters, 𝑆. These can be 
considered to incorporate an implicit allowance for overdispersion, and so there is no need to make any explicit 
additional allowance for overdispersion. (This does however suggest that different hyperparameters might be 
appropriate if the method were applied to datasets with materially different amount of overdispersion.) 
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4. APCI model – parameters and smoothing 

An important feature of the way that we use the APCI model is that we have hyperparameters (described in 
Section 3.2) that we use to control the smoothness of its fitted parameters and hence the smoothness of the 
age, period and cohort components of mortality improvements.  
 
In this section we consider the values of the parameters of the APCI model and the resulting mortality 
improvements, and their sensitivities to choices for the smoothing parameters. We consider the proposed Core 
assumptions for the smoothing parameters (𝑆𝛼 = 7, 𝑆𝛽 = 9, 𝑆𝜅 = 7.5 and 𝑆𝛾 = 7; where 𝑆𝑖 = log10 𝜆𝑖) and the 

impact of changing these. The impact on life expectancies is considered in Section 6. 
 
The results in this section are all calibrated to data for England & Wales for ages 20-100 and calendar years 
1975-2015, with exposures adjusted as described in Section 5.9 of Working Paper 90. 

4.1 Age components 

Chart 4A shows the values of 𝛼𝑥 for males and females for different choices of the age smoothing parameter 𝑆𝛼 
when the other smoothing parameters 𝑆𝛽, 𝑆𝜅 and 𝑆𝛾 keep their Core values. We show the effect of no 

smoothing
4
, the Core assumption of 𝑆𝛼 = 7, and values of 𝑆𝛼 that are one higher and one lower than the Core 

assumption.  
 

Chart 4A: Impact of varying 𝑺𝜶 on 𝜶𝒙 

Males Females 

  
 
Chart 4A shows a plausible pattern for log-mortality by age, increasing roughly linearly for much of the age 
range, with some flattening at young and very-old ages. For 𝛼𝑥 the choice of smoothing parameter seems 
largely unimportant, and it is hard to distinguish by eye between the smoothed and unsmoothed cases. 
 
Chart 4B shows values of minus 𝛽𝑥, which corresponds directly to the age component of mortality 
improvements. For both males and females the improvements fall towards zero at the oldest ages. Compared 
to Chart 4A there is a bigger difference between the smoothed and unsmoothed parameters, but there is little 
visual difference between the values of 𝑆𝛽 illustrated, except that 𝑆𝛽 = 11 seems to over-smooth. 

 
  

                                                
4
 By “no smoothing”, we mean 𝜆𝛼 = 0 rather than 𝑆𝛼 = 0. The latter would correspond to 𝜆𝛼 = 1 and give rise to 

a very small amount of smoothing. 
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Chart 4B: Impact of varying 𝑺𝜷 on minus 𝜷𝒙 i.e. the age component of mortality improvements 
 

Males Females  

  

 

 
As Chart 4B suggests, and as shown in Section 6, the choice of 𝑆𝛽 has little impact on life expectancy. Our 

choice of 𝑆𝛽 = 9 is based on closer inspection of the shapes of mortality improvements which suggests that 

using a value of 𝑆𝛽 lower than 9 may under-smooth, particularly for the 50-80 age range, whilst 𝑆𝛽 above 10 

over-smooths across the whole age range. 

4.2 Period components 

Chart 4C shows the period parameters, 𝜅𝑡, for different choices of the period smoothing parameter, 𝑆𝜅.  
 

Chart 4C: Impact of varying 𝑺𝜿 on 𝜿𝒕 

Males Females 

  
 
While Chart 4C is of some interest in its own right, it is instructive to consider Chart 4D, which shows the impact 
of the smoothing parameter Sκ on the period components of mortality improvements, which are derived from κt.  
 
While the pattern of improvements by age (in Chart 4B) is clear even before applying any smoothing, the 
improvements by period (Chart 4D) show considerable volatility from year to year. This is due to events such as 
cold or mild winters and the extent of infectious diseases such as influenza.  
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Chart 4D: Impact of varying 𝑺𝜿 on the period component of mortality improvements 

Males Females 

  
 
Chart 4E shows the same results as Chart 4D but excludes the unsmoothed case. This allows the y-axis to be 
expanded to show more detail of the smoothed parameters. 
 

Chart 4E: Impact of varying 𝑺𝜿 on the period component of mortality improvements (alternative 
scale) 

Males Females 

  
 

Our motivation for the choice of 7.5 as the Core parameter value is discussed in Section 9.3 of Working Paper 

90. We consider that a value of 7.5 provides an appropriate degree of responsiveness to new data. e.g.: 

 A value of 7 or less would give rise to a fall in life expectancy that is greater than under the current CMI 
method, and we perceive that a majority of users think this is too responsive.  

 A value of 8 would produce improvements for females that are marginally higher in 2015 than in 2011, 
despite the unprecedented low improvements of 2011-2015.  
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4.3 Cohort components 

Chart 4F shows the cohort parameters 𝛾𝑡−𝑥. Charts 4G and 4H show the impact of the smoothing parameter 𝑆𝛾 

on the values of the cohort components of mortality improvements, with different y-axis scales. 
 
(Note that when 𝑆𝛾 = 0 in Chart 4G, the 1875 cohort for males, for which we only have one observation, has a 

value of −21% that is off the scale of the chart). 
 

Chart 4F: Impact of varying 𝑺𝜸 on 𝜸𝒕−𝒙 

Males Females 

  
 

Chart 4G: Impact of varying 𝑺𝜸 on the cohort component of mortality improvements  

Males 
 

Females 
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Chart 4H: Impact of varying 𝑺𝜸 on the cohort component of mortality improvements 

(alternative scale) 

 

Male Female  

  

 

 
There is some subjectivity over the choice of 𝑆𝛾, which controls the strength of cohort features in the Model.  

 
Chart 4H shows that a choice of 𝑆𝜅 = 8 seems to over-smooth; for example Willets (2004) notes “two ‘sub-

cohorts' of the 1925 to 1945 cohort” and setting 𝑆𝜅 = 8 would remove the peak for the 1945 cohort (shown at 
age 70). Conversely a choice of 6 seems to under-smooth; producing cohort improvements that would be larger 
than under the current Model. 
 
Chart 4I compares the cohort components under the current method and the proposed method (with parameter 
values of 𝑆𝛼 = 7, 𝑆𝛽 = 9, 𝑆𝜅 = 7.5 and 𝑆𝛾 = 7). The cohort components are noticeably higher under the 

proposed approach at the youngest ages (due to the different identifiability constraints) and at around age 80 
(where the total mortality improvements are higher). However the overall level of smoothing seems similar 
between the two approaches; i.e. the sizes of the peaks and troughs from ages 40 to 70 look broadly similar. 
 

Chart 4I: Cohort components (by current age) in the current and proposed models 

Male Female 
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4.4 Impact of varying 𝑺𝜿 on all parameters 

In the previous section we considered the impact on a set of parameters of changing its own smoothing 
hyperparameter. We may also see a “knock-on” effect. For example if we change 𝑆𝜅 then this will affect the 

values and smoothness of the parameters 𝜅𝑡 and may also affect the other parameters 𝛼𝑥, 𝛽𝑥 and 𝛾𝑡−𝑥 as it is 
the combination of the four sets of parameters that is used to fit mortality rates. 
 
In this section we focus on 𝑆𝜅, given its importance in controlling the responsiveness of the Model, and consider 
how all four sets of parameters vary when we change it. This is shown in Charts 4J to 4M. 
 

Chart 4J: Impact of varying 𝑺𝜿 on 𝜶𝒙 
 

Males Females 

  
 

Chart 4K: Impact of varying 𝑺𝜿 on minus 𝜷𝒙 i.e. the age component of mortality improvements 

Males Females 
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Chart 4L: Impact of varying 𝑺𝜿 on the period component of mortality improvements 
This is the same as Chart 4E, but is shown for ease of reference. 

Males Females 

  
 

Chart 4M: Impact of varying 𝑺𝜿 on the cohort component of mortality improvements 

Males Females 

  
 
We see that 𝑆𝜅 has a large impact on the period component of mortality improvements (Chart 4L), which it 
controls directly. It also affects the age and cohort components of improvements (Charts 4K and 4M) but the 
impact on these is fairly small, particularly for females. The 𝛼𝑥 parameters (Chart 4J) are largely unaffected. 

4.5 Impact on 𝑺 when the volume of data changes 

The values of the hyperparameters 𝑆𝛼, 𝑆𝛽, 𝑆𝜅 and 𝑆𝛾 have been set based on analysis of the results of fitting 

the APCI Model to datasets for England & Wales that cover 81 ages (20-100) and 41 years (e.g. 1975-2015). In 
this section we consider how these hyperparameters may need to change if the size of the dataset changes. 
 
We first consider the case where the numbers of ages and years remain the same, but the numbers of deaths 

(actual and expected) change; e.g. fitting the proposed model to a larger or smaller country. In this case the 

expected deviance is unaffected by the number of deaths as it relates only to the number of degrees of 

freedom. This is based on the number of age/year cells, and the number of parameters used. Consequently we 

would expect the hyperparameters to have the same impact and apply the same amount of smoothing, as long 

as the overdispersion of the new dataset is broadly similar to that for England & Wales.  
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We next consider the case where the numbers of ages or years change. This has proved challenging to 
analyse and our attempts to find a neat algebraic approach have not been fruitful. Instead we consider 
empirical tests, and discuss the results. 
 
Charts 4N to 4P show period components of mortality improvements, for 𝑆𝜅 of 7, 7.5 and 8, for three datasets: 
the “standard” dataset (ages 20-100, years 1975-2015), halving the age range (ages 60-100, years 1975-
2015), and halving the time period (ages 20-100, years 1995-2015). Chart 4Q will be described later, but is 
placed here for ease of comparison. 
 

Chart 4N: Period components of improvements; 
ages 20-100, years 1975-2015 (“standard”) 

Chart 4O: Period components of improvements; 
ages 60-100, years 1975-2015 (“60-100”) 

  
  

Chart 4P: Period components of improvements; 
ages 20-100, years 1995-2015 (“1995-2015”) 

Chart 4Q: Period components of improvements; 
ages 20-100, years 1995-2015; 𝑺𝜿 reduced 
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Table 4.1 shows, for each of these cases, the difference in the period component between 2005 and 2015; 
indicative of the fall from the peak to the current value. 
 

Table 4.1: Fall in period component of mortality improvement from 2005 to 2015 

 𝑺𝜿 = 𝟕 𝑺𝜿 = 𝟕. 𝟓 𝑺𝜿 = 𝟖 

Standard -1.43% -0.83% -0.36% 

60-100 -1.54% -0.89% -0.38% 

1995-2015 -1.00% -0.50% -0.20% 

 
Results for ages 60-100 look similar to those for the standard case for ages 20-100. This suggests that 
changing the age range does not have a material effect on the smoothing of the period component of 
improvements. Although the results for ages 60-100 show a slightly higher fall in Table 4.1, this may reflect 
higher falls in mortality improvements at those ages, rather than any artefact of the smoothing process. 
 
Results for the fit to 1995-2015 data look quite different to those for 1975-2015. The overall downward shifts 
between Charts 4N and 4P and between Charts 4O and 4Q reflect the identifiability constraints applied to the 

APCI model; as we constrain 𝜅𝑡 to have zero slope, the period components of improvements (𝜅𝑡−1 − 𝜅𝑡 ) have 
an average close to zero. In addition, Table 4.1 shows that the fall in mortality improvements between 2005 and 
2015 is materially smaller when using the 1995-2015 dataset; this suggests that the period smoothing 
parameter has a different impact when the number of years in the data changes.  
 
To address this we consider the impact of halving the value of 𝜆𝜅 when we halve the number of years. This 

corresponds to reducing 𝑆𝜅 by 0.3. (Strictly; to halve 𝜆𝜅 we would reduce 𝑆𝜅 by log10 2, which is 0.301; but this 
would seem to be spurious accuracy, given the subjective nature of 𝑆𝜅). Chart 4Q (above) and Table 4.2 show 
the results when we do this.  
 

Table 4.2: Fall in period component of mortality improvement from 2005 to 2015 

 𝑺𝜿 = 𝟕 𝑺𝜿 = 𝟕. 𝟓 𝑺𝜿 = 𝟖 

Standard (𝑆𝜅 as stated) -1.43% -0.83% -0.36% 

1995-2015 (𝑆𝜅 as stated) -1.00% -0.50% -0.20% 

1995-2015 (𝑆𝜅 0.3 lower) -1.34% -0.78% -0.35% 

 
The results for 1995-2015 after reducing 𝑆𝜅 look broadly similar to those for the standard case. 
 
Having considered the specific case of adjusting 𝑆𝜅 to compensate for halving the time period, we now seek to 
generalise this. The example suggests a rule of thumb that: 

𝑆𝜅(𝑇1) ≈ 𝑆𝜅(𝑇0) + log10 (
𝑇1

𝑇0
)  

where 𝑇0 and 𝑇1 are the number of years of data in different datasets, and 𝑆𝜅(𝑇0) and 𝑆𝜅(𝑇1) are the 
corresponding broadly-consistent values of 𝑆𝜅.  
 
  



Working Paper 91 

CMI Mortality Projections Model consultation – technical paper 

 

Page 30 of 80 
 

Similarly for the other parameters, where 𝑋 is the number of ages, and 𝑋 + 𝑇 − 1 is the number of cohorts: 

𝑆𝛼(𝑋1) ≈ 𝑆𝛼(𝑋0) + log10 (
𝑋1

𝑋0
)  

𝑆𝛽(𝑋1) ≈ 𝑆𝛽(𝑋0) + log10 (
𝑋1

𝑋0
)  

𝑆𝛾(𝑋1 + 𝑇1 − 1) ≈ 𝑆𝛾(𝑋0 + 𝑇0 − 1) + log10 (
𝑋1+𝑇1−1

𝑋0+𝑇0−1
)  

 
In theory we should perhaps allow for the difference between the number of years of data, 𝑇, and the number of 

differences in the penalty function, 𝑇 − 2, but this may be spurious as at this stage we only have a rule of thumb 
rather than a proven result. 
 
We stress that this is a tentative result, based on limited empirical testing and an educated guess, rather than a 
rigorous derivation and proof. Further research may be able to verify or improve on this, or may show it to be 
mistaken, so it should not be relied on. 
  



Working Paper 91 

CMI Mortality Projections Model consultation – technical paper 

 

Page 31 of 80 
 

5. Projections  

This section considers a number of issues related to the projection of mortality improvements: 

 Section 5.1 sets out in detail the proposed method for projecting mortality improvements, including the 
conversion between the proposed “m-style” improvements and the traditional “q-style” improvements. 

 Section 5.2 provides analysis to support the proposed change in the taper of the long-term rate. 

 Section 5.3 presents and discusses an illustrative model to show the difficulty of estimating direction of 
travel. This complements the empirical tests in Section 8.2 of Working Paper 90. 

5.1 Projection and conversion of mortality improvements  

Section 6 of Working Paper 90 describes two definitions of mortality improvements. 
 

“q-style” improvements are defined by: 

𝑀𝐼𝑥,𝑡 = 1 −
𝑞𝑥,𝑡

𝑞𝑥,𝑡−1 
  

 

“m-style” improvements are defined by: 

𝑀𝐼𝑥,𝑡
∗ = log𝑚𝑥,𝑡−1 − log𝑚𝑥,𝑡  

 

The proposed model will use m-style improvements within the model (i.e. the initial improvements, long-term 

rate and projected improvements will be m-style) and these will then be converted to q-style improvements as 
the final outputs; for consistency with the current Model. 
 
This section describes the calculation and projection of m-style mortality improvements (in steps 1 to 4) and 

conversion to q-style mortality improvements (steps 5 to 7). We do this by using the example of the proposed 
Core Model calibrated to data for 1975-2015.  

1. Calibrate the APCI model to data for 1975-2015 to obtain values for its parameters. 

2. Calculate initial age-period and cohort components of mortality improvements 𝑀𝐼𝑥,𝑡
𝐴𝑃 and 𝑀𝐼𝑡−𝑥,𝑡

𝐶  as: 

𝑀𝐼𝑥,2015
𝐴𝑃 = −𝛽𝑥 + 𝜅2014 − 𝜅2015    for ages 20 to 100 

𝑀𝐼𝑥,2015
𝐴𝑃 = (

110−𝑥

110−100
)𝑀𝐼100,2015

𝐴𝑃     for ages 101 to 109 

𝑀𝐼𝑥,2015
𝐴𝑃 = 0      for ages 110 to 150 

 

𝑀𝐼2015−𝑥,2015
𝐶 = 𝛾2014−𝑥 − 𝛾2015−𝑥    for ages 20 to 100 

𝑀𝐼2015−𝑥,2015
𝐶 = (

110−𝑥

110−100
)𝑀𝐼2015−100,2015

𝐶    for ages 101 to 109 

𝑀𝐼2015−𝑥,2015
𝐶 = 0     for ages 110 to 150  

3a. Project age-period improvements as: 

𝑀𝐼𝑥,2015+𝑡
𝐴𝑃 = 𝐿𝑥

𝐴𝑃 + (𝑀𝐼𝑥,2015
𝐴𝑃 − 𝐿𝑥

𝐴𝑃) (1 − 3 (
𝑡

𝑇𝑥
𝐴𝑃)

2

+ 2(
𝑡

𝑇𝑥
𝐴𝑃)

3

) + 𝐷𝑥
𝐴𝑃𝑡 (1 −

𝑡

𝑇𝑥
𝐴𝑃)

2

 for 0 ≤ 𝑡 ≤ 𝑇𝑥
𝐴𝑃 

𝑀𝐼𝑥,2015+𝑡
𝐴𝑃 = 𝐿𝑥

𝐴𝑃         for 𝑡 > 𝑇𝑥
𝐴𝑃 

where:  

𝐿𝑥
𝐴𝑃 is the long-term rate for age 𝑥 

𝑇𝑥
𝐴𝑃 is the convergence period for age 𝑥 

𝐷𝑥
𝐴𝑃 is the direction of travel for age 𝑥 (zero in the Core Model) 
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If the shape of convergence is specified in terms of the proportion remaining at midpoint (𝑝𝑥
𝐴𝑃) then:  

𝐷𝑥
𝐴𝑃 = 1

𝑇𝑥
𝐴𝑃(8𝑝𝑥

𝐴𝑃 − 4)(𝐼 − 𝐿)  

3b. Project cohort improvements as: 

𝑀𝐼𝑐,2015+𝑡
𝐶 = 𝐿𝑐

𝐶 + (𝑀𝐼𝑐,2015
𝐶 − 𝐿𝑐

𝐶) (1 − 3 (
𝑡

𝑇𝑐
𝐶)

2

+ 2(
𝑡

𝑇𝑐
𝐶)

3

) + 𝐷𝑐
𝐶𝑡 (1 −

𝑡

𝑇𝑐
𝐶)

2

  for 0 ≤ 𝑡 ≤ 𝑇𝑐
𝐶 

𝑀𝐼𝑐,2015+𝑡
𝐶 = 𝐿𝑐

𝐶         for 𝑡 > 𝑇𝑐
𝐶  

where:  

𝑐 = 2015 − 𝑥   

𝐿𝑐
𝐶 is the long-term rate for cohort 𝑐 (zero in the Core Model) 

𝑇𝑐
𝐶 is the convergence period for cohort 𝑐 

𝐷𝑐
𝐶  is the direction of travel for cohort 𝑐 (zero in the Core Model)  

3c. Project total improvements by adding age-period and cohort components; i.e. 

𝑀𝐼𝑥,𝑡
∗ = 𝑀𝐼𝑥,𝑡

𝐴𝑃 + 𝑀𝐼𝑡−𝑥,𝑡
𝐶          for 𝑡 ≥ 2015 

4. Determine 𝑀𝐼𝑥,𝑡
∗  for all necessary ages and years: 

 For ages 20-150, years 2016 onwards, projected (as in 3 above) 

 For ages 20-100, years 1974-2015, calculated as 𝑀𝐼𝑥,𝑡
∗ = log𝑚𝑥,𝑡−1 − log𝑚𝑥,𝑡 from the APCI model fit  

 For ages 101-109, years 1976-2015, interpolated between 𝑀𝐼100,𝑡
∗  and nil at age 110 

 For ages 110-150, years 1976-2015, assumed to be nil 

5. Determine log𝑚𝑥,𝑡: 

 For ages 20-100 in 2015, taken directly from the fit of the APCI model  

 For ages 101-150 in 2015, linear extrapolation based on log𝑚99,2015 and log𝑚100,2015 

i.e. log𝑚𝑥,2015 = log𝑚100,2015 + (𝑥 − 100)(log𝑚100,2015  − log𝑚99,2015) 

 For ages 20-100, years 1976-2014, determined using log𝑚𝑥,𝑡 = log𝑚𝑥,𝑡+1 + 𝑀𝐼𝑥,𝑡+1
∗  

 For ages 20-100, years 2016 onwards, determined using log𝑚𝑥,𝑡 = log𝑚𝑥,𝑡−1 − 𝑀𝐼𝑥,𝑡
∗  

6. Convert to 𝑞𝑥,𝑡 assuming that 𝑞𝑥,𝑡 = 1 − exp (−𝑚𝑥,𝑡) 

7. Calculate 𝑀𝐼𝑥,𝑡 = 1 −
𝑞𝑥,𝑡

𝑞𝑥,𝑡−1 
 

5.2 Tapering of the long-term rate 

In Working Paper 90 we proposed that the long-term rate should taper to zero between ages 85 and 110, rather 
than between ages 90 and 120 as in the current Model. This section provides evidence to support the 
Committee’s proposal. 
 
Chart 5A plots the male and female age components of mortality improvements from the APCI model fitted to 
data for 1975 to 2015. This is compared against long-term rates of 1%, 1.5% and 2% p.a. below age 90, 
tapering to zero by age 120, as in the current Model. 
 
Chart 5A shows that the current assumption implies a material increase in mortality improvements at 
centenarian ages. For example, a long-term rate assumption of 1.5% p.a. corresponds to a long-term rate of 
1% p.a. at age 100. However the fitted age component of mortality improvements is just 0.19% p.a. for males 
and 0.35% p.a. for females. 
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Chart 5A: Age components of mortality 
improvements, and long-term rates tapering from 
age 90 to age 120 

Chart 5B: Age components of mortality 
improvements, and long-term rates tapering from 
age 85 to age 110 

  
 
Chart 5B shows the alternative assumption with a taper between ages 85 and 110. The example of a long-term 
rate assumption of 1.5% p.a. produces a long-term rate of 0.6% p.a. at age 100 so still allows for mortality 
improvements at older ages to increase in the future, but this is now significantly lower than in the current Core 
Model. 
 
Figure 3.13 of Working Paper 39 plotted smoothed mortality improvements by age for a range of years and 
observed that “the estimated improvement rates at high ages display a near-parallel shift over the past two 
decades, so that the age-point of reaching around ‘zero’, that is stable mortality rates, appears to have been 
increasing over time.” This provided justification for a relatively high age for mortality improvements to taper to 
zero. 
 
We have revisited the analysis using more recent data. 
 

Chart 5C: Mortality improvements by age for 1985 
to 2005 (as in Figure 3.13 of Working Paper 39) 

Chart 5D: Mortality improvements by age for 1993 
to 2013  

  
 
Chart 5C shows mortality improvements for each fourth year, using data that was available at the time of 
Working Paper 39. It shows that mortality improvements were moving to the right, suggesting that the age at 
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which mortality improvements would reach zero was increasing. Chart 5D includes more recent data and 
shows that this pattern has not continued; improvements for 2009 are similar to those for 2005, and those for 
2013 are considerably lower. Chart 5D provides further support for the proposed tapering of the long-term rate. 
 
When changing the taper of the long-term rate at older ages, users of the Model may also wish to consider 
whether the assumption at younger ages remains appropriate. Adopting the new taper in isolation, without 
adjusting the long-term rate assumption, would lead to lower liabilities. 

5.3 Direction of travel 

One of the concerns that has been raised about the current Model is the lack of allowance for “direction of 
travel” in mortality improvements. The Core parameterisation of the Model assumes a convergence function 
that is instantaneously flat at the start of the projection period, rather than allowing mortality improvements to 
rise or fall according to what happened in the recent past.  
 
Section 8.2 of Working Paper 90 noted the difficulty of estimating direction of travel, by showing how it had 
varied over time. This section uses an illustrative model to provide some insight into why this difficulty arises. 

Model – structure and properties 

We model mortality as a combination of a smooth, slowly-varying, deterministic underlying trend 𝑆(𝑡) and 
annual noise: 

log𝑚(𝑡) = 𝑆(𝑡) + 𝜎𝑍(𝑡)   

where 𝑍(𝑡) is a standard normal random variable, so the noise is independent and identically distributed (iid). 
 
This could be considered as relating to an individual age or age-group or a standardised mortality ratio (SMR) 
across a wide age range. 
 
Mortality improvement is the negative change in log mortality rates: 

𝑀𝐼(𝑡) = −∆ log𝑚(𝑡)  

and “direction of travel” is the rate of change in this: 

 𝐷𝑜𝑇(𝑡) = ∆𝑀𝐼(𝑡) = −∆2 log𝑚(𝑡) 

 
Considering the first and second order differences of log𝑚(𝑡) we have: 

∆ log𝑚(𝑡) = [𝑆(𝑡 + 1) − 𝑆(𝑡)] + 𝜎[𝑍(𝑡 + 1) − 𝑍(𝑡)]  

∆2 log𝑚(𝑡) = [𝑆(𝑡 + 2) − 2𝑆(𝑡 + 1) + 𝑆(𝑡)] + 𝜎[𝑍(𝑡 + 2) − 2𝑍(𝑡 + 1) + 𝑍(𝑡)]  

 
So that: 

𝑉𝑎𝑟(log𝑚(𝑡)) = 𝜎2    

𝑉𝑎𝑟(𝑀𝐼(𝑡)) = 𝑉𝑎𝑟(−∆ log𝑚(𝑡)) = 𝑉𝑎𝑟(∆ log𝑚(𝑡)) = 2𝜎2   

𝑉𝑎𝑟(𝐷𝑜𝑇(𝑡)) = 𝑉𝑎𝑟(−∆2 log𝑚(𝑡)) = 𝑉𝑎𝑟(∆2 log𝑚(𝑡)) = 6𝜎2   
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Model – underlying trend 

The choice of the smooth trend is somewhat arbitrary, but the following captures key features: 

𝑆(𝑡) = 𝑎 − 𝑏𝑡 +
𝑐

𝑘
sin (𝑘𝑡) where 𝑘 =

𝜋

𝑇
 

 
Here 𝑆(𝑡) is a combination of a linear trend and a periodic component with time 𝑇 between the peak and trough 
of the periodic component. 
 
Using a derivative rather than a difference, we have: 

𝑑𝑆

𝑑𝑡
= −𝑏 + 𝑐. cos (𝑘𝑡)   

so the smooth underlying component of the mortality improvement (−
𝑑𝑆

𝑑𝑡
) has a mean of 𝑏 and oscillates in the 

range [𝑏 − 𝑐, 𝑏 + 𝑐]. 
 
Also: 

𝑑2𝑆

𝑑𝑡2 = −𝑐𝑘. sin (𝑘𝑡)   

so the smooth underlying component of direction of travel (−
𝑑2𝑆

𝑑𝑡2) is in the range [−𝑐𝑘, +𝑐𝑘]. 

 

The range of the smooth component of direction of travel is 2𝑐𝑘 compared to 2𝑐 for mortality improvement; i.e. 

the range for direction of travel is 𝑘 =
𝜋

𝑇
 times that of mortality improvement. 

Calibration 

Plausible parameters for this form of 𝑆(𝑡) are: 

 𝑏 = 2% for the mean improvement; 

 𝑐 = 1% for the “half-range” of the improvements, so improvements are in the range [1%, 3%]; 

 𝑇 = 25 as the time between minimum and maximum improvements, as they vary slowly; and 

 𝑎 = 0 for simplicity, as it does not affect mortality improvements. 
 
Finally we set 𝜎, the standard deviation of the noise component, to 𝜎 = 1.5% as a plausible value for a 
standardised mortality ratio; for example, based on comparing versions of the APCI model with smooth and 
noisy period terms.  
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Results 

Charts 5A to 5C show one realisation of the random process for log𝑚 (𝑡), shown for an illustrative 100-year 

period. We plot log𝑚, −∆ log𝑚 and −∆2 log𝑚 as dots, and the corresponding smooth components 𝑆, −∆𝑆, and 

−∆2𝑆 as lines.  
 

Chart 5E: log mortality rate 

log𝑚(𝑡) 
Chart 5F: Mortality improvement 

𝑀𝐼(𝑡) = −∆ log𝑚(𝑡) 
Chart 5G: Direction of travel 

 𝐷𝑜𝑇(𝑡) = −∆2 log𝑚(𝑡) 

   
 
As we move from rates to improvements to direction of travel, the range of the smooth component narrows, but 
the standard deviation of the noise component increases. The proportionate error (the standard deviation 
divided by the range) increases by more than an order of magnitude as we move from improvement to direction 
of travel. 
 

Table 5.1: Relative uncertainty of mortality rates, improvements, and direction of travel 

 Standard deviation 
(StDev) of noise 

Range of smooth component Ratio 
(StDev ÷ Range) 

Mortality rate 1.50% 200%  (-200% to 0%) 0.0075 

Mortality improvement 2.12% 2%    (1% to 3%) 1.06 

Direction of travel 3.67% 0.25%  (-0.13% to +0.13%) 14.6 

 
Note that the “Ratio” figure for mortality rates depends on the length of the projection, as under this model rates 
have a long-term trend while improvements and direction of travel are bounded. 
 
Our illustrative model and calibration suggests that direction of travel is significantly more difficult to estimate 
than mortality rates or improvements, and supports our decision not to allow for it in the Core parameterisation 
of the Model. 
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6. Sensitivity of life expectancy 

This section considers the sensitivity of life expectancy to a wide range of parameters and model choices. 
 
The cases considered are described in Table 6.1. All of the life expectancies in this section are cohort life 
expectancies calculated as at end 31 December 2015. They use base tables of S2PMA for males and S2PFA 
for females, and an illustrative long-term rate of 1.5% p.a. unless stated otherwise. 
 

Table 6.1: Description of life expectancy calculations in this section 

Short name Description 

Standard As proposed in Working Paper 90 

𝑆𝛼 = 6  As standard, but reducing 𝑆𝛼 from 7 to 6 

𝑆𝛼 = 8  As standard, but increasing 𝑆𝛼 from 7 to 8 

𝑆𝛽 = 8  As standard, but reducing 𝑆𝛽 from 9 to 8 

 𝑆𝛽 = 10 As standard, but increasing 𝑆𝛽 from 9 to 10 

𝑆𝜅 = 6.5  As standard, but reducing 𝑆𝜅 from 7.5 to 6.5 

𝑆𝜅 = 8.5  As standard, but increasing 𝑆𝜅 from 7.5 to 8.5 

𝑆𝛾 = 6  As standard, but reducing 𝑆𝛾 from 7 to 6 

𝑆𝛾 = 8  As standard, but increasing 𝑆𝛾 from 7 to 8 

LTR of 1% p.a. As standard, but reducing the long-term rate from 1.5% to 1.0% p.a. 

LTR of 2% p.a. As standard, but increasing the long-term rate from 1.5% to 2.0% p.a. 

Old LTR tapering As standard, but retaining the current tapering of the long-term rate (between 
ages 90 and 120, rather than between ages 85 and 110) 

Old convergence As standard, but retaining current cohort convergence periods 

Direction of travel As standard, but allowing for direction of travel, based on the fitted period 
component 

Raw exposure  As standard, but applied to data without making the exposure adjustment 

Ages 20-90 As standard, but fitted to the age range 20-90 rather than 20-100 (retaining 
the taper to nil improvements at age 110) 

Ages 60-100 As standard, but fitted to the age range 60-100 rather than 20-100 

Years 1995-2015 As standard, but fitted to the calendar years 1995-2015, rather than 1975-
2015 

Small cohorts As standard, but fitted to data that excludes birth cohorts with five or fewer 
observations. i.e. fitted to cohorts from 1880-1990, rather than 1875-1995 

 
Tables 6.2 to 6.5 show life expectancies for these cases, for males and females, in absolute terms, and relative 
to the standard case. 
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Table 6.2: Life expectancy for males 

Age 25 35 45 55 65 75 85 95 105 

Standard 63.826 52.812 41.993 31.872 22.396 13.737 6.775 2.829 1.586 

𝑆𝛼 = 6  63.825 52.810 41.991 31.870 22.396 13.736 6.775 2.829 1.585 

𝑆𝛼 = 8  63.834 52.824 42.006 31.882 22.402 13.739 6.777 2.830 1.586 

𝑆𝛽 = 8  63.826 52.812 41.993 31.871 22.397 13.737 6.776 2.830 1.588 

 𝑆𝛽 = 10 63.823 52.808 41.988 31.875 22.396 13.736 6.774 2.824 1.582 

𝑆𝜅 = 6.5  63.043 51.998 41.165 31.108 21.770 13.312 6.556 2.736 1.566 

𝑆𝜅 = 8.5  64.283 53.283 42.473 32.349 22.825 14.054 6.951 2.908 1.603 

𝑆𝛾 = 6  63.826 52.817 41.979 31.904 22.379 13.709 6.775 2.832 1.585 

𝑆𝛾 = 8  63.824 52.812 42.011 31.843 22.406 13.756 6.770 2.828 1.587 

LTR of 1% p.a. 62.125 51.481 41.044 31.271 22.073 13.601 6.736 2.822 1.586 

LTR of 2% p.a. 65.491 54.142 42.956 32.489 22.730 13.877 6.815 2.836 1.587 

Old LTR tapering 64.509 53.334 42.374 32.141 22.575 13.841 6.820 2.842 1.590 

Old convergence 63.979 52.842 41.973 31.872 22.396 13.737 6.775 2.829 1.586 

Direction of travel 63.776 52.759 41.936 31.821 22.360 13.719 6.770 2.828 1.586 

Raw exposure  63.846 52.833 42.014 31.892 22.415 13.733 6.769 2.839 1.588 

Ages 20-90 63.903 52.882 42.060 31.940 22.465 13.801 6.842 2.949 1.614 

Ages 60-100 - - - - 22.341 13.619 6.721 2.806 1.580 

Years 1995-2015 63.537 52.521 41.669 31.344 21.698 13.203 6.585 2.813 1.585 

Small cohorts - 52.933 42.104 31.954 22.442 13.757 6.782 2.832 1.588 
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Table 6.3: Life expectancy for females 

Age 25 35 45 55 65 75 85 95 105 

Standard 65.682 54.744 44.137 34.028 24.329 15.244 7.636 3.268 1.696 

𝑆𝛼 = 6  65.677 54.737 44.132 34.024 24.326 15.243 7.635 3.267 1.695 

𝑆𝛼 = 8  65.703 54.779 44.166 34.046 24.341 15.247 7.638 3.271 1.698 

𝑆𝛽 = 8  65.682 54.744 44.138 34.028 24.329 15.244 7.636 3.269 1.696 

 𝑆𝛽 = 10 65.679 54.741 44.134 34.029 24.328 15.242 7.635 3.265 1.693 

𝑆𝜅 = 6.5  64.863 53.886 43.269 33.228 23.661 14.772 7.381 3.156 1.673 

𝑆𝜅 = 8.5  66.028 55.105 44.503 34.377 24.632 15.471 7.766 3.327 1.708 

𝑆𝛾 = 6  65.684 54.740 44.134 34.044 24.327 15.229 7.637 3.270 1.695 

𝑆𝛾 = 8  65.695 54.774 44.146 34.028 24.348 15.248 7.639 3.261 1.697 

LTR of 1% p.a. 64.055 53.458 43.202 33.409 23.975 15.085 7.588 3.259 1.695 

LTR of 2% p.a. 67.254 56.013 45.076 34.658 24.691 15.407 7.684 3.277 1.696 

Old LTR tapering 66.490 55.378 44.616 34.375 24.562 15.381 7.695 3.286 1.700 

Old convergence 65.682 54.704 44.126 34.028 24.329 15.244 7.636 3.268 1.696 

Direction of travel 65.626 54.684 44.074 33.971 24.285 15.221 7.629 3.266 1.696 

Raw exposure  65.678 54.740 44.132 34.024 24.327 15.233 7.622 3.269 1.695 

Ages 20-90 65.690 54.745 44.132 34.019 24.321 15.242 7.674 3.378 1.724 

Ages 60-100 - - - - 24.178 15.122 7.595 3.252 1.692 

Years 1995-2015 65.517 54.567 43.845 33.489 23.698 14.817 7.650 3.415 1.731 

Small cohorts - 54.749 44.144 34.033 24.332 15.246 7.636 3.269 1.697 
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Table 6.4: Percentage change in life expectancy, compared to standard case, for males 

Age 25 35 45 55 65 75 85 95 105 

𝑆𝛼 = 6  −0.00% −0.00% −0.00% −0.01% −0.00% −0.00% −0.01% −0.00% −0.08% 

𝑆𝛼 = 8  +0.01% +0.02% +0.03% +0.03% +0.02% +0.02% +0.02% +0.03% −0.00% 

𝑆𝛽 = 8  +0.00% +0.00% +0.00% −0.00% +0.00% +0.00% +0.01% +0.02% +0.12% 

 𝑆𝛽 = 10 −0.00% −0.01% −0.01% +0.01% −0.00% −0.00% −0.01% −0.16% −0.26% 

𝑆𝜅 = 6.5  −1.23% −1.54% −1.97% −2.40% −2.80% −3.10% −3.23% −3.30% −1.28% 

𝑆𝜅 = 8.5  +0.72% +0.89% +1.14% +1.50% +1.91% +2.31% +2.60% +2.80% +1.08% 

𝑆𝛾 = 6  −0.00% +0.01% −0.03% +0.10% −0.08% −0.21% +0.00% +0.10% −0.10% 

𝑆𝛾 = 8  −0.00% +0.00% +0.04% −0.09% +0.04% +0.14% −0.07% −0.03% +0.05% 

LTR of 1% p.a −2.66% −2.52% −2.26% −1.89% −1.44% −0.99% −0.57% −0.25% −0.03% 

LTR of 2% p.a. +2.61% +2.52% +2.29% +1.94% +1.49% +1.02% +0.59% +0.25% +0.03% 

Old LTR tapering +1.07% +0.99% +0.91% +0.84% +0.80% +0.76% +0.66% +0.48% +0.25% 

Old convergence +0.24% +0.06% −0.05% −0.00% −0.00% −0.00% −0.00% −0.00% −0.00% 

Direction of travel −0.08% −0.10% −0.13% −0.16% −0.16% −0.13% −0.07% −0.03% −0.01% 

Raw exposure  +0.03% +0.04% +0.05% +0.06% +0.08% −0.03% −0.09% +0.36% +0.10% 

Ages 20-90 +0.12% +0.13% +0.16% +0.21% +0.31% +0.47% +0.98% +4.24% +1.78% 

Ages 60-100 - - - - −0.25% −0.86% −0.79% −0.83% −0.38% 

Years 1995-2015 −0.45% −0.55% −0.77% −1.66% −3.12% −3.89% −2.81% −0.56% −0.06% 

Small cohorts - +0.23% +0.27% +0.26% +0.20% +0.14% +0.09% +0.09% +0.09% 
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Table 6.5: Percentage change in life expectancy, compared to standard case, for females 

Age 25 35 45 55 65 75 85 95 105 

𝑆𝛼 = 6  −0.01% −0.01% −0.01% −0.01% −0.01% −0.01% −0.01% −0.02% −0.05% 

𝑆𝛼 = 8  +0.03% +0.06% +0.07% +0.05% +0.05% +0.02% +0.03% +0.10% +0.13% 

𝑆𝛽 = 8  +0.00% +0.00% +0.00% −0.00% −0.00% +0.00% +0.00% +0.02% +0.02% 

 𝑆𝛽 = 10 −0.00% −0.01% −0.01% +0.00% −0.00% −0.01% −0.01% −0.10% −0.13% 

𝑆𝜅 = 6.5  −1.25% −1.57% −1.97% −2.35% −2.75% −3.10% −3.33% −3.42% −1.36% 

𝑆𝜅 = 8.5  +0.53% +0.66% +0.83% +1.02% +1.25% +1.49% +1.71% +1.82% +0.71% 

𝑆𝛾 = 6  +0.00% −0.01% −0.01% +0.05% −0.01% −0.10% +0.02% +0.07% −0.06% 

𝑆𝛾 = 8  +0.02% +0.05% +0.02% −0.00% +0.08% +0.02% +0.04% −0.23% +0.05% 

LTR of 1% p.a −2.48% −2.35% −2.12% −1.82% −1.45% −1.04% −0.63% −0.27% −0.03% 

LTR of 2% p.a. +2.39% +2.32% +2.13% +1.85% +1.49% +1.07% +0.64% +0.27% +0.03% 

Old LTR tapering +1.23% +1.16% +1.09% +1.02% +0.96% +0.90% +0.78% +0.55% +0.28% 

Old convergence −0.00% −0.07% −0.03% −0.00% −0.00% −0.00% −0.00% −0.00% −0.01% 

Direction of travel −0.09% −0.11% −0.14% −0.17% −0.18% −0.15% −0.09% −0.04% −0.01% 

Raw exposure  −0.01% −0.01% −0.01% −0.01% −0.01% −0.07% −0.18% +0.03% −0.02% 

Ages 20-90 +0.01% +0.00% −0.01% −0.03% −0.03% −0.02% +0.50% +3.37% +1.69% 

Ages 60-100 - - - - −0.62% −0.80% −0.53% −0.49% −0.20% 

Years 1995-2015 −0.25% −0.32% −0.66% −1.58% −2.59% −2.80% +0.19% +4.50% +2.11% 

Small cohorts - +0.01% +0.02% +0.02% +0.01% +0.01% +0.01% +0.03% +0.05% 
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The tables show that: 

 With regard to the smoothing parameters, life expectancies are: 

- Very insensitive to the choices made for 𝑆𝛼and 𝑆𝛽. 

- Very sensitive to the choice made for 𝑆𝜅, with the impact varying across the age range. At ages 

above 45, changing 𝑆𝜅 by 1 has a greater impact than changing the long-term rate by 0.5%.  

- Fairly insensitive to the choice of 𝑆𝛾. The impact is not in the same direction at all ages, so the 

choice of 𝑆𝛾 may be relatively immaterial when averaged across a whole portfolio of lives 

 The proposed tapering for the long-term rate reduces liabilities, compared to the old tapering. At ages 
above 75, the impact of the change in the tapering is larger than changing the long-term rate by 0.4%  

 The proposed new cohort convergence pattern has a very small impact, apart from for the youngest 
males. 

 As expected, introducing direction of travel leads to lower life expectancies, because the modelled 
mortality improvements are lower in 2015 than 2014. The directional impact of this element depends on 
the direction of travel at the start of the projection period. 

 The impact of adjusting the exposure as set out in Section 2 is relatively small. The adjustment applied 
does have a knock-on effect on the amount of smoothing because without adjust the deviance is 
higher, which means that the smoothing parameters have less effect. 

 Fitting to ages 20-90 has little impact on projected life expectancies until age 85. For ages 95 and 105, 
the impact is relatively high. This is because the tapering from age 90 to 110 means that we assume a 
higher mortality improvement than the proposed model produces.  

 Fitting to ages 60-100 reduces life expectancies.  

 Fitting to years 1995-2015 reduces life expectancies, apart from older females.  

 Excluding cohorts with few observations is immaterial for females. For younger males, the impact is 
significant. This may be due to the impact on projections of the youngest male cohorts. 
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7. Progression of life expectancy 

The previous section considers the sensitivity of life expectancy to a range of parameters and model choices. 
Those calculations all use the same dataset to show the impact of changes that we propose to make to the 
Model, on a consistent basis. 
 
In contrast, this section primarily considers how estimates of life expectancy vary over time as new data has 
emerged: 

 Section 7.1 compares life expectancy at 31 December 2015 for recent versions of the Model and the 
proposed model.  

 Section 7.2 compares results from historical versions of the Model with hypothetical results if the 
proposed model had been applied at the time. 

7.1. Life expectancy at 31 December 2015 

This section compares life expectancy at 31 December 2015 for different models. Table 7.1 summarises the 
calculations that we consider. 
 

Table 7.1: Summary of calculations considered in this section 

Model Release date Actual data to Estimated data to Initial year 

CMI_2014 November 2014 30 September 2014 31 December 2014 2011 

CMI_2015 September 2015 31 July 2015 31 December 2015 2012 

CMI_2015* [March 2016] 31 December 2015 n/a 2012 

Current method [March 2016] 31 December 2015 n/a 2013 

Proposed method [March 2016] 31 December 2015 n/a 2015 

 
CMI_2014 was released towards the end of 2014. It uses actual data to 30 September 2014 (based on ONS 
provisional weekly death data) and estimated data for the rest of 2014. The Committee retained the previous 
approach of stepping back two years from the last full year of data (i.e. stepping back two years from 2013) to 
give an initial year of 2011.  
 
CMI_2015 was similar to CMI_2014 in that it used actual data for part of the year (to 31 July 2015 in this case) 
and estimated data for the rest of the year. A two-year step-back results in an initial year of 2012. 
 
The remaining models all use the same dataset, actual data to the end of 2015 (again based on ONS 
provisional weekly death data). This is what would have been done if the CMI had released a version of the 
model in March 2016 (indicated by the release date in brackets), consistent with the move to a March release 
data for future versions of the Model announced in Working Paper 80. However these are not official releases 
of the Model. 
 
CMI_2015* is similar to CMI_2015, apart from using actual data for the whole of 2015.  
 
The “current method” has two differences to CMI_2015. As well as using different data, the two-year step-back 
gives an initial year of 2013, one year later than for CMI_2015. 
 
For the “proposed method” there is no step-back, so the initial year is 2015. 
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Tables 7.2 to 7.7 show life expectancies for these cases, for males and females, in absolute terms, and relative 
to CMI_2015. As in Section 6, the life expectancies in this section are cohort life expectancies calculated at end 
31 December 2015. They use base tables of S2PMA for males and S2PFA for females, and an illustrative long-
term rate of 1.5% p.a. 
 

Table 7.2: Life expectancy for males 

Age 25 35 45 55 65 75 85 95 105 

CMI_2014 65.115 53.903 42.922 32.564 22.717 13.813 6.930 2.998 1.642 

CMI_2015 64.835 53.619 42.635 32.283 22.434 13.563 6.801 2.948 1.623 

CMI_2015* 64.722 53.507 42.522 32.168 22.340 13.482 6.710 2.930 1.625 

Current method 64.508 53.290 42.301 31.942 22.117 13.296 6.603 2.890 1.610 

Proposed method 63.826 52.812 41.993 31.872 22.396 13.737 6.775 2.829 1.586 

 

Table 7.3: Life expectancy for females 

Age 25 35 45 55 65 75 85 95 105 

CMI_2014 67.293 56.122 45.234 34.804 24.815 15.481 7.921 3.571 1.786 

CMI_2015 66.969 55.787 44.906 34.477 24.474 15.186 7.765 3.500 1.755 

CMI_2015* 66.836 55.646 44.769 34.344 24.351 15.092 7.704 3.494 1.755 

Current method 66.648 55.457 44.576 34.136 24.133 14.895 7.579 3.446 1.737 

Proposed method 65.682 54.744 44.137 34.028 24.329 15.244 7.636 3.268 1.696 

 

Table 7.4: Change in life expectancy, compared to CMI_2015, for males 

Age 25 35 45 55 65 75 85 95 105 

CMI_2014 +0.280 +0.285 +0.286 +0.281 +0.283 +0.250 +0.129 +0.051 +0.019 

CMI_2015 - - - - - - - - - 

CMI_2015* −0.113 −0.112 −0.113 −0.115 −0.093 −0.080 −0.091 −0.017 +0.002 

Current method −0.327 −0.329 −0.335 −0.341 −0.316 −0.267 −0.198 −0.057 −0.013 

Proposed method −1.010 −0.807 −0.643 −0.411 −0.037 +0.174 −0.026 −0.119 −0.037 

 
  



Working Paper 91 

CMI Mortality Projections Model consultation – technical paper 

 

Page 45 of 80 
 

Table 7.5: Change in life expectancy, compared to CMI_2015, for females 

Age 25 35 45 55 65 75 85 95 105 

CMI_2014 +0.324 +0.334 +0.327 +0.328 +0.341 +0.295 +0.156 +0.071 +0.031 

CMI_2015 - - - - - - - - - 

CMI_2015* −0.134 −0.141 −0.137 −0.133 −0.123 −0.094 −0.061 −0.006 +0.000 

Current method −0.322 −0.330 −0.331 −0.340 −0.341 −0.291 −0.186 −0.054 −0.018 

Proposed method −1.287 −1.043 −0.769 −0.448 −0.145 +0.058 −0.129 −0.232 −0.059 

 

Table 7.6: Percentage change in life expectancy, compared to CMI_2015, for males 

Age 25 35 45 55 65 75 85 95 105 

CMI_2014 +0.43% +0.53% +0.67% +0.87% +1.26% +1.84% +1.90% +1.72% +1.18% 

CMI_2015 - - - - - - - - - 

CMI_2015* −0.17% −0.21% −0.26% −0.36% −0.42% −0.59% −1.34% −0.59% +0.11% 

Current method −0.50% −0.61% −0.78% −1.06% −1.41% −1.97% −2.91% −1.94% −0.82% 

Proposed method −1.56% −1.50% −1.51% −1.27% −0.17% +1.29% −0.38% −4.03% −2.28% 

 

Table 7.7: Percentage change in life expectancy, compared to CMI_2015, for females 

Age 25 35 45 55 65 75 85 95 105 

CMI_2014 +0.48% +0.60% +0.73% +0.95% +1.39% +1.94% +2.01% +2.02% +1.76% 

CMI_2015 - - - - - - - - - 

CMI_2015* −0.20% −0.25% −0.31% −0.39% −0.50% −0.62% −0.79% −0.17% +0.02% 

Current method −0.48% −0.59% −0.74% −0.99% −1.39% −1.91% −2.39% −1.53% −1.00% 

Proposed method −1.92% −1.87% −1.71% −1.30% −0.59% +0.38% −1.66% −6.63% −3.36% 

 
The tables show that:  

1. CMI_2015 gave lower life expectancies at all ages than CMI_2014, with the proportionate impact being 
higher at ages between 65 and 95. 

2. CMI_2015* (using actual data for all of 2015, but still stepping back to 2012) gives lower life 
expectancies than CMI_2015 for all but age 105. This means that mortality in the latter part of 2015 
was heavier than the neutral estimate used to produce CMI_2015. 

3. The current method (using actual data for 2015, stepping back to 2012) would give lower life 
expectancies than CMI_2015. This is partly due to the use of actual data. Also, the current method 
uses an initial year of 2013 rather than 2012 which effectively means that more of the fall in 
improvements over 2015 is allowed for in the initial rates. This in turn means that the initial mortality 
improvements fall further than in CMI_2015 or CMI_2015*. The change in the initial year has a bigger 
impact than using actual data for the whole of 2015. 
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4. The proposed method gives higher life expectancies than the current method at the youngest and 
oldest ages. At ages 65 and 85, the proposed method gives a higher life expectancy than the current 
method (but lower than CMI_2015). At age 75, the proposed method actually gives a higher life 
expectancy than CMI_2015. It is perhaps worth noting that the raw improvements in England & Wales 
over 2015 for the age group 70-75 were higher than for surrounding cohorts. 

5. The largest proportionate impact of the proposals is at ages 95 and 105 – as set out in Section 3, due 
to the proposed change in tapering ages, improvements are assumed to be significantly lower at these 
age groups than in previous models. 
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7.2. Progression of life expectancy 

This section compares results from historical versions of the Model with the hypothetical results if the method 
proposed in Working Paper 90 had been in use at the time. 
 
We define and compare: 

 “Historical” life expectancies – those calculated using historical versions of the Model.  

 “Proposed” life expectancies – those that would have been if the method and Core assumptions 
proposed in Working Paper 90 had been adopted at the time.  

 
In calculating the “proposed” life expectancies the model is always calibrated to 41 years of data, but we use 
the same data that was used for the “historical” life expectancies at the time

5
. i.e. the data for CMI_2009, 

CMI_2010 and CMI_2011 has not been re-stated following the 2011 Census. 
 
Table 7.8 summarises the calculations. 
 

Table 7.8: Summary of life expectancy calculations 

Model 
version 

Publication 
date 

Life expectancy 
as at 

Base 
table 

Calibration data 
(historical) 

Calibration data 
(proposed) 

CMI_2009 25 November 
2009 

31 December 
2009 

S1PxA 1961-2008 1968-2008 

CMI_2010 23 November 
2010 

31 December 
2010 

S1PxA 1961-2009 1969-2009 

CMI_2011 16 September 
2011 

31 December 
2011 

S1PxA 1961-2010 1970-2010 

CMI_2012 8 February 
2013 

31 December 
2012 

S1PxA 1961-2011 1971-2011 

CMI_2013 13 September 
2013 

31 December 
2013 

S1PxA 1961-2012 1972-2012 

CMI_2014 24 November 
2014 

31 December 
2014 

S2PxA 1974-2014 1974-2014 

CMI_2015 28 September 
2015  

31 December 
2015 

S2PxA 1975-2015 1975-2015 

 
Charts 7A to 7F compare life expectancies on the historical and proposed bases for ages 45, 65 and 85 for 
males and females. 
 
  

                                                
5
 A consolidated file of this data was published with Working Paper 84 as 

https://www.actuaries.org.uk/documents/cmi-working-paper-84-exposure-and-deaths-dataset-used-preparation-

cmi2015  

https://www.actuaries.org.uk/documents/cmi-working-paper-84-exposure-and-deaths-dataset-used-preparation-cmi2015
https://www.actuaries.org.uk/documents/cmi-working-paper-84-exposure-and-deaths-dataset-used-preparation-cmi2015
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Chart 7A: Comparison of life expectancies  
for males aged 45 

Chart 7B: Comparison of life expectancies  
for females aged 45 

  
 
Chart 7C: Comparison of life expectancies  
for males aged 65 

 
Chart 7D: Comparison of life expectancies  
for females aged 65 

  
 
Chart 7E: Comparison of life expectancies  
for males aged 85 

 
Chart 7F: Comparison of life expectancies  
for females aged 85 
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8. Convergence and critical damping 

The basic principle of the current Model is to project rates of mortality improvement by interpolating between 
current (Initial) rates, which are estimated from historical data, and assumed long-term rates, which are set by 
users of the Model. This process is carried out separately for age-period and cohort components, and these are 
combined to give the overall mortality improvements. 
 
In its review of the Model, the Committee considered various options for convergence from the initial rates to 
the long-term rate. In this section we describe the motivations for considering a change, and compares two 
possible options.  
 
Two key criticisms have been made of the current Model: 

(1) “Direction of travel”. The current approach to convergence does not allow for the “direction of travel” of 
mortality improvements. Under the Core parameters the slope of mortality improvements is assumed to 
be flat at the start year of the model. The advanced parameters can be used to adjust the slope of 
improvements, but this is rather cumbersome as the advanced parameters specify the “proportion 
remaining at midpoint”. 

(2) “Experience item”. We would ideally like projections from next year’s model to be the same as those 
from this year’s model, if mortality experience were as expected. Under the current approach this can 
only be achieved by shortening the convergence periods by one year each year; or equivalently 
specifying the convergence periods by using fixed calendar years. This is undesirable, not least 
because some convergence periods are as short as five years, so the ends of some convergence 
periods from the original CMI_2009 model have already been reached. 

 
In this section we describe two methods:  

A. One is based on the current method, using a cubic polynomial over a finite convergence period, and is 
the option proposed in Working Paper 90. 

B. The other is based on “critical damping”, with asymptotic convergence over an infinite period. 
 
Both of these have the following features: 

1. The initial rates can be specified. 

2. The long-term rate can be specified. 

3. Mortality improvements are flat in the very long term. 

4. A parameter can be used to allow for direction of travel. 
 
Option A offers a modest improvement that addresses criticism (1) by allowing for direction of travel. Option B 
would address criticisms (1) and (2), but would be a bigger change as convergence would no longer be over a 
finite period. 
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8.1 Cubic convergence 

This is described in Working Paper 90, and is a slight amendment of the current method. 
 
For a particular age or cohort, we write 𝑓(𝑡) for the mortality improvement at time 𝑡, where 𝑓(𝑡) is defined by: 

𝑓(𝑡) = 𝐿 + (𝐼 − 𝐿) (1 − 3 (
𝑡

𝑇
)

2

+ 2(
𝑡

𝑇
)

3

) + 𝐷𝑡 (1 −
𝑡

𝑇
)

2

 for 0 ≤ 𝑡 ≤ 𝑇 

𝑓(𝑡) = 𝐿      for 𝑡 > 𝑇 

with parameters: 

 𝐿   the long-term rate of mortality improvements 

𝐼    the initial rate of mortality improvements 

𝐷    the “direction of travel”; i.e. the initial slope of mortality improvements 

𝑇    the convergence period 
 
The function 𝑓(𝑡) has been chosen so that: 

 𝑓(0) = 𝐼  matching the specified initial rate of improvements 

𝑓(𝑡) = 𝐿 for 𝑡 ≥ 𝑇 matching the specified long-term rate of improvements 

𝑓′(0) = 𝐷   matching the specified direction of travel 

𝑓′(𝑡) = 0 for 𝑡 ≥ 𝑇 improvements are flat beyond time 𝑇  
 
Under the current approach, users of the Model specify the proportion remaining at mid-point, 𝑝. Under the 
proposed approach users could choose to specify 𝐷 directly to specify the initial slope of mortality 
improvements. This would allow for “direction of travel”. 
 
If we set 𝐷 = 1

𝑇
(8𝑝 − 4)(𝐼 − 𝐿) we obtain: 

𝑓(𝑡) = 𝐿 + (𝐼 − 𝐿) (1 + (8𝑝 − 4) (
𝑡

𝑇
) + (5 − 16𝑝) (

𝑡

𝑇
)

2

+ (8𝑝 − 2) (
𝑡

𝑇
)

3

) for 0 ≤ 𝑡 ≤ 𝑇 

and so: 

𝑓(𝑇

2
) = 𝐿 + 𝑝(𝐼 − 𝐿). 

This shows that we can retain the current approach to convergence of specifying the proportion remaining at 
mid-point, 𝑝. Setting 𝑝 = 1

2
 is equivalent to setting 𝐷 = 0 and gives the current Core parameterisation. 

8.2 Critical damping 

Option B is based on the theory of “critical damping”. We first introduce the function and then consider its 
motivation. 
 
Under this approach the convergence pattern 𝑔(𝑡) is defined as: 

𝑔(𝑡) = 𝐿 + (𝐼 − 𝐿) (1 +
𝑡

𝑇
) exp (−

𝑡

𝑇
) + 𝐷𝑡exp (−

𝑡

𝑇
)  

and we have: 

𝑔(0) = 𝐼  matching the specified initial rate of improvements 

lim𝑡→∞ 𝑔(𝑡) = 𝐿  matching the specified long-term rate of improvements 

𝑔′(0) = 𝐷  matching the specified direction of travel 

lim𝑡→∞ 𝑔′(𝑡) = 0  improvements are flat beyond time 𝑇 
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So Option B is similar to the “direction of travel” version of Option A. However while mortality improvements 
under Option A reach the long-term rate after a finite time 𝑇, mortality improvements under Option B tend 

asymptotically to the long-term rate. The parameter 𝑇 is no longer a fixed convergence period. Instead we refer 
to it as the “relaxation time”. 
 
Option B is based on “critical damping”

6
. In that context “damping” refers to reducing the oscillations of a 

system, and “critical” means that the object returns to its equilibrium as quickly as possible without 

overshooting. In the context of mortality, we can think of a long-term rate as the equilibrium position, and 

current mortality improvements as deviations from that. Option B satisfies the differential equation: 

𝑑2𝑔

𝑑𝑡2 +
2

𝑇

𝑑𝑔

𝑑𝑡
+

1

𝑇2 (𝑔 − 𝐿) = 0  

 
Critical damping addresses criticism (2) above, the “experience item”. We prove this in Section 8.4.  
 
Expressing the convergence in this form may also be helpful for some models as we could apply difference 
equations to parameters within a model, rather than requiring convergence to be bolted on afterwards. We 
return to this when considering “integrated” models in Section 10. 

8.3 Comparison and examples 

Our expressions for 𝑓(𝑡) and 𝑔(𝑡) could be simplified, but have been written in their current forms in order to 
highlight common features. 
 
We can write 𝑓(𝑡) = 𝐿 + (𝐼 − 𝐿)𝑓1(𝑡) + 𝐷𝑓2(𝑡) and 𝑔(𝑡) = 𝐿 + (𝐼 − 𝐿)𝑔1(𝑡) + 𝐷𝑔2(𝑡) so that the mortality 
improvement is the sum of the long-term rate and two components that model the excess over the long-term 
rate. Functions 𝑓1 and 𝑔1 determine the convergence between initial and long-term rates in the absence of 
direction of travel, and 𝑓2 and 𝑔2 determine the impact of the initial direction of travel. 
 
Table 8.1 shows that 𝑓1 and 𝑔1 both have an initial value of 1, and initial slope of 0, and long-term values and 
slopes of zero; and 𝑓2 and 𝑔2 both have an initial value of 0, and initial slope of 1, and long-term values and 
slopes of zero.  
 

Table 8.1: Components of convergence functions 

Function Initial value Initial slope Long-term 
value 

Long-term 
slope 

𝑓1(𝑡) = 1 − 3 (
𝑡

𝑇
)

2

+ 2(
𝑡

𝑇
)

3

  
𝑓1(0) = 1 𝑓1′(0) = 0 𝑓1(𝑇) = 0 𝑓1′(𝑇) = 0 

𝑔1(𝑡) = (1 +
𝑡

𝑇
) exp (−

𝑡

𝑇
)  𝑔1(0) = 1 𝑔1′(0) = 0 lim

𝑡→∞
𝑔1(𝑡) = 0 lim

𝑡→∞
𝑔1′(𝑡) = 0 

𝑓2(𝑡) = 𝑡 (1 −
𝑡

𝑇
)

2

  
𝑓2(0) = 0 𝑓2′(0) = 1 𝑓2(𝑇) = 0 𝑓2′(𝑇) = 0 

𝑔2(𝑡) = 𝑡exp (−
𝑡

𝑇
)  𝑔2(0) = 0 𝑔2′(0) = 1 lim

𝑡→∞
𝑔2(𝑡) = 0 lim

𝑡→∞
𝑔2′(𝑡) = 0 

 
[As an aside, the functions 𝑓1 and 𝑓2 are equal to two of the four Hermite basis functions

7
. The other two are not 

necessary in our case.]  
 

                                                
6
 https://en.wikipedia.org/wiki/Damping  

7
 https://en.wikipedia.org/wiki/Cubic_Hermite_spline 

https://en.wikipedia.org/wiki/Damping
https://en.wikipedia.org/wiki/Cubic_Hermite_spline
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The core calibration of the current Model has all the necessary parameter values for the cubic convergence 
function. For the critical damping approach we need to specify values for the relaxation time for each age and 
cohort.  
 
As a starting point, for comparison with the current Model, these could be a constant multiple of the 
convergence periods. For the purpose of illustration in this paper we have taken this to be one-third of the 
convergence period. This is a pragmatic round-number choice which seems to give broadly similar life 
expectancies. 
 
These four functions are plotted in Charts 8A and 8B for sample parameters. We use 𝑇 = 20 for 𝑓1 and 𝑓2 and 

𝑇 = 62

3
 for 𝑔1 and 𝑔2 since 𝑇 plays a different role in each case. 

 

Chart 8A: Functions 𝒇𝟏 and 𝒈𝟏  Chart 8B: Functions 𝒇𝟐 and 𝒈𝟐 

 
 

 

 
Charts 8C and 8D show convergence patterns 𝑓(𝑡) and 𝑔(𝑡) using the same values of 𝑇, and with sample 
values of 𝐼 = 3% and 𝐿 = 1.5%; with 𝐷 = +0.2% in Chart 8C and 𝐷 = −0.2% in Chart 8D. 
 

Chart 8C: Functions 𝒇 and 𝒈 with 𝑫 = +𝟎. 𝟐% Chart 8D:Functions 𝒇 and 𝒈 with 𝑫 = −𝟎. 𝟐% 

  
 
Critical damping offers an advantage over the current method, as it avoids the “experience item” criticism, and 
adopting it need not have a material impact on life expectancies. However it would represent a conceptual 
change from a finite convergence period to asymptotic convergence. 
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8.4 Proof of “no experience item” with critical damping 

As discussed, a useful property of a projection method is that if experience is as expected, recalibrating the projection at a future time should give exactly the same projection. 
 
In this section we demonstrate that critical damping satisfies this property. 

Calibrating at time 𝐭 = 𝟎 

Write 𝑔(𝑡; 𝐼0, 𝐷0) for the mortality improvements, for a particular age or cohort, projected using the critical-damping convergence function, calibrated to the initial improvement 
𝐼0 and initial direction of travel 𝐷0 at time 𝑡 = 0. From the definition: 

𝑔(𝑡; 𝐼0, 𝐷0) = 𝐿 + (𝐼 − 𝐿) (1 +
𝑡

𝑇
) exp (−

𝑡

𝑇
) + 𝐷0𝑡exp (−

𝑡

𝑇
)  

 

Write 𝜔 =
1

𝑇
 to simplify notation, and rearrange the terms to get: 

𝑔(𝑡; 𝐼0, 𝐷0) = 𝐿 + exp (−𝜔𝑡)[𝐷0𝑡 + (𝐼0 − 𝐿)(1 + 𝜔𝑡)]           (1) 

 
By the product rule, this has slope: 

𝑔′(𝑡; 𝐼0, 𝐷0) = exp(−𝜔𝑡) [𝐷0 + (𝐼0 − 𝐿)𝜔] − 𝜔. exp (−𝜔𝑡)[𝐷0𝑡 + (𝐼0 − 𝐿)(1 + 𝜔𝑡)]  

which simplifies to: 

𝑔′(𝑡; 𝐼0, 𝐷0) = exp (−𝜔𝑡)[(1 − 𝜔𝑡)𝐷0 − 𝜔2𝑡(𝐼0 − 𝐿)]           (2) 

 
Setting 𝑡 = 0 confirms that 𝑔(0; 𝐼0, 𝐷0) = 𝐼0 and 𝑔′(0; 𝐼0, 𝐷0) = 𝐷0. 

Calibrating at time 𝐭 = 𝐍 

We can also define ℎ(𝑡; 𝐼𝑁 , 𝐷𝑁) for mortality improvements calibrated at a future time 𝑡 = 𝑁 to the mortality improvements and slope at that point. 
 
We have, similar to (1): 

ℎ(𝑡; 𝐼𝑁 , 𝐷𝑁) = 𝐿 + exp (−𝜔(𝑡 − 𝑁))[𝐷𝑁(𝑡 − 𝑁) + (𝐼𝑁 − 𝐿)(1 + 𝜔(𝑡 − 𝑁))]         (3) 
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We can calculate the improvement and direction of travel at time 𝑁 using (1) and (2): 

 𝐼𝑁 = 𝑔(𝑁; 𝐼0, 𝐷0) =  𝐿 + exp (−𝜔𝑁)[𝐷0𝑁 + (𝐼0 − 𝐿)(1 + 𝜔𝑁)]          (4) 

 𝐷𝑁 = 𝑔′(𝑁; 𝐼0, 𝐷0) = exp (−𝜔𝑁)[(1 − 𝜔𝑁)𝐷0 − 𝜔2𝑁(𝐼0 − 𝐿)]          (5) 

Equivalence of the two approaches 

Substituting (4) and (5) into (3) gives: 

ℎ(𝑡; 𝐼𝑁 , 𝐷𝑁) = 𝐿 + exp (−𝜔(𝑡 − 𝑁))[exp (−𝜔𝑁)[(1 − 𝜔𝑁)𝐷0 − 𝜔2𝑁(𝐼0 − 𝐿)](𝑡 − 𝑁) + exp (−𝜔𝑁)[𝐷0𝑁 + (𝐼0 − 𝐿)(1 + 𝜔𝑁)](1 + 𝜔(𝑡 − 𝑁))] (6) 

 
Cancel the exp (−𝑤𝑁) terms: 

ℎ(𝑡; 𝐼𝑁 , 𝐷𝑁) = 𝐿 + exp (−𝜔𝑡))[[(1 − 𝜔𝑁)𝐷0 − 𝜔2𝑁(𝐼0 − 𝐿)](𝑡 − 𝑁) + [𝐷0𝑁 + (𝐼0 − 𝐿)(1 + 𝜔𝑁)](1 + 𝜔(𝑡 − 𝑁))]  

 
Group the terms in 𝐷0 and (𝐼0 − 𝐿): 

ℎ(𝑡; 𝐼𝑁 , 𝐷𝑁) = 𝐿 + exp (−𝜔𝑡)) [𝐷0[(1 − 𝜔𝑁)(𝑡 − 𝑁) + 𝑁(1 + 𝜔(𝑡 − 𝑁))] + (𝐼0 − 𝐿)[(1 + 𝜔𝑁)(1 + 𝜔(𝑡 − 𝑁)) − 𝜔2𝑁(𝑡 − 𝑁)]]  

 
Then simplify to get: 
 

ℎ(𝑡; 𝐼𝑁 , 𝐷𝑁) = 𝐿 + exp (−𝜔𝑡))[𝐷0𝑡 + (𝐼0 − 𝐿)(1 + 𝜔𝑡)]  
 
This shows that ℎ(𝑡; 𝐼𝑁 , 𝐷𝑁) ≡  𝑔(𝑡; 𝐼0, 𝐷0); i.e. if experience is as expected, then recalibrating this projection method at any future time will give the same projection. 
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9. Other models – calculating initial improvements 

The Committee considered a wide range of models before making the proposals described in Working Paper 90.  
 
We considered two broad approaches:  

 a “two-phase” approach, as in the current Model and our proposal, where we first determine initial 
mortality improvements and their age-period and cohort components, and then project them; and 

 an “integrated” approach that combines the two phases into one.  
 
This section summarises our investigations into possible models to determine initial improvements under the 
two-phase approach. Section 10 considers the integrated approach. 

9.1 Smoothing 

For our purpose, we want whatever model we choose to produce a smooth central projection rather than a 
stochastic projection. The current Model achieves this by using splines. Our approach applies regularisation 
penalties directly to parameters, as described in Section 7.4 of Working Paper 90. 
 
Eilers et al (2015) note that “If the data are observed on an equidistant grid and only smoothed values on that 
grid are wanted, one can just as well use the identity matrix as a basis”. This applies in our case, as we are only 
interested in annual mortality rates and improvements, i.e. a regular grid with annual spacing. The use of the 
“identity matrix as a basis” is equivalent to our regularisation approach.  

9.2 Model criteria 

Before introducing candidate models we consider four desirable features that we would prefer a model to have. 

A good fit to historical data, without over-fitting to artefacts of the data 

We can assess the goodness of fit by looking at deviance and deviance residuals. However we recognise that 
we want our fitted initial mortality improvements to be smooth. We could improve the deviance by making the fit 
less smooth, but that would not then be helpful for projection. We considered the use of information criteria, as 
used in the current Model, but did not find these to be helpful, given the aim of a smooth model. 

Parameters that have a tangible real-world interpretation and can be seen to be 
plausible 

The current Model split improvements into age, period and cohort components. This seems helpful to us, and we 
look for the parameters and improvements to be plausible e.g. cohort parameters should represent cohort 
effects, rather than being used to model effects by age or period. 
 
When considering Basis models (in Section 9.7) we prefer a model whose parameters can be interpreted more 
simply as “mortality at low/medium/high ages” rather than “mortality, slope, and curvature”.  

Robustness to changing datasets 

Within the Model we project age-period and cohort components of improvements differently. Because of this, the 
answers are sensitive to the split of improvements. We expect that in a suitable model we should get similar 
answer for parameters if we vary the age range of the calibration data. 
 
Sensitivity to the range of years is arguably less important; we recognise that the levels of mortality 
improvements do change over time and changing the range of years puts more or less emphasis on certain 
periods. 

All other things being equal, a simpler model with a reasonable run-time 

A simpler model is likely to be easier to understand and to communicate, and to have fewer poorly-understood 
artefacts. A short run-time is convenient and allows more tests and sensitivities to be considered. Also, a longer 
run-time can be indicative of a fragile model that suffers from problems with identifiability of parameters. 
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9.3 Candidate formulae 

We distinguish between a longevity “model” and its “formula”: 

 The “formula” is how mortality is expressed as a combination of components; e.g. the formula for Lee-
Carter is 𝛼𝑥 + 𝛽𝑥𝜅𝑡 

 The “model” encompasses broader aspects; e.g. it includes the formula, identifiability constraints, the 
fitting process and the data used. 
 

Some models define their formulae in terms of logit 𝑞𝑥,𝑡 and some in terms of log𝑚𝑥,𝑡. Whilst we considered 

formulae from models that were defined in both ways, we have only applied these formulae to log𝑚𝑥,𝑡. 

 
Table 9.1 shows the formulae that we considered, together with the papers where they originally appeared.  
 
For ease of reference we have named the formulae: 

 The “C” column refers to the names used in Cairns et al (2009) and Cairns et al (2014). Beware that 
other authors have used the name “M9” to refer to different models; e.g. O’Hare and Li (2011) use it to 
refer to Plat (2009). 

 The “HR” column refers to the names used in Haberman and Renshaw (2011). 

 The “CMI” column has names for formulae introduced in this paper: 

- Names beginning with “A” are variants of the APCI formula. 

- Names beginning with “B” are variants of “basis” formulae, which we describe in Section 9.7.  
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Table 9.1 Formulae referred to in this section   

Names  Formula  Original paper 
C HR CMI     

M1 LC - 𝛼𝑥 + 𝛽𝑥 𝜅𝑡     Lee and Carter (1992) 

- LC2 - 𝛼𝑥 + 𝛽𝑥
(1)

𝜅𝑡
(1)

+ 𝛽𝑥
(2)

𝜅𝑡
(2)

    Renshaw and Haberman (2003) 

M2 M - 𝛼𝑥 + 𝛽𝑥
(1)

𝜅𝑡   + 𝛽𝑥
(2)

𝛾𝑡−𝑥  Renshaw and Haberman (2006) 

- H1 - 𝛼𝑥 + 𝛽𝑥 𝜅𝑡   + 𝛾𝑡−𝑥  Renshaw and Haberman (2006) 

M3 H0 - 𝛼𝑥 + κt   + 𝛾𝑡−𝑥  Currie (2006) 

M5 M5 -   𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

    Cairns et al (2006) 

- - -   𝜅𝑡
(1)

+ 𝛽𝑥
(2)

𝜅𝑡
(2)

    Currie (2010) 

M6 M6 -   𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

  + 𝛾𝑡−𝑥  Cairns et al (2009) 

M7 M7 -   𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

+ ((𝑥 − �̅�)2 − 𝜎2)𝜅𝑡
(3)

  + 𝛾𝑡−𝑥  Cairns et al (2009) 

M8 M8 -   𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

  +  (𝑥𝑐 − 𝑥)𝛾𝑡−𝑥  Cairns et al (2009) 

M9 - B3Q 𝛼𝑥 + 𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

+ ((𝑥 − �̅�)2 − 𝜎2)𝜅𝑡
(3)

  + 𝛾𝑡−𝑥  Cairns et al (2014) 

- M5* - 𝛼𝑥 + 𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

+ (�̅� − 𝑥)+𝜅𝑡
(3)

    Haberman and Renshaw (2011) 

- M6* B3L 𝛼𝑥 + 𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

+ (�̅� − 𝑥)+𝜅𝑡
(3)

  + 𝛾𝑡−𝑥  Plat (2009) 

- M7* B4X 𝛼𝑥 + 𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

+ (�̅� − 𝑥)+𝜅𝑡
(3)

+ ((�̅� − 𝑥)2 − 𝜎2)𝜅𝑡
(4)

  + 𝛾𝑡−𝑥  Haberman and Renshaw (2011) 

- M8* - 𝛼𝑥 + 𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

+ (�̅� − 𝑥)+𝜅𝑡
(3)

  + (𝑥𝑐 − 𝑥)𝛾𝑡−𝑥  Haberman and Renshaw (2011) 

- - - 𝛼𝑥 + 𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

+ ((�̅� − 𝑥)+ + [(�̅� − 𝑥)+]2) 𝜅𝑡
(3)

  + 𝛾𝑡−𝑥  O’Hare and Li (2011) 

- - A1 𝛼𝑥 + 𝛽𝑥 (𝑡 − 𝑡̅) + 𝜅𝑡   + 𝛾𝑡−𝑥   

- - A2 𝛼𝑥 + 𝛽𝑥 (𝑡 − 𝑡̅) + 𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

  + 𝛾𝑡−𝑥   

- - A3 𝛼𝑥 + 𝛽𝑥 (𝑡 − 𝑡̅) + 𝜅𝑡   + 𝜓𝑥𝛾𝑡−𝑥   

- - A4 𝛼𝑥 + 𝛽𝑥 (𝑡 − 𝑡̅) + 𝜅𝑡 + 𝜙𝑡  + 𝛾𝑡−𝑥   

- - B3 𝛼𝑥 + 𝐵𝑥
(1)

𝜅𝑡
(1)

+ 𝐵𝑥
(2)

𝜅𝑡
(2)

+ 𝐵𝑥
(3)

𝜅𝑡
(3)

  + 𝛾𝑡−𝑥   

- - B4 𝛼𝑥 + 𝐵𝑥
(1)

𝜅𝑡
(1)

+ 𝐵𝑥
(2)

𝜅𝑡
(2)

+ 𝐵𝑥
(3)

𝜅𝑡
(3)

+ 𝐵𝑥
(4)

𝜅𝑡
(4)

  + 𝛾𝑡−𝑥   
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9.4 Initial assessment  

This section summarises our initial assessment of formulae developed by others. Some can be rejected based 
on their structure, or on existing published work. Others were investigated further by us.  

Cohort terms 

The formulae M1/LC, LC2, M5, M5* and Currie (2010) have no cohort terms. Given the prominence of cohort 
effects in mortality improvements in England & Wales in recent years, and its inclusion in the current Model, we 
do not consider these formulae to be suitable for our purpose. 

Robustness and convergence 

We do not consider formula M2/M due to concerns raised by others. Cairns et al (2009) noted that M2 “seems to 
produce results that lack robustness, because the parameter estimates jump to a qualitatively quite different 
solution when we use less data” and Currie (2016) “found that for a particular parameterization convergence 
could be very fast, very slow or even fail completely”. 
 
For similar reasons we do not consider M8 either. Cairns et al (2009) found that “for some datasets, the M8 
fitting program was very slow to converge. We found a similar problem with M2 and put this down to the possible 
existence of multiple maxima in the likelihood function and the consequential risk of parameter instability”. 
 
Haberman and Renshaw (2011) raise concerns about formula M8* (as well as M2/M) and we exclude it for this 
reason. 

M3/H0/APC 

The M3/H0 formula (also known as the APC formula) is a special case of the APCI formula (by setting 𝛽𝑥 ≡ 0). 

Chart 4B shows that the 𝛽𝑥 parameters in the APCI model are significantly non-zero, so we consider the APC 
formula to be inferior to the APCI formula.  

O’Hare and Li 

The formula of O’Hare and Li (2011) is a variant of Plat (2009), that is intended to cope well with ages as young 
as 5. We do not consider this further as our focus is on the adult population. 

Considered further 

The formulae developed by others that we consider further are: 

 M6 and M7 are considered together in Section 9.5. 

 H1 is considered in Section 9.6. 

 The M6*, M9 and M7* formulae are all examples of “Basis” formulae, introduced in Section 9.7: 

- The Plat formula, M6*, is considered in Section 9.8. We refer to this as B3L in our notation. 

- M9 is considered under the name B3Q in Section 9.9. 

- M7* is considered under the name B4X in Section 9.10. 

9.5 Formulae M6 and M7 

We understand that M7 is widely used for pensioner age ranges. However when fitting to the age range from 20 
to 100 we find that the deviance residuals show a poor fit. The formula has a quadratic structure to the age-
period components of mortality rates and improvements, and this struggles with the more complex shape of 
mortality rates over a wide age range.  
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Chart 9A compares the cohort parameters from the M7 and APCI formulae, both fitted to data for England & 
Wales males for ages 20-100 and years 1975-2015. (Note that the APCI case is smoothed, and the M7 case is 
not and excludes cohorts with fewer than five observations.) 
 

Chart 9A: Cohort parameters for M7 and APCI  
 

 

 

 
The cohort term from the M7 formula looks unrealistic, having larger values than for the APCI model, and a 
strongly cubic shape. The cohort term is being used primarily to reflect patterns of mortality rates by age, rather 
than purely cohort effects. Whilst the aggregate mortality improvements of the M7 formula are reasonable, the 
split between age-period and cohort components is not.  
 
As a result, this formula seems unsuitable for modelling a wide age range; and the simpler nested M6 formula is 
also unsuitable. 

9.6 Formula H1 

Chart 9B compares the cohort parameters for H1 and APCI (using the same approach as for Chart 9A). This 
shows that the shape of the cohort parameters is quite different to that of the APCI formula.  
 
We also found that convergence of the H1 formula was slow, taking over 30 minutes to fit, compared to under a 
minute for the APCI formula. Slow convergence can be indicative of problems with identifiability. 
 
We do not consider formula H1 further. 
 

Chart 9B: Cohort parameters for H1 and APCI  

 
 
 



Working Paper 91 

CMI Mortality Projections Model consultation – technical paper 

 

Page 60 of 80 
 

9.7 “Basis” formulae 

Several of the formulae in Table 9.1 (including M6*, M7*, M9 and O’Hare and Li) can be expressed by the 
generic formula  

log𝑚𝑥,𝑡 = 𝛼𝑥 + ∑ 𝐵𝑥
(𝑖)

𝜅𝑡
(𝑖)𝑁

𝑖=1 + 𝛾𝑡−𝑥  

where the number of period terms, 𝑁, and the basis functions, 𝐵𝑥
(𝑖)

, are specified in advance (i.e. the 𝐵𝑥
(𝑖)

 are 

exogenous) and the other parameters are fitted. This is similar to equation (1) of Hunt and Blake (2015), but 
without multiplying the cohort term 𝛾𝑡−𝑥 by an age function. 
 
The differences between the formulae in this class are the size of the basis (the value of 𝑁) and the choice of 

basis functions 𝐵𝑥
(𝑖)

.  

 
The resulting mortality improvements are: 

𝑀𝐼𝑥,𝑡 = −∑ 𝐵𝑥
(𝑖)∇𝑡𝜅𝑡

(𝑖)𝑁
𝑖=1 − ∇𝑐𝛾𝑐  

 

We can think of these as having age-period (−∑ 𝐵𝑥
(𝑖)∇𝑡𝜅𝑡

(𝑖)𝑁
𝑖=1 ) and cohort (−∇𝑐𝛾𝑐) components. The basis 

formulae have more flexibility than the APCI formula for the shape of age-period mortality improvements to 
change over time.  
 
In the next section we discuss the Plat formula, and consider different ways to express it as a Basis formula. 

9.8 Plat formula  

The Plat (M6*) formula is defined by: 

𝛼𝑥 + 𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

+ (�̅� − 𝑥)+𝜅𝑡
(3)

+ 𝛾𝑡−𝑥  

 
This is an example of a Basis formula with a basis of : 

{1, (𝑥 − �̅�), (�̅� − 𝑥)+}  

 
We can also express the same formula in another way. For an age range of 𝐿 to 𝐻, consider a basis of linear 
splines: 

{𝑆(1) (
𝑥−𝑐1

𝑘
) , 𝑆(1) (

𝑥−𝑐2

𝑘
) , 𝑆(1) (

𝑥−𝑐3

𝑘
)}  

 
where: 

 𝑆(1)(𝑢) = 1 − |𝑢|  if 𝑢 ∈ [−1,+1] 

𝑆(1)(𝑢) = 0   otherwise 

 
and 𝑘 is the knot spacing with: 

𝑘 =
1

2
(𝐻 − 𝐿)  

 
and 𝑐𝑖 are knot positions with: 

𝑐1 = 𝐿  

𝑐2 =
1

2
(𝐿 + 𝐻)  

𝑐3 = 𝐻  
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The two bases are illustrated in Chart 9C, for the age range 20-100, consistent with that used in the calibration 
phase of the proposed model. 
 

Chart 9C: Standard and spline basis functions for the Plat (M6*) model 

Standard basis: 𝟏 Standard basis: (𝒙 − 𝒙) Standard basis: (𝒙 − 𝒙)+ 

   
 

Spline basis – 𝑺(𝟏) (
𝒙−𝟐𝟎

𝟒𝟎
) Spline basis – 𝑺(𝟏) (

𝒙−𝟔𝟎

𝟒𝟎
) Spline basis – 𝑺(𝟏) (

𝒙−𝟏𝟎𝟎

𝟒𝟎
) 

   
 
The two bases can be related by: 

 𝑆(1) (
𝑥−𝑐1

𝑘
) + 𝑆(1) (

𝑥−𝑐2

𝑘
) + 𝑆(1) (

𝑥−𝑐3

𝑘
) ≡ 1       

 
1

2
(𝐻 − 𝐿) (𝑆(1) (

𝑥−𝑐3

𝑘
) − 𝑆(1) (

𝑥−𝑐1

𝑘
)) ≡ (𝑥 − �̅�)      

 
1

2
(𝐻 − 𝐿)𝑆(1) (

𝑥−𝑐1

𝑘
) ≡ (𝒙 − 𝒙)+ 

 
In the language of linear algebra, these two bases have the same “span”; i.e. the set of shapes that can be made 
from: 

𝑆(1) (
𝑥−𝑐1

𝑘
) 𝜅𝑡

(1)
+ 𝑆(1) (

𝑥−𝑐2

𝑘
) 𝜅𝑡

(2)
+ 𝑆(1) (

𝑥−𝑐3

𝑘
) 𝜅𝑡

(3)
  

over the age range 𝐿 to 𝐻 is exactly the same as the set of shapes that can be made from: 

𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

+ (�̅� − 𝑥)+𝜅𝑡
(3)

  

 
Because the span is the same, both formulae have the same flexibility to fit mortality rates and so they will have 
the same goodness of fit. Given this, why consider using a different basis? There are two key reasons: 

1. Using the basis of linear splines means that the fitted 𝜅𝑡
(𝑖)

 in this formula have the same order of 

magnitude as each other. This should make it reasonable to specify a single smoothing parameter for all 

of the 𝜅𝑡
(𝑖)

. If we instead used the original form of the Plat formula then the 𝜅𝑡
(𝑖)

 would have very different 

orders of magnitude, and the smoothing parameters would have to vary accordingly. 

2. We can generalise the approach of expressing the Plat model using a basis of three linear splines, to 
expressing other models using a basis of 𝑁 splines of some power. We consider this in Section 9.10. 
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Plat (2009) says that the factor 𝜅𝑡
(3)

 is added to capture “the dynamics of mortality rates at lower ages (up to age 

40/50) [which] can be (significantly) different at some times”, due to the term (�̅� − 𝑥)+ being non-zero only for the 
younger half of the age range. Re-expressing the formula as: 

𝑆(1) (
𝑥−𝑐1

𝑘
) 𝜅𝑡

(1)
+ 𝑆(1) (

𝑥−𝑐2

𝑘
) 𝜅𝑡

(2)
+ 𝑆(1) (

𝑥−𝑐3

𝑘
) 𝜅𝑡

(3)
  

shows that the effect of the Plat model is to allow for the dynamics of mortality rates to differ for younger and 
older ages, rather than giving any special prominence to younger ages. 
 
For the Plat formula we have the identifiability constraints: 

∑ 𝜅𝑡
(1)

=𝑡 ∑ 𝜅𝑡
(2)

=𝑡 ∑ 𝜅𝑡
(3)

=𝑡 0  i.e. 𝜅𝑡
(𝑖)

 has a mean of zero for all 𝑖 

∑ 𝛾𝑐𝑐 = ∑ 𝑐𝛾𝑐𝑐 = ∑ 𝑐2𝛾𝑐𝑐 = 0  i.e. a quadratic fit to 𝛾𝑡−𝑥 would be zero 

9.9 M9 formula  

We saw above that the Plat formula can be re-expressed as a Basis formula using three linear splines. In a 
similar way, a Basis formula with a basis of three quadratic splines is equivalent to the Cairns-Blake-Dowd M9 
formula. 
 
The M9 formula is defined by: 

𝛼𝑥 + 𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

+ ((𝑥 − �̅�)2 − 𝜎2)𝜅𝑡
(3)

+ 𝛾𝑡−𝑥     

and has identifiability constraints: 

∑ 𝜅𝑡
(1)

=𝑡 ∑ 𝜅𝑡
(2)

=𝑡 ∑ 𝜅𝑡
(3)

=𝑡 0  i.e. 𝜅𝑡
(𝑖)

 has a mean of zero for all 𝑖 

∑ 𝛾𝑐𝑐 = ∑ 𝑐𝛾𝑐𝑐 = ∑ 𝑐2𝛾𝑐𝑐 = ∑ 𝑐3𝛾𝑐𝑐 = 0 i.e. a cubic fit to 𝛾𝑡−𝑥 would be zero 

 
This is an example of a Basis formula with a basis of: 

 {1, (𝑥 − �̅�), ((𝑥 − �̅�)2 − 𝜎2)} 

 
We can also consider an alternative basis of quadratic basis splines: 

𝐵𝑥
(𝑖)

= 𝑆(2) (
𝑥−𝑐𝑖

𝑘
)  

where 𝑆(2)(𝑢) is: 

 
3

4
− 𝑢2   if 𝑢 ∈ [−

1

2
, +

1

2
] 

1

2
𝑢2 −

3

2
|𝑢| +

9

8
  if |𝑢| ∈ [

1

2
,
3

2
] 

0   otherwise 

and 𝑘 is the knot spacing with: 

𝑘 = 𝐻 − 𝐿  

and 𝑐𝑖 are knot positions with: 

  𝑐1 =
1

2
(3𝐿 − 𝐻)  

𝑐2 =
1

2
(𝐿 + 𝐻)  

𝑐3 =
1

2
(3𝐻 − 𝐿)  
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The two bases are illustrated in Chart 9D, for the age range 20-100, consistent with that used in the calibration 
phase of the proposed model. 
 

Chart 9D: Standard and spline basis functions for the M9 model 

Standard basis: 𝟏 Standard basis: (𝒙 − 𝒙) Standard basis: (𝒙 − 𝒙)+ − 𝜎2 

   
 

Spline basis – 𝑺(𝟐) (
𝒙+𝟐𝟎

𝟖𝟎
) Spline basis – 𝑺(𝟐) (

𝒙−𝟔𝟎

𝟖𝟎
) Spline basis – 𝑺(𝟐) (

𝒙−𝟏𝟒𝟎

𝟖𝟎
) 

   
 
Over the age range from 𝐿 to 𝐻 the two bases have the same span and can be related by: 

 𝐵𝑥
(1)

+ 𝐵𝑥
(2)

+ 𝐵𝑥
(3)

≡ 1       

 (𝐵𝑥
(3)

− 𝐵𝑥
(1)

)(𝐻 − 𝐿) ≡ (𝑥 − �̅�)      

 
1

4
(3𝐵𝑥

(1)
− 𝐵𝑥

(2)
+ 3𝐵𝑥

(3)
)(𝐻 − 𝐿)2 ≡ (𝑥 − �̅�)2    

9.10 B3 and B4 formulae  

The previous sections showed that the Plat and M9 formulae can be expressed as Basis formulae with three 
basis splines. 
 
We refer to these, in consistent notation, as: 

 B3L – three linear splines – Plat; and 

 B3Q – three quadratic splines – M9. 
 
We can extend this approach to a greater number of basis splines. In particular we consider: 

 B4L – four linear splines; 

 B4Q – four quadratic splines; and 

 B4C – four cubic splines. 
 
The number of identifiability constraints increases with the power of the basis splines. We require that: 

∑ 𝜅𝑡
(1)

=𝑡 ∑ 𝜅𝑡
(2)

=𝑡 ∑ 𝜅𝑡
(3)

=𝑡 0 for B3; and additionally  ∑ 𝜅𝑡
(4)

=𝑡 0 for B4 
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For linear splines we constrain a quadratic fit to the cohort parameters to be zero; i.e.: 

∑ 𝛾𝑐𝑐 = ∑ 𝑐𝛾𝑐𝑐 = ∑ 𝑐2𝛾𝑐𝑐 = 0  

 
For quadratic splines we constrain a cubic fit to the cohort parameters to be zero; i.e.: 

∑ 𝛾𝑐𝑐 = ∑ 𝑐𝛾𝑐𝑐 = ∑ 𝑐2𝛾𝑐𝑐 = ∑ 𝑐3𝛾𝑐𝑐 = 0  

 
For cubic splines we constrain a quartic fit to the cohort parameters to be zero; i.e.: 

∑ 𝛾𝑐𝑐 = ∑ 𝑐𝛾𝑐𝑐 = ∑ 𝑐2𝛾𝑐𝑐 = ∑ 𝑐3𝛾𝑐𝑐 = ∑ 𝑐4𝛾𝑐𝑐 = 0  

 
We also define the non-standard formula B4X. This is equivalent to formula M7* and uses a mixture of linear and 
quadratic functions. We use three linear splines (as for B3L), and also a quadratic: 

3

2
(

2𝑥−𝐻−𝐿

𝐻−𝐿
)

2

−
1

2
  

 

This is a Legendre polynomial – it is a scaled version of the original ((�̅� − 𝑥)2 − 𝜎2), chosen so that it has a 
range of [-0.5,+1] to be broadly consistent with the linear splines. 
 
For B4X we have used the same identifiability constraints as for B4L. We found that results for B4X offered no 
advantage over the conceptually simpler B4L, B4Q and B4C formulae, so we do not consider B4X further. 

9.11 Preference among B3 and B4 formulae  

In this section we consider the results of fitting the various B3 and B4 formulae compared with the APCI formula. 
 
The purpose of these candidate formulae within the Model is to determine the age-period and cohort 
components of initial mortality improvements. The split of mortality improvements between age-period and 
cohort is particularly important because we assume different convergence periods when they are projected. 
 
As a result, the shape of the cohort component was a key consideration when deciding between the various B3 
and B4 models. 
 
Charts 9E to 9H show cohort parameters and cohort improvements for fits of various Basis models. In each case 
results are from fits to data for England and Wales males for 1975-2015, and we apply regularisation to 
parameters so that they are smooth.  
 

We note that we refined our approach to the APCI model after we had carried out the analysis in this section; i.e. 

the specification of the APCI model in charts 9E to 9J is slightly different to that proposed in Working Paper 90. 

Chart 9E: Cohort  parameters 𝜸𝒕−𝒙 for B3  Chart 9F: Cohort parameters 𝜸𝒕−𝒙 for B4  
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Chart 9G: Cohort improvements for B3  Chart 9H: Cohort improvements for B4  

  
 
Chart 9E suggests that the cohort parameters for B3L are out of line with other runs. This appears to be due to 
the lack of a cubic element in the identifiability criteria – the difference between the cohort parameters for B3L 
and B3Q can be fitted very closely by a cubic polynomial. 
 
Chart 9H suggests that the cohort improvements for B4C are out of line with other runs for the highest and 
lowest ages. In particular B4C suggests a negative cohort component at the youngest ages, which does not 
seem plausible in comparison with the pattern of crude mortality improvements. The B4C formula may suffer 
from having the most identifiability constraints – nine – so that identifiability transforms may mask genuine cohort 
effects. 
 
Rejecting B3L and B4C leaves B3Q, B4L and B4Q. The cohort parameters for these are broadly similar to each 
other and to those for the APCI model. There is little to choose between these, either in terms of their 
parameters or their projected life expectancies. We prefer B3Q as it is a more familiar model (equivalent to the 
M9 formula that is an extension of the widely-used M7 formula) than B4L and B4Q which are our own inventions. 

9.12 Comparison of M9/B3Q to APCI  

In this section we compare B3Q, our preferred Basis formula, to the APCI formula that we propose to use in the 
Model. A key consideration, given the comments above regarding the sensitivity of the Model to the split into 
age-period and cohort components, is the stability of those components. 
 
Charts 9I and 9J plot the age-period components of mortality improvements in 2005 (roughly the peak historical 
year for mortality improvements) for the B3Q and APCI models fitted to data for different age ranges: 20-100, 20-
80, and 40-100. In each case this is for male England & Wales data for 1975-2015. We would hope to see that 
the improvements would be fairly stable as the age range changes; however the charts show clearly that the 
improvements from the APCI model are much more stable to changes in the age range used. 
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Chart 9I: Age-period component of mortality 
improvements in 2005 for the B3Q model 

Chart 9J: Age-period component of mortality 
improvements in 2005 for the APCI model 

  
 

9.13 Variants of the APCI formula  

The standard APCI formula is: 

log𝑚𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥(𝑡 − 𝑡̅) + 𝜅𝑡 + 𝛾𝑡−𝑥    (A1) 

 
In this section we consider three variants. 
 
Formula A2 allows the shape of mortality improvements by age to vary over time: 

log𝑚𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥(𝑡 − 𝑡̅) + 𝜅𝑡
(1)

+ (𝑥 − �̅�)𝜅𝑡
(2)

+ 𝛾𝑡−𝑥  (A2) 

 

In this formula a positive (or negative) value for 𝜅𝑡
(2)

 means that the age-period component of mortality is higher 

(or lower) at older ages. Fitting this formula materially improves the fit compared to A1, but does not seem 

helpful for projection. The values of 𝜅𝑡
(2)

 tell us what we already knew – that mortality in past four years has been 

particularly heavy at older ages – but it is not clear how that helps us to determine current levels of mortality 
improvements. 
 
Formula A3 allows for “age-moderation of cohort”: 

log𝑚𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥(𝑡 − 𝑡̅) + 𝜅𝑡 + 𝜓𝑥𝛾𝑡−𝑥    (A3) 

 
Under the standard A1 formula the cohort component of mortality improvements for a particular cohort 𝑐 is 

𝛾𝑐−1 − 𝛾𝑐  and so does change with time or age. Formula A3 multiplies this by an age-related parameter 𝜓𝑥. We 
have considered a number of shapes for 𝜓𝑥, all decreasing to zero at high ages, so that the cohort component of 
mortality improvements also falls to zero at high ages. 
 
Allowing for age-moderation of cohort improves the fit for the APCI model, although convergence is quite slow, 
suggesting some difficulty with identifiability. While age-moderation of cohort improves the fit for the APCI model, 
a similar amendment to the M9/B3Q formula leads to a worse fit. This, together with the slow convergence, 
raises concerns that allowing for age-moderation of cohort may not be robust. 
 
  



Working Paper 91 

CMI Mortality Projections Model consultation – technical paper 

 

Page 67 of 80 
 

Formula A4 allows explicitly for annual noise: 

log𝑚𝑥,𝑡 = 𝛼𝑥 + 𝛽𝑥(𝑡 − 𝑡̅) + 𝜅𝑡 + 𝜙𝑡 + 𝛾𝑡−𝑥   (A4) 

 

The intention is that 𝜅𝑡 represents smooth, persistent, underlying improvements and 𝜙𝑡 represents short-term, 

transient annual volatility. We would like to fit the model and then ignore the impact of 𝜙𝑡 so that we have 

smooth improvements. The formula itself does not distinguish between 𝜅𝑡 and 𝜙𝑡 so we require an additional 
penalty: 

𝜆𝜙 ∑ 𝜙𝑡
2

𝑡   

so that the 𝜙𝑡 can be noisy, but cannot deviate far from zero; i.e. they cannot have any long-term trends. 
 
Formula A4 fits the data better than A1, and varying the value of 𝜆𝜙 allows for different splits between 𝜅𝑡 and 𝜙𝑡, 

but the choice of 𝜆𝜙 is not clear. We also tried adding a further identifiability constraint, but this did not prove 

fruitful. 
 
Whilst A2, A3 and A4 are helpful in principle, and can fit the data better, they do not seem to offer any advantage 
in determining the initial components of underlying mortality improvements. We prefer to use A1, the proposed 
APCI formula, as this is simpler and seems to give acceptable and robust results. 
 
Formula A1 seems to us to broadly satisfy the criteria of Section 9.2. 

9.14 Assessment of formulae 

In this section we summarise our assessment of formulae; firstly in the order in which the formulae were 
considered: 

 M1/LC, LC2, M5, M5* and Currie (2010) lack cohort terms. 

 M2/M, M8 and M8* all have concerns about their robustness and/or convergence. 

 M3/H0/APC is a simpler form of the APCI formula and lacks the useful 𝛽𝑥 parameters. 

 O’Hare and Li (2011) is similar to M6*/B3L/Plat and intended to cope with very young ages, which we 
have no need for. 

 M7 does not cope well with a wide age range, producing cohort parameters that seem implausible, as 
they are used to model the shape of mortality by age. 

 M6 is a simpler version of M7. 

 H1 has slow convergence, and its cohort parameters seem implausible. 

 M7*/B4X shows no advantage over other, conceptually simpler, B4 formulae. 

 B3L and B4C have cohort parameters and improvements which are out of line with other formulae. 

 There is little to choose between B3Q, B4L and B4Q. We prefer B3Q as it is a more familiar formula. 
However the sensitivity of the age-period improvements in B3Q to changing age ranges is concerning, 
compared to the APCI formula. 

 The variants A2, A3 and A4 give a better fit than the standard APCI formula, but they do not offer clear 
advantaged for projections.  

 
Table 9.2 summarises this assessment in the same order and format as Table 9.1, for ease of comparison. 
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Table 9.2: Summary of our assessment of candidate formulae  

Formula name Summary of our assessment 

M1 LC - No cohort terms 

- LC2 - No cohort terms 
M2 M - Concerns over convergence and the robustness of fitted parameters 
- H1 - Slow convergence, and cohort parameters do not seem realistic 

M3 H0 - A simpler version of A1, lacking the 𝛽𝑥 term 

M5 M5 - No cohort terms 
Currie (2010) No cohort terms 

M6 M6 - Subset of M7,  
M7 M7 - Cohort parameters do not seem realistic when fitted to the wide age range needed for the CMI Model 
M8 M8 - Concerns over convergence and the robustness of fitted parameters 
M9 - B3Q Our second preference (behind the APCI formula A1) but parameters do not seem robust to changing the ages used for calibration 

- M5* - No cohort terms 
- M6* B3L Cohort terms seem out of line with other related models 
- M7* B4X More complex than B4L, B4Q and B4C and does not seem to offer any advantages  
- M8* - Concerns over convergence and the robustness of fitted parameters 

O’Hare and Li (2011) Similar to M6*/B3L/Plat, with a focus on very young ages that is not relevant for the CMI Model 

- - A1 Our preferred formula, simple and robust, proposed for use in the next version of the CMI Model 
- - A2 Allowing for varying shapes of age-period improvements improves the fit, but does not help with projections 
- - A3 Age-moderation of cohort improves the fit for A3; but age-moderation does not seem robust when considering B3Q as well 
- - A4 Allowing for annual noise improves the fit, but does not help with projections 

- - B3 See specific comments on B3L and B3Q above 
- - B4 B4L and B4Q give similar results to the simpler B3Q formula. Cohort terms for B4C seem out of line with other related models.  
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10. Other models – integrated approach 

We have previously described the use of penalty functions to ensure smoothness of parameters and 
improvements (in Section 7.4 of Working Paper 90), and critical damping as a possible convergence function (in 
Section 8 of this paper). 
 
In this section we put the two together and consider the possibility of an “integrated” approach that uses penalty 
functions to ensure convergence to the long-term rate. 
 
In Section 8.2 we noted that our approach to critical damping for mortality improvements is based on the 
differential equation: 

𝑑2𝑔

𝑑𝑡2 + 2𝜔
𝑑𝑔

𝑑𝑡
+ 𝜔2(𝑔 − 𝐿) = 0         (1) 

where we write 𝜔 = 1/𝑇 to make notation clearer. 
 
This has the solution: 

𝑔(𝑡) = 𝐿 + [(𝐼 − 𝐿)(1 + 𝜔𝑡) + 𝐷𝑡]exp (−𝜔𝑡)  

where parameters 𝐼 and 𝐷 are set to define the initial mortality improvement and the initial slope of mortality 
improvements (i.e. the direction of travel). 
 
Substituting the approximations: 

𝑑2𝑔

𝑑𝑡2 ≈ 𝑔(𝑡 + 1) − 2𝑔(𝑡) + 𝑔(𝑡 − 1)  

and 

𝑑𝑔

𝑑𝑡
≈

1

2
(𝑔(𝑡 + 1) − 𝑔(𝑡 − 1))  

into (1) gives: 

 𝑔(𝑡 + 1) − 2𝑔(𝑡) + 𝑔(𝑡 − 1) + 2𝜔
1

2
(𝑔(𝑡 + 1) − 𝑔(𝑡 − 1)) + 𝜔2(𝑔(𝑡) − 𝐿) ≈ 0 

i.e.: 

 (1 + 𝜔)𝑔(𝑡 + 1) + (𝜔2 − 2)𝑔(𝑡) + (1 − 𝜔)𝑔(𝑡 − 1) − 𝜔2𝐿 ≈ 0     (2) 

 
This lets us express 𝑔 by using the recurrence relation 

𝑔(𝑡 + 1) =
(2−𝜔2)𝑔(𝑡)+(𝜔−1)𝑔(𝑡−1)+𝜔2𝐿

(1+𝜔)
  

i.e.  

𝑔(𝑡 + 1) =
(2−𝜔2)

(1+𝜔)
𝑔(𝑡) +

(𝜔−1)

(1+𝜔)
𝑔(𝑡 − 1) +

𝜔2𝐿

(1+𝜔)
  

 
Note that: 

 If 𝜔 = 0 then 𝑔(𝑡 + 1) = 2𝑔(𝑡) − 𝑔(𝑡 − 1) and we have linear extrapolation. 

 If 𝑔(𝑡) =  𝑔(𝑡 − 1) = 𝐿 then 𝑔(𝑡 + 1) = 𝐿, so once mortality improvements reach the long-term rate, they 
stay there. 
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Equation (2) is expressed in terms of 𝑔(𝑡), which is a mortality improvement. If we write 𝑔(𝑡) as the difference of 
two period terms; i.e. as: 

𝑔(𝑡) = 𝜅(𝑡 − 1) − 𝜅(𝑡)  

 
then (2) becomes: 

(1 + 𝜔)𝜅(𝑡 + 1) + (𝜔2 − 𝜔 − 3)𝜅(𝑡) + (3 − 𝜔 − 𝜔2)𝜅(𝑡 − 1) + (𝜔 − 1)𝜅(𝑡 − 2) + 𝜔2𝐿 = 0  (3) 
 
We can use the left-hand side of this formula to constrain the 𝜅(𝑡) terms, by adding a penalty of: 

 𝜆 ∑ [(1 + 𝜔)𝜅(𝑡 + 1) + (𝜔2 − 𝜔 − 3)𝜅(𝑡) + (3 − 𝜔 − 𝜔2)𝜅(𝑡 − 1) + (𝜔 − 1)𝜅(𝑡 − 2) + 𝜔2𝐿]2𝑡  
 

For future years, where there is no data, hence no deviance, this will force critical damping. For historical years, 
where there is data, this will enforce smoothness of the 𝜅(𝑡) with the degree of smoothness depending on the 

value of 𝜆. 
 
Note that using a value of 𝜔 = 0 means that we would extrapolate mortality improvements. This is a third-order 

penalty on the 𝜅(𝑡). If we are not allowing for convergence within the penalty function then a better assumption 

would be that mortality improvements are constant; i.e. a second-order penalty on 𝜅(𝑡), as proposed for the Core 

Model. Hence we should only use this approach where 𝜔 > 0 with a “sensible” convergence period. 
 
This integrated approach has the feature that the choice of long-term rate affects ones view of historical mortality 
improvements.  
 
This can be seen as reasonable; for example:  

 An actuary who assumes a long-term rate of 3% p.a. thinks that high levels of improvements will 
continue, and may be inclined to treat heavy recent mortality as just a blip, and assume comparatively 
high initial improvements. 

 An actuary who assumes a long-term rate of 1% p.a. thinks that high levels of improvements will not 
persist, and may be inclined to treat heavy recent mortality as indicative of a new trend, and assume 
comparatively low initial improvements. 

 
However the integrated approach would represent a significant change to the structure of the Model, which 
currently has a clear distinction between the two phases of determining initial improvements and then projecting 
them. The Committee felt that while the integrated approach is theoretically plausible, it may be seen as a step 
too far from the current method. 
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11. Predictive power 

The Committee initially planned to select models based on pre-defined metrics of a given model's predictive 
power (amongst other notionally desirable qualities), which in turn were based on out-of-sample performance on 
past data. There is a large existing literature on this subject – see e.g. Gigerenzer and Brighton (2009) and 
Haldane (2012) for a discussion of a variety of approaches to the construction of predictive models.  
  
After some investigation with inconclusive results, the Committee moved towards the view that: 

 selecting a longevity projections model purely on the basis of its past out-of-sample predictive 
performance is not robust given (a) the shortage of test data available and (b) the nature of longevity 
improvement; and  

 instead, a simple, pragmatic approach to mortality projection was more appropriate. 
  
There are strong reasons why selection criteria based purely on past predictions model are unlikely to be 
adequate: 

 Mortality improvement varies significantly over time – by its very nature, if mortality is improving then the 
past drivers of improvements must fall away, and there is no natural law that requires the future 
(necessarily different) drivers to behave in the same way as the past drivers. 

 Rates of mortality improvement (at least for England & Wales males) appear to persist over periods of a 
decade or even longer. Chart 11A shows this by plotting standardised mortality ratios (SMR) with three 
deliberately suggestive trend lines. 

 There are at most five decades of relevant past data, i.e. at most five effective independent data points. 
There is very little one can do to test a model's predictive power if there only five independent data 
points (or even ten or twenty). 

 Given the clear evidence of cohort effects in past England & Wales data, a projections model that does 
not project forward cohort-related features in the data is not considered acceptable by the Committee, 
However, the associated lack of identifiability of models with age, period and cohort parameters means 
that model calibration would need to make even stronger demands of the already small dataset. 

 The inclusion in the model of a long-term improvement rate that is disconnected from mortality in the 
calibration period disables tests of predictive power because (a) the long-term rate is not derived 
objectively from past data within the model framework and (b) the tests of model prediction are strongly 
affected by the particular long-term rate chosen. 

 
A simpler way of reaching the same conclusion is to note that a model that predicted England & Wales male 
mortality in Chart 11A would have to be one that – apart from the most recent four years – always predicted the 
future to have a higher rate of mortality improvement than the past, an approach we do not consider credible. 
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Chart 11A – Standardised mortality ratios (SMR), relative to 2011 for England & Wales males aged 50-89 

 

The Committee was also cognisant of the school of thought that future mortality improvement should be at least 
partly determined using information other than solely the variation in recent mortality by age and time, such as:  

 analysis of mortality patterns by cause of death; or 

 the use of expert opinion to make explicit judgements about future longevity improvements. 
 
Indeed the requirement of the Model for users to specify a long-term improvement rate, and the widespread use 
(for England & Wales mortality) of long-term improvement rates that are materially less than recent actual 
improvement rates, are tacit recognition of this. 
 
Taking account of the fundamentally pragmatic rather than past-predictive nature of the model, the Committee 
has provided users with the ability to tweak the model's responsiveness to new data by adjusting the smoothing 
parameters 𝑆 – and 𝑆𝜅 in particular – which in turn determine the model fit and projection. 
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12. Guide to software 

The Committee is making software available as part of the consultation process. This section describes the 
software file “CMI Model consultation software v0.1.xlsm”. Further versions may be released in due course. 
 
As noted in the disclaimer in the software: 
 

“This Software is being released as an illustrative version as part of the consultation process described 
in CMI Working Papers 90 and 91. It is being made available to allow users to investigate the CMI's 
proposals for the Model and to gain feedback on its functionality and accuracy. While the Software has 
been tested, the Software may contain bugs, errors and other problems. You should not rely on the 
Software without undertaking adequate checks of your own.” 

 
The software is intended to allow interested parties to replicate the results in Working Paper 90 and this paper, 
and to consider the impact of particular parameter choices. It is not intended to offer the full functionality of the 
proposed model, and more complete software will be released to accompany CMI_2016 in March 2017. For 
example, the timing of calculated life expectancies is restricted to 1 January dates in this software, but will not be 
restricted in the final software. 
 
The software contains Excel VBA macros. Depending on your computer setup you may need to explicitly enable 
macros in order to run the software.  

12.1. Inputs  

The sheet “Inputs” contains all of the inputs necessary to run the software. In its original state, all inputs are set 
to the proposed Core values.  
 
The inputs are in three parts: 

 Parameters needed for the APCI model 

 Parameters for projection of mortality improvements 

 Parameters for illustrative life expectancies 
 
Once the inputs have been set, press the large “Run” button. Progress will be displayed in Excel’s statusbar. For 
the Core parameters a run takes of the order of 10-20 seconds on a typical PC. However we have found that 
convergence can be slower for some choices of parameters, including a calendar year range of 1995-2015. 
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12.2. Parameters needed for the APCI model 

The parameters needed for the APCI model are described in Table 12.1. 
 

Table 12.1: Parameters needed for the APCI model 

Item Core value Notes 

Dataset ONS_EW_M 
or ONS_EW_F 

The software will look for sheets with 
names starting with this, and ending in 
“_Exp” for exposures and “_Dth” for 
deaths. If you want to use different data, 
see Section 12.3 for details of the data 
format 

Adjust exposures? True Set to True to apply the exposure 
adjustment described in Section 5.9 of 
Working Paper 90 

      If adjusting exposures, n 2 See Section 5.9 of Working Paper 90 

      If adjusting exposures, p 1% See Section 5.9 of Working Paper 90 

Minimum age to use for calibration 20 See Section 5.3 of Working Paper 90 

Maximum age to use for calibration 100 See Section 5.3 of Working Paper 90 

Age at which initial improvements taper 
to zero 

110 See Section 8.6 of Working Paper 90 

Minimum calendar year 1975 See Section 5.3 of Working Paper 90 

Maximum calendar year 2015 See Section 5.3 of Working Paper 90 

Number of cohorts to exclude 0 If a positive number is chosen, then 
age/year cells with fewer than that number 
of observations in the data will be 
excluded. This is not part of the proposed 
model but is included to allow sensitivity 
testing 

Smoothing parameter 𝑆𝛼 7 See Section 7.4 of Working Paper 90 

Smoothing parameter 𝑆𝛽  9 See Section 7.4 of Working Paper 90 

Smoothing parameter 𝑆𝜅 7.5 See Section 7.4 of Working Paper 90 

Smoothing parameter 𝑆𝛾 7 See Section 7.4 of Working Paper 90 

Use direction of travel? False See Section 8.1 of Working Paper 90 
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12.3. Data format 

The software requires data to be in a standard format that the Committee has used for its development and 
testing of the Model: 

1. Corresponding exposures and deaths should be on separate sheets, with suffixes “_Exp” and “_Dth” and 
a common prefix. 

2. Cells A1 to B16 contain “metadata”, i.e. information about the data. 

3. The name (cell B1) should match the sheet name. 

4. Information on rows 2 to 10 provide optional information about the data. 

5. The information in cells B11 to B16 should state the sex, type and age and year range of the data. 

6. Row 18 contains header information for years, starting in column B. These should be consecutive 
ascending integers. 

7. Column A contains header information for ages, starting in row 19. These should be consecutive 
ascending integers. 

8. The data itself should start in cell B19. 

12.4. Parameters for projection of mortality improvements 

Columns J to M contain arrays by age of long-term rates and convergence periods. These all cover the age 
range 20 to 150.  
 
The buttons above the columns will populate the columns with the Core assumptions. The button for the long-
term rate for age-period improvements will require you enter a single assumption; this will be applied up to age 
85, with the Core taper applied at older ages. 

12.5. Parameters for illustrative life expectancies and annuities 

The software will calculate illustrative life expectancies and annuities. Table 12.2 shows the parameters used to 
specify these. 
 

Table 12.2: Parameters needed for illustrative life expectancies and annuities 

Item Notes 

Base table qx This specifies the 𝑞𝑥 mortality rates to be used to calculate life 
expectancies and annuities 

Base table timing This specifies the date at which the “Base table qx” values apply 

Use standard table If you select one of the named standard tables from this list, then “Base 
table qx” and “Base table timing” will be populated for you. 
 
If the base table qx or timing is changed manually, then this will be reset 
to “{custom}” 

Retirement age This is used in the calculation of annuity values. For ages below 
retirement age, the annuity will be a deferred annuity 

Interest rate This is the (net) interest rate used to calculate annuities 

 
A restriction of the current illustrative software is that calculated life expectancies and annuities will be as at 
1 January of each year. The current Model does not have this restriction; neither will the published CMI_2016 
Model. 
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Users should note that to change the software from males to females or vice versa they would need to change 
both the dataset used to calibrate the APCI model and the base table; rather than changing a single “gender” 
field. The software will produce a warning if it thinks there is an inconsistency between the genders of the 
dataset and the base table, but it does not prevent this (e.g. users may wish to see the impact of applying male 
mortality improvements to a female base table, for comparison).  

12.6. Results workbook 

The results of each run are written to a new Excel workbook. Its contents are shown in Table 12.3, and a 
contents sheet is also contained in the workbook itself. 

12.7. “OutputChecks” sheet  

The calculations in the software are all done using Excel Visual Basic for Applications (VBA) code. This has 
significant advantages for the speed and structure of the code, but may make the calculations less transparent to 
users who are unfamiliar with VBA. 
 
To address this, the “OutputChecks” sheet shows detail of the projection of mortality improvements, including the 
conversion from m-style to q-style improvements, using Excel formulae. These can then be compared to the 
values calculated using VBA. 
 
For various items of interest, the sheet: 

1. calculates the item itself; 

2. looks up the item from the relevant place in the output file; and 

3. compares (1) and (2) to check that they agree. 
 

For example, cells D38 to D42 convert from log𝑚𝑥,𝑡 to 𝑞𝑥,𝑡. Cell D38 looks up log𝑚𝑥,𝑡 from the “logm_proj” sheet; 

cells D39:D40 convert this to 𝑞𝑥,𝑡 using calculations on the “OutputChecks” sheet; cell D41 looks up 𝑞𝑥,𝑡 from the 

“q_proj” sheet; and cell D42 compares the values of D40 and D41 and (hopefully) shows them to be the same. 

 
Cells D8 and D9 can be varied by the user to investigate the derivation of an improvement at a particular age 
and year. 

12.8. Passwords  

In order to avoid accidental changes to results workbooks or to the software itself, the workbooks are protected 
with the password “CMI”.  
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Table 12.3: Contents of the results workbook 

Sheet name Description 

Contents A contents sheet, containing information similar to this table. 

Params_fit The parameters used to specify the calibration process 

Deaths The deaths data used for calibration 

Exposures The exposures data used for calibration 

ExposuresRaw This sheet will only be shown if exposures have been adjusted by the software. If so, 
this will show the raw exposures data before adjustment; and adjusted cells on the 
Exposures and ExposuresRaw sheets will be highlighted 

Params_APCI The output parameters for the APCI model, including the derived components of 
mortality improvements, and direction of travel 

Iterations This shows the deviance, penalty function, and objective function after each iteration 

logm_fit Fitted values of the natural logarithm of central mortality rates 

m_fit Fitted values of the central mortality rates 

DevRes Deviance residuals and overall deviance 

MI_fit Fitted mortality improvements (“m-style”) 

Params_proj The parameters used to specify the projection process 

MI_m_proj Projected mortality improvements (“m-style”) 

logm_proj Projected values of the natural logarithm of central mortality rates 

m_proj Projected values of the central mortality rates 

q_proj Projected values of mortality rates (using calibration data) as at 1 January 

MI_q_proj Projected values of mortality improvements (“q-style”) 

Params_sample The parameters used to specify the sample life expectancies 

q_base_proj Projected mortality rates (using the specified base table) as at 1 January 

LE_P Period life expectancies (using the specified base table) as at 1 January 

LE_C Cohort life expectancies (using the specified base table) as at 1 January 

Annuity_P Period annuities (using the specified assumptions) as at 1 January 

Annuity_C Cohort annuities (using the specified assumptions) as at 1 January 

OutputChecks This shows detail of the calculations. See Section 12.7 for details. 
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