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ABSTRACT 

WHEN two or more independent or component loans are consolidated to form a 
single composite loan the result is often referred to as a cocktail loan. In this 
paper we analyse properties of a composite loan induced by properties of the 
component loans. Of particular interest are the properties of the composite yield 
in terms of the yields and other characteristics of the component loans. Some 
upper and lower bounds are also established for the composite yield in terms of 
the component yields. Of some importance is a sensitivity analysis of the 
composite yield with respect to various parameters of the component loans. 

1. INTRODUCTION 

It frequently happens that borrowers of funds obtain parts of their total loan 
from a variety of lenders. This may occur due to rationing on the part of lenders, 
as in the case of limited housing loans being available at preferential (below 
market) rates of interest as a result of statutory limits on the rate permitted on 
such loans. Alternatively, the situation may occur as a result of the prudential 
requirements of the lender(s) or following the accumulation of debt by the 
borrower over a period of time. In any event it is common for borrowers to find 
themselves paying off loans which have different balances owing, different times 
to maturity, different repayment amounts and of course different rates of 
interest. Some of these loans may be from the same lender or they may all be from 
different lenders. These loan situations are variations of what are commonly 
referred to as composite or ‘cocktail’ loans. 

An obvious question to ask in relation to any cocktail loan is: 

Given the yields on the component loans, what is the yield on the composite 
or cocktail loan? 

This paper addresses this question and a number of related questions. We will 
present the mathematical analysis for cocktail loans which comprise just two 
component loans. However the majority of our results have obvious generaliza- 
tions to cocktail loans comprising more than two component loans. Given the 
loan parameters for each of the component loans, we wish to determine the 
characteristics of the yield on the composite or consolidated loan. The two cases 
of major focus in this paper concern component loans that are pure discount 
bonds (zero coupon bonds) or annuities. 
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318 The Cocktail Problem: 

A number of simplifying assumptions will be made throughout the paper. 
First, the impact of late repayments will not be considered here; we are primarily 
interested in establishing results on the assumption that the various loan 
conditions are satisfied. Second, we will not specifically incorporate up-front or 
periodic loan costs into our analysis. However, with regard to this point, it 
should be appreciated that up-front or establishment costs associated with a loan 
can be accommodated by deducting the total up-front costs from the notional 
loan amount to obtain the net loan amount. Also, any periodic or recurrent loan 
costs (management or other fees, for example) can be amortized over the gross 
repayment amounts to give the net repayment amount. 

The net price of the loan and net repayment amount, together with the time to 
maturity, then imply the true rate of interest on the loan as compared with the 
notional rate of interest on such. 

The major results of our analysis are equally valid when both of the component 
loans are either pure discount bonds or annuities. In both cases for a two 
component loan we show that the composite yield: 

l increases as the relative amount of the higher yielding component loan 
increases, 

l increases as either of the component yields increases, 
l increases as the time to maturity of the higher yielding component loan 

increases. 

Many of the results that we obtain for the two-component composite loan 
generalize to an arbitrary number of composite loans. However, the degree of 
generalization varies from result to result, so we shall present the analysis for a 
two-component loan and indicate the generalization in each case. 

We also establish various upper and lower bounds for the composite yield in 
terms of the component loan parameters. In addition, power series approxima- 
tions for the composite yield are determined. Of particular interest is the result 
that the composite yield for loans of common maturity can in general be expected 
to exceed the weighted average of the component yields, the weighing factor 
being the proportion of the component loans in the cocktail. Some generaliza- 
tions and interesting special cases of this result are also established and discussed. 

2. COCKTAIL LOAN COMPRISING TWO PURE DISCOUNT BONDS 

In this section we will analyse the properties of the yield on a cocktail loan 
comprising two pure discount bonds, that is, two component loans each having a 
single balloon repayment. Suppose the price of the loans are $P1 and $P2, 
repayable after n1 and n2 periods, using repayments of $R1 and $R2 respectively. 
If the yields on these loans are 100 r1% per period and 100 r2% per period 
respectively, and we put xi = 1 + ri, i = 1,2, then 

(1) 
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As noted in the introduction, if P1, P2, R1 and R2 include establishment and 
recurrent costs then r1 and r2 will represent the true yields on each loan. In any 
event, r1 and r2 follow from P1, R1, n1, and P2, R2, n2 respectively. Indeed, any 
three of the four loan parameters P, R, n and r imply the fourth. It should also be 
noted that in considering the consolidated properties of a new loan and an 
existing loan, the balance outstanding, time to maturity and repayment amount 
should be used in the latter for P, n and R respectively. 

The yield on the cocktail loan comprising a consolidation of the two loans 
above, 100r% per period, is the solution of the equation 

where x = 1 + r. 

(2) 

Note that the solution for r will be unique as there is only one sign change in the 
cash flow sequence (regarding P1 + P2 as expenditure, say, and the redemption 
monies as income). 

Eliminating R1 and R2 from equations (1) and (2) we obtain 

where 7 = β (1 + β). and β = P1/P2. 
Note that β represents the ratio of the loan prices whilst γ and (1- γ) represent 

the proportions of the first and second component loans in the cocktail. 
In the case of a many loan situation we shall write (3) as 

(4) 

It immediately follows from (3) that r always lies between r1 and r2, that is 

r1 r if and only if r2 r. (5) 

In the following analysis it will be convenient to assume, without loss of 
generality, that r1 > r2 that is the first loan is the higher yielding loan. The case in 
which r1 = r2 leads. as demonstrated above, to r = r1 = r2 and is of no further 
interest to us. 

Theorem 2.1 
The yield on the composite loan is an increasing function of γ. 

Proof: 
Differentiating (3) partially with respect to γ, and re-arranging gives 

(3) 
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(6) 

from which it immediately follows that δ x /δ γ + > 0 since x2 < x < x1. The 
required results now follows readily. 

The above result accords with our intuition, namely that the composite yield 
will increase as the relative amount of the higher yielding loan in the cocktail 
increases. Naturally, the composite yield decreases as the proportion of the lower 
yielding component loan increases. 

The generalization of this result requires qualification. Suppose the weight γ i of 
loan i changes in relation to the weight γ j of loan j in such a way that γ i + γ j and all 
other weights remain constant. Then the numerator of the corresponding result 
to (6) will consist of the difference 

Clearly the sign of this expression is determinate if x lies between xi and xj, but is 
indeterminate otherwise. If ri > r > rj, r increases as γ i; increases, and decreases as 
γ j increases. 

Theorem 2.2 
The yield on the composite loan is an increasing function of the component 

yields, that is 

Proof 
Differentiating (3) partially with respect to x1, and re-arranging gives 

from which it follows that r is an increasing function of r1. 
A similar analysis shows that also. 
This result generalizes immediately to any number of component loans; that is 

the yield on the composite loan is an increasing function of any one component 
yield. 

Theorem 2.3 
The yield on the composite loan is an increasing function of the time to 

maturity of the higher yielding component loan and a decreasing function of the 
time to maturity of the lower yielding component loan. 
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Proof: 
Consider n1 as a continuous variable, and differentiate (3) partially with 

respect to n1. This gives, after some re-arranging 

(7) 

Since x1 > x, it follows that > 0, and hence that > 0. 
A similar analysis also shows that < 0. 
In the sense that paying a higher rate of interest for a longer period of time is 

more costly and vice-versa, this result is again as we would expect. 
For a many component loan it is clear from the general expression 

corresponding to (7) that the yield on the composite loan is an increasing or 
decreasing function of the time to maturity of the component loan provided the 
yield on the component loan is, respectively, greater than or less than the 
composite yield. 

Theorem 2.4 
When the component loans have the same time to maturity, the composite 

yield 
(i) is readily expressible in terms of the component yields, and 

(ii) is greater than (less than) the weighted average of the component yields 
when the time to maturity exceeds (is less than) unity. 

That is, r > y r1 + (1 – y) r2 when n1 = n2 > 1; and r < y r1 + (1 – y)r2 when 
n1 = n2 < 1. 

Proof 
(i) When n1 = n2 = n, equation (3) can be written 

(8) 

Taking the nth root of both sides gives r explicitly in terms of r1 and r2. 
(ii) Let g(x) = xn. Then g is a convex function when n > 1, so it follows from 

(8) that 

and since g is also increasing, we obtain 

(9) 

Note as a special case that when 
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This result tells us that when P1 = P2, that is, the loan amounts are equal, then 
the composite yield is greater than the arithmetic mean of the component yields. 

When n < 1, the concavity of g(x) reverses the sign of the inequality. 
The generalization of (9) is immediate to a many-component loan situation, 

giving 

(10) 

It is interesting to compare the result of Theorem 2.4 with the corresponding 
result based on the flat or simple rates of interest. In this case we can establish: 

Theorem 2.5 
When the component loans have the same time to maturity, the equivalent flat 

rate of interest on the composite loan is equal to the weighted average of the 
component flat rates of interest. This result may be stated thus: 

where 100ƒ1% and 100ƒ2% are the flat rates of interest per annum on the 
component loans and 100 ƒ% per annum is the flat rate of interest on the 
composite loan. 

Proof: 
This result follows immediately if we note that 

where N is the number of periods per annum. 
This result stresses the linearity of flat or simple rates of interest, in contrast to 

the non-linearity of nominal or effective rates of interest. 
Once again, note that for β = 1, when the component loans are for the same 

amount, the result gives 

that is, the composite flat rate is equal to the arithmetic mean of the component 
flat rates. 

The result of this theorem generalizes in the obvious way. 
When n1 ≠ n2 it is possible to generalize Thereom 2.4 as follows: 

Theorem 2.6 
When n1 ≠ n2, n1 > 1 and n2 > 1, 
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where 

This is always a better lower bound than r2. 
Note that α and (1– α ) represent the ‘maturity weighted’ component loan 

proportions. In other words α is similar to y except that the loan prices in the 
former are first multiplied by their term to maturity. 

Proof 
We apply the inequality yb > 1 + b(y–1), where y is positive and b > 1 is a 

constant, to each term of (3); see, for example, Hardy, Littlewood and Polya 
(1964). After simplification the desired result is obtained. Since r1 > r2 
α (r1–r2) + r2 > r2 and the bound is stricter than r2. 

Applying the above inequality to (4) leads to the obvious generalization, 
namely 

Power Series for Composite Yield 
Useful approximations for the composite yield r can be obtained from a power 

series expansion for r in terms of the component yields r1 and r2. Assuming r has 
the form 

substituting in (3) and equating coefficients in the normal way gives 

Terms of degree 3 and higher can be obtained if necessary by continuing the 
above procedure, 

The power series expansion for r is valid for r1 and r2 sufficiently small; the 
precise ranges are not readily available from the analysis, but are given by the 
condition < 1. 

It is interesting to note from the power series expansion that the linear terms 
are precisely the lower bound for the composite yield as in Theorem 2.6. 
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Graphical representations 
The dependence of the composite yield on the component yields and other 

component loan parameters can be clearly illustrated by means of appropriate 
figures. For example, Figure 1 plots the cocktail loan rate, r% per period, against 

p1/(P1 + P2) or y. 
Figure 1 is based on component yields of 1·25% per month for a 300 month (25 

year) (housing) loan and 1·75% per month for (personal) loans of various 
durations. The contours are indicated for personal loans of 60, 120, 180, 240 and 
300 month durations. A similar graphical presentation, using effective rates of 
interest, can be found in Hathaway (1986). 

3. COCKTAIL LOAN COMPRISING TWO ANNUITIES 

In this section we analyse the properties of the yield on a cocktail loan 
comprising two ordinary annuities, sometimes referred to as credit fancier loans. 
Similar results emerge when the component loans are annuities due or deferred 
annuities. 

We shall retain the notation of the previous section, except that we will now use 
R1 and R2 to denote the periodic repayment amount for each of the annuities, 

Figure 1. Composite rate—pure discount bond 
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comprising n1 and n2 repayments respectively. The component yields are given by 

(11) 

whilst the composite yield is the (unique) solution of the analogue of equation (3): 

(12) 

or, in general, 

where 

(13) 

is the capital recovery factor (that is. the reciprocal of the present value of an 
annuity), based on the interest rate 100 r% per period for n periods. In 
conventional actuarial notation, f(r, n) = 1/ at rate r. 

When convenient, f(r, n) will be written as f(r). In general, the results of § 2 
extend to the case of annuities. Before proving the corresponding results it will be 
convenient to establish two preliminary results. 

Theorem A 
The expression 

(14) 

is positive for all parameters. 
The proof of this theorem is given in the Appendix. 

Theorem B 
The function 

where r > 0 and n is a positive integer, is a monotonically increasing and convex 
function. 

The proof of this theorem is also given in the Appendix. 
The analogues of the theorems in § 2 and their generalizations will now be 

established. As in § 2 we present the analysis for a two-component loan, with 
r1 > r2. 
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Theorem 3.1 

The Cocktail Problem: 

The yield on the composite loan is an increasing function of y, that is 

Proof: 
Multiplying (12) by r, and differentiating partially with respect to y gives 

where D is given in expression (14). Since the function f(r) is monotonically 
increasing (see Theorem B) and r1 > r, the numerator of is positive. Since D 
is also positive, is positive, as required. 

The generalization of this theorem, like that for Theorem 2.1, requires 
qualification. If we assume y1 + yj and all other weights to be constant, then the 
sign of depends upon the sign of 

(15) 

From Theorem B, f(r, n) is a monotonically increasing function of r, hence the 
sign of (15) is determinate if r lies between ri and rj, but indeterminate otherwise. 
Again, if ri > r > rj, r increases as yi increases, and decreases as yj increases. 

Theorem 3.2 
The composite yield is an increasing function of each component yield, that is 

Proof: 
Equation (12) can be written in the form 

(16) 

where again f(r) is, by Theorem B, an increasing function or r. 
Suppose that r1 increases; then f(r1 n1) increases, and since y and f(r2 n2) are 

independent of r1 r cannot decrease. Consequently r increases when r1 increases. 
A similar argument shows that r is also an increasing function of the other 
component yield r2. 

The generalization of this result is quite straightforward. 
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Theorem 3.3 
The yield on the composite loan is an increasing function of the time to 

maturity of the higher yielding component loan and a decreasing function of the 
time to maturity of the lower yielding component loan. 

Proof 
Treating n1 as a continuous variable, differentiating (12) partially with respect 

ton,, simplifying, and using Theorem A, we find that the sign of is the same 
as the sign of 

and this in turn has the same sign as 

We now consider the function 

and show that h(x) is a decreasing function of x. Clearly 

Using the inequality 

the numerator of (17) cannot exceed 

(17) 

The numerator of the last expression has the same sign as 

We have therefore shown that h(x) is a decreasing function of x, and since x < x1, 
it follows that is positive. A similar analysis will show that is 
negative. 
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For the general case a corresponding analysis shows that the yield on the 
composite loan is an increasing or decreasing function of the time to maturity of 
the component loan provided the yield on the component loan is, respectively, 
greater than or less than the composite yield. 

We are now in a position to establish: 

Theorem 3.4 
When the component loans have the same time to maturity, and this time to 

maturity exceeds unity, the composite yield is greater than the weighted average 
of the component yields. In other words, 

r > g g r1 + (1 – y) r2 when n1 = n2 > 1. (18) 

Proof: 
When n1 = n2 = n, equation (12) can be written in the form 

ƒ(r, n) = γ ƒ(r1, n) + (1 – γ) ƒ(r2, n) 

or 

ƒ(r) = γ ƒ(r1) + (1 – γ) ƒ(r2) say. 

Since ƒ is convex (Theorem B), 

and since ƒ is also monotonically increasing it follows immediately that 

as required. 
Generalization of this result is obvious. 

Further Bounds for the Annuity, and Power Series 
Using the inequalities for all x 0 and for all 

n 1, it follows from (12) that 

As for the discount bond a power series can be obtained for the composite yield r 
in terms of the component yields r1 and r2. Using similar techniques the following 
power series can be obtained under the condition < 1: 

Note that is the same as α except that n1 and n2 have been replaced by (n1 + 1) 
and (n2, + 1) respectively. 
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One can repeat the previous analysis (for the case of two pure discount bonds) 
of the power series approximation to assess how accurate the truncated form is 
when used to estimate the composite yield. Similar results are obtained to those 
presented in § 2; details are not give here. 

Again, when n1 = n2, we observe that the linear terms are exactly the lower 
bound for r in (18). 

Graphical Representation 
As in the previous section for the case of component loans consisting of pure 

discount bonds, it is perhaps helpful to illustrate graphically how the composite 
yield varies with the component yields for the case of annuity loans. 

Figure 2. Composite rate—ordinary annuity 

Figure 2 plots the cocktail rate, r% per period, against, y, or P,/(Pi + P2) for 
the same range of contours as chosen in Figure 1. 
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APPENDIX 

In the Appendix we present the proofs of Theorems A and B. 

Theorem A: 
The expression 

(14) 

is positive for all parameters. 

Proof: 
Using (12), (14) can be written 

(A1) 

Combining the first and third terms of (A1) gives 

and the expression in brackets can be written 

The numerator of this last expression is seen to be positive by employing the 
Binomial Theorem for the term (1 + r)n1+1. 

A similar argument shows that the second and fourth terms of (A1) when 
combined are also positive. Consequently D is positive, and the theorem is 
proved. 

A similar analysis to the above establishes a corresponding result for the 
general case of a many-component loan. 

Theorem B: 
The function 

where r > 0 and n is a positive integer, is a monotonically increasing and convex 
function, 

Proof: 
It is readily shown that the derivative of f(r) is 
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(A2) 

Using the Binomial Theorem to expand (1 + r) n+1 shows that the numerator of 
f’(r) is non-negative, and hence that f(r) is monotonically increasing. 

Differentiating (A2), and simplifying gives 

from which it is apparent that the sign of f" (r) is the same as the sign of 

After further simplification it is clear that the last expression has the same sign as 

After expanding (1 + r)n by the Binomial Theorem we find that the constant 
term and the coefficient of r are both zero, and that the coefficient of rk for k ≥ 2 is 
equal to 

Thus f" (r) ≥ 0 when r > 0 and so f(r) is convex. 




