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ON THE COEFFICIENTS IN THE 
EXPANSION OF eet AND e-et 

BY R. E. BEARD, M.B.E., F.I.A., F.S.S. 

Assistant General Manager of the Pearl Assurance Company, Ltd. 

THIS investigation has arisen out of D. C. Fraser’s note on the Gompertz 
Table (J.I.A. Vol. LXXIII, p. 423), and although of limited actuarial appli- 
cation the results are believed to be new and worth publication. Fraser 
expresses some difficulty in regard to the determination of the coefficients 
A0, A1, . . . defined in his note, and in a personal letter Dr E. Michalup has 
pointed out a method of deriving a recurrence formula for them without utilizing 
the ‘abacus’ but involving certain analytical properties of the Gamma function. 
Consideration of Dr Michalup’s letter suggested that the recurrence formula 
could be obtained by elementary algebraic methods, and these are used below. 
In the course of subsequent correspondence Dr J. C. P. Miller pointed out 
certain related studies and made some suggestions which prompted me to 
further analysis, the main results of which are now presented. 

2. Using the conventions adopted by Fraser, but replacing x c in his 
notation by t, the expression for lx becomes e-et and the problem is to expand 
this in ascending powers of t. The allied problem of expanding eet has been 
studied fairly deeply by Epstein,* who also gives a number of references to 
earlier work on this topic. 

3. Now if (1) 

and (2) 

then, since , the two series in brackets are reciprocal and the Kr and Ar 
are related by the formula 

so that given the Kr the Ar can be found and vice versa. 

4. Now 

(3) 

(4) 

* Epstein, L. F., J. Math. Phys. Vol. XVIII, pp. 153–73, 1939. 
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thus 

also 

Equating powers of in (5) and (6) we find 

Putting r+s=k, we finally have 

If we now put Cr = - Are-1 for r > o and note that C0 = I -e-1, we have 

where 

with the symbolic relationship 

153 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

5. The values of Ar, which by (10) are all integral, have been calculated as 
far as r = 26 and are given below. For they were given by Michalup 
and for by Miller and have been verified by myself. 

r Ar r Ar r Ar 

0 +1 9 + 267 18 - 278475061 
1 +1 10 + 413 19 - 2540956509 
2 0 11 - 2180 20 - 9816860358 
3 +1 12 - 17731 21 - 27172288399 
4 +1 13 - 50533 22 + 725503033401 
5 -2 14 + 110176 23 + 5592543175252 
6 -9 15 + 1966797 24 + 15823587507881 
7 -9 16 + 9938669 25 - 168392610536153 
8 +50 17 + 8638718 26 - 2848115497132448 

6. Similarly, the function may be considered and the 
following symbolic relationship found for the coefficients Kr: 

(11) 

where (12) 
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Values of Kr for 20 have been given by Epstein* and are given below, 
together with the values for 20 < r 26 which have been calculated by myself: 

r Kr r Kr r Kr 

0 1 9 21147 18 68 20768 06159 
1 1 1O 1 I5975 19 583 27422 05057 
2 2 11 678570 20 5172 41582 35372 
3 5 12 42 13597 21 47486 98161 56751 
4 
5 

15 13 276 44437 22 450671 57384 47323 
52 I4 1908 99322 23 44 I5200 58550 84346 

6 203 I5 13829 58545 24 445 95886 92948 05289 
7 877 16 1 04801 42147 4638 59033 22299 99353 8 4140 17 8 28648 69804 

25 
26 49631 24652 36187 56274 

7. Now, whilst the A r and K r can be calculated from the relationships (10) 
and (11) respectively, they can also be derived from a table of the differences 
of zero. Thus from (9) 

(13) 

The numbers are the differences of zero and the numbers are usually 

referred to as Stirling’s numbers of the second kind or reduced differences of 

zero. The Ar can thus be found by cross-addition of table of with alter- 

nating signs (as is pointed out by Michalup), and similarly the Kr can be 
obtained by cross-addition without alternating the signs. 

8. The ‘abacus’ referred to by Fraser is a table of Stirling’s numbers of 
the second kind and, as he points out, one of its uses is to express Xm in terms 
of ,···, the property used in § 7 above. The law of formation of the 

‘abacus’ numbers can be very simply established by consideration of the 

equation 

multiplying each side by s and expressing the right-hand side in terms of 
..., etc. 

* Epstein, L. F.,J. Math. phys. Vol. XVIII, pp. 153–73, 1939. 
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9. References to tabulations of and are given in the Index of 

Mathematical Tables, §§4.9241 and 4.9242. A n extensive table is given in 
Statistical Tables by Fisher and Yates covering the range n = 2(1)25, p = 2(1)n, 
and this has been used for the calculation of Ar and Kr. Unfortunately, this 
table contains a number of serious errors of which a list has recently been 
published in Mathematical Tables and other Aids to Computation, Vol. IV, No. 9, 
p. 27, January 1950. An extension of the table to n=26 is given in the 
Appendix to this note. 

10. It is of some interest to note that an explicit expression for the numbers 

can be found in the form 

(14) 

and the coefficients A can be expressed as 

(15) 

but these are not suitable for numerical calculation. 

11. No reference has been found to the previous tabulations of the coeffi- 
cients A r, but references to the K r are given in the Index of Mathematical 
Tables,§§ 4.676 and 5.216. 

12. The rapid increase of the coefficients K r is interesting, as is the oscillating 
nature of the A r, and suggests that an investigation into their behaviour for 
large r would be of value ; the remainder of this note is devoted to these 
problems. Some investigations for K r are given by Epstein,* but an alternative 
approach has been developed and some considerable improvement made. 
Furthermore, it has been found possible to extend the analysis to the Ar . 

13. For the purpose of this analysis it was found desirable to have values of 
K r. and A r for a fairly large value of r, and the following values were found by 
summation of the series (9) and (12) 

log10 Km100 = 115.677476, 
lOg10Ar100 = 104.599421 (+Ve Sign). 

To calculate the value of A100 to eight significant figures it was necessary to 
calculate the value of the individual terms from twenty-figure logarithms. 

* Epstein, L. F., J. Math. phys. Vol. XVIII, pp. 153-73, 1939. 
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14. The following lemma* will be used for the investigation of Kr and Ar . 

LEMMA. If then 

(16) 

The Euler-Maclaurin formula gives 

Therefore 

where 

so that by Taylor’s theorem 

(17) Since 

* Formula (16) was found, in the first place, for the special function under dis- 
cussion, but its elegance and the fact that it was capable of easy generalization suggested 
that it could not have escaped the attention of mathematicians. In fact, it was found 
to be a special case of a formula known as Poisson’s Summation Formula. Hardy 
(Divergent Series, p. 330, Oxford University Press, 1949) indicates that Poisson arrived 
at it in his investigation of the Euler-Maclaurin formula and gives the finite form 

An alternative form with various proofs and special cases together with various 
references is given by Titchmarsh (Introduction to Theory of Fourier Integrals, p. 60, 
1937) as follows: 

where 

It was thought that the proof given here would be of interest to actuaries. 

where is the Riemann zta function, we have

and
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15. Taking , we have 

157 

(18) 

16. Considering now the coefficients Ar , we have 

Applying the lemma to we have 

Hence 

(19) 

From (18) and (19) we see that the problem of approximating to Kr and Ar 
reduces to the evaluation of 

17. First considering let m denote the value of t for which tr/t! is 

a maximum, so that 

Write 
(20) 

Taking logarithms and expanding in powers of , we have 

(21) 

where (digamma function), 

and 

(trigamma function), 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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If terms in and higher powers of are ignored we may write 

provided r is large. 

(22) 

18. Alternatively, we may write 

and if terms in { } are ignored we have the approximation 

(23) 

19. Finally, we may write 

(24) 

and if terms in [ ] are ignored we have 

(25) 

where 

20. The following table sets out the closeness of the approximations (22), 
(23) and (25): 

20 13.713693 13.713697 13.791921 
26 

13.714970 
19.695755 19.695716 19.769329 

100 115.677476 
19.696715 

115.67742 1 15.73296 115.67770 

r log10Kr Approximation by formula 

(22) (23) (25) 
1 .000000 .024692 .217599 .042070 
2 .301030 .305180 .454695 .315029 
3 .698970 .701166 832034 .708136 
5 1.716003 1.717182 1.829365 1.721644 

IO 5.064364 5.064658 5.157492 5.067059 

Consideration of these results shows that the errors from formula (22), 
whilst smaller than those from (23) or (25), change sign between r = 10 and 
r = 20. On the other hand, the errors from formula (25) are all of the same sign 
and decrease steadily with increasing r. The errors in formula (22), apart from 
the Euler-Maclaurin terms, arise from two sources, namely, substitution of 

for – m as the lower limit of the integral and the neglect of terms in , etc., 
whilst those in formula (25) arise only from the terms neglected. 

21. We can, however, find an asymptotic formula for the integral by 
retaining the neglected exponential terms in (24), expanding them in powers of 

and integrating the resulting series of terms of the form 
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After expressing the trigamma, tetragamma, . . . functions by their asymptotic 
expansions the following formula results after a considerable amount of 
reduction : 

(26) 

Values calculated from the leading terms in (26) are as follows : 

It is seen that the Euler-Maclaurin adjustment terms are negligible to the 
above order of accuracy for r 10. 

22. The reduction of cos st dt proved to be more troublesome, the 

difficulty partly arising from an observation that the signs of the values of Ar 

for r 26 were reproduced by . Subsequent analysis 

showed this to be partly coincidence, but not until some fruitless investigations 
had been made. Following the analysis of § 19 we may write, considering the 
case s = I, 

(27) 

If the terms in [ ] are ignored the integral may be evaluated as 

where , and we may write 

(29) 
23. As an indication of the accuracy of formula (28) the following values are 

given—in all cases the signs of the terms are correct: 

(28) 

r log10 Ar 
Calculated from 

formuIa (29) Error 

5 
10 
15 
20 
25 

100 

.3010 .6062 +.3052 
2.6160 2.7960 +.1800 
6.2938 6.5946 +.3008 
9.9920 10.3374 +.3454 

14.2263 14.4957 +.2694 
104.5994 104.9574 +.3580 

Formula (26)

5
10
20
26

100

1.716003
5.064364

13.713693
19.695755

115.677476

r
1.715928
5.064353

13.713694
19.695755

115.67748

log10Kr
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The approximate values start by being roughly twice the true values, showing 
a very slow convergence to the true values. 

24. Inclusion of the term exp 

(27), expanding in powers of and integrating term by term leads to expressions 

By noting that 

where t = tan , and that the terms in [ ] in formula (27) can be expressed as 

we finally find that, after considerable reduction, 

where 

and 

(31) 

25. The expressions for X and Y are asymptotic, and for very low values 
of r the successive terms change sign but diverge before reaching a small 
enough magnitude for the formula to be of value other than for assigning 
limits. However, for larger values of r the terms converge fairly rapidly, 
although some irregularities exist due to the periodic nature of the functions. 

in formula

of the form
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The following table shows the degree of approximation (a) for the formuIa 

(32) 

and (b) for the formula (31), where X and Y are taken to two further terms than 
shown above : 

r log10 Ar (a) (b) 
Formula (32) Formula (31) 

5 3010 2442 2217 
10 26160 26647 26205 
20 99920 1O0257 99897 
26 154546 154421 154526 

100 1045994 1045765 1045990 

The nature of the convergence for a fairly low value of r is shown in the 
following figures for r = 10 which give the approximate values at successive 
stages in (b) above. 

No. of terms log10 A10 Approx. –True 

1 26647 +0487 
-0618 2 25542 

3 26236 +0076 
4 25890 –0270 
5 

Truevalue 
26205 +0045 
26160 - 

26. Some part of the error is due to neglect of the terms in I/m2, etc., but the 
calculations have not been extended to include these. Consideration of the 
order of magnitude of these terms and of the closeness of the results (b) in 
the preceding paragraph shows their effect to be small for larger values of m. 
The values of m and p for representative values of r are given below: 

r m p 

5 3561266 8107366 
10 5551247 15081080 
20 8916780 2843525 
26 10743336 

100 
36258823 

29423186 12892885 

27. A further error arises from neglect of terms for s > I in formula (19). 
An order of magnitude comparison can be obtained from formula (28) because 
we can write 

and 

JA 11 



162 On the Coefficients in the Expansion of eet and e-et 

where 

whence 

For 

Unless therefore cos p + I happens to approximate to zero the terms with s > I 
will be negligible relative to the term with s = I. 

28. The above analysis has been carried through on the assumption that r is 
positive integral, but clearly the approximations are true for positive real r. 
For complex r both Kr and Ar are complex quantities, but no analysis has been 
made in this region. Similarly, this note has been largely relieved of various 
analytical considerations which arise at a number of points. 
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Values of for n = 26 

2 335 54431 
3 42 36107 50290 
4 18722 63569 46265 

5 
6 
7 
8 
9 

12 23019 61602 92565 
224 59518 69741 25331 

1631 85379 79910 16600 
5749 62225 19456 64950 

11201 51678 09551 25625 

1O 13199 55537 28468 48005 
11 10029 07834 09984 76760 
12 5149 50735 38569 58820 
13 1850 56857 42535 50060 
14 477 89861 83962 88260 

15 90 44903 01911 04000 
16 12 72587 72424 82560 
17 134373 17953 78830 
18 10702 55461 01760 
19 643 38390 18750 

20 29 06228 64675 
21 97591 04355 
22 2389 29405 
23 41 26200 
24 47450 

25 325 
26 1 

II-2 




