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ABSTRACT 

The paper comments on the estimation and sensitivity of the retail price inflation component of the 
stochastic financial model proposed by Professor Wilkie. Statistical tests provide evidence of non- 
independence and non-normality of residuals, suggesting non-linearity. However, it is noted that the 
model is most sensitive to the assumption of long-term mean inflation. 
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1. INTRODUCTION 

Stochastic financial models are increasingly being applied by actuaries and 
financial economists to incorporate the effects of random variation in absolute 
and relative levels of inflation, interest rates, and investment returns. Unfortuna- 
tely. while the relative levels of economic and financial variables are broadly 
consistent, their absolute levels are difficult to predict. Therefore, stochastic 
financial models are particularly sensitive to assumptions concerning the process 
governing their absolute levels. 

In this paper, the determinant of the absolute levels of variables of one 
particular stochastic financial model for the United Kingdom is considered—the 
stochastic investment model for actuarial use, proposed by Wilkie (1984). In this 
model, essentially, a stochastic model of retail price inflation drives a composite 
model. Here, the estimation of the retail price inflation component of the model is 
reconsidered, and its sensitivity is discussed. 

2. THE STOCHASTIC INVESTMENT MODEL PROPOSED BY WILKIE 

The stochastic investment model proposed by Wilkie uses simulation 
techniques to generate series of values of retail price inflation, equity dividend 
yields and dividend values (and hence equity values), and the yields on British 
Government 2·5% Consols. For each series, values are generated by combining a 
systematic component (calculated from past values of the series and possibly also 
past and present values of other series), and a stochastic component (generated 
from standard normal random variables). For each annual period, first, a value 
for the Retail Price Index (RPI) is generated by combining past RPI values and a 
random component. Then, values for the other three variables are generated. 
Thus, the composite model is essentially driven by the retail price inflation model. 
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The model proposed for the series of RPI values, Q[t], is (Wilkie, 1984, 1986, 
1986a): 

where the backwards difference operator ∆ is defined by 

∆ X[t]=X[t]–X[t–1] 

and QZ[t] is a sequence of independent identically distributed standard 
normal variates. 

This model says that the annual rate of inflation follows a first order auto- 
regressive process, with fixed mean QMU, and a parameter QA such that the 
expected rate of inflation each year is equal to the mean plus QA times last 
year’s deviation from the mean. Appropriate values for the parameters are: 

QMU=0·05, QA = 0·6, QSD = 0·05. 
" . . . 

The model provides that each expected value of the series will lie between the 
previous value of the series and a mean value; the model is auto-regressive, an 
ARIMA (1,1,0) model. Thus. retail price inflation values for adjacent years are 
assumed to be identically distributed, but not independent. In this sense, the 
model is more sophisticated, for example, than the model of independent and 
identically distributed annual interest rates assumed by Boyle (1976). 

The resulting series of RPI values generated by the model, with neutral initial 
conditions, can be described as follows. The retail price inflation generated for a 
period will have a normal distribution, with constant mean, and standard 
deviation increasing at a decreasing rate over time towards an upper limit. The 
RPI value calculated for a period will have a log-normal distribution with mean 
increasing linearly over time, and standard deviation increasing at a decreasing 
rate towards an upper limit. For further details, see Box & Jenkins (1976). 

It is perhaps worth noting that the expected values generated by the stochastic 
model are not equal to those produced by the equivalent deterministic model, 
because of the normal to log-normal transformation. 

3. ESTIMATION 

The development of the retail price inflation model is based on an examination 
of data for the period 1661–1980 (Wilkie, 1981). Perhaps the most important 
feature of the data is that the structure of the process appears to change over 
time, particularly during the present century. This feature leads to a considera- 
tion of shorter sub-periods: 1661–1914, 1896–1980, and 1946–80. The actual 
estimation of the retail price inflation model is based on data for three more 
recent periods: 1919–82, 1933–82, and 1946–82 (Wilkie, 1984). 

In order to investigate the adequacy of the model, residuals are calculated as 
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the differences between actual and expected inflation. Two types of test are 
conducted. First, to investigate whether the residuals can be assumed to be 
independent, the runs test of the auto-correlation model function (correlation 
between lagged residuals) is considered. It is reported that, “at a roughly 5% 
level” the RPI model with rounded parameters “passes these tests on every 
count”. Second, to investigate whether the residuals can be assumed to have a 
normal distribution, the values and standard errors of the skewness and kurtosis 
coefficients of the distribution of residuals are examined. It is concluded that the 
residuals for the period 1919–82 have an approximately normal distribution, 
“although somewhat negatively skewed and definitely fat-tailed”. 

In the remainder of this section. the residuals are re-examined. Considering 
independence, “it is important to realise that the residuals are necessarily 
correlated even if the true errors are independent” (Chatfield, 1980). This is 
because the model parameters are (by definition) estimates of the true 
parameters. Nevertheless, the correlations ought to be close to zero, as the larger 
their absolute values, the further the estimated parameters are likely to be from 
the true parameters. For the residuals under consideration, the aggregate tests 
mentioned previously give little indication of significant correlations. Also, 
Steven’s test for the grouping of signs (see Benjamin & Pollard, 1980) provides 

Figure 1. Force of inflation 1919–1982: residual errors (actual-expected). (Source Wilkie, 1984.) 
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little evidence of correlation. However, an examination of the plot of residuals 
presented in Figure 1 suggests that there might be significant correlation. 

Why, then, are none of the test statistics significant? There are two reasons. 
First, the power of the tests is limited by the small number of residuals; for 
example, for the period 1946–82, the correlation coefficient with lag one is –0·09, 
but with only 36 observations. this is not significantly different from zero, even at 
the 20% level. Second, the above tests do not examine the lengths of sequences 
of residuals of the same sign; for example, there are two periods, 1924–33 and 
1940–7, during which there are nine and seven consecutive negative residuals, 
respectively. It is possible to construct tests to examine whether such sequences of 
residuals are acceptable. For a sequence of 64 independent random variables 
from a standard normal distribution, the probability of two or more sequences 
consisting of seven or more consecutive negative numbers, is estimated as just 
0·0175 (estimated standard error 0·0002, from 100,000 simulations). Alterna- 
tively, the probability of two or more sequences of seven or more consecutive 
numbers of the same sign, is 0·0699 (estimated standard error 0·0008, from 
100,000 simulations). which is not significant at a 5% level, but is nevertheless 
uncomfortably low. The method of calculation of these probabilities is given in 
the Appendix. The effect is that some residual correlation remains. Therefore, the 
model under-generates sustained periods of retail price deflation and inflation; in 
particular, sustained periods of extreme deflation or inflation are under- 
generated. 

Turning to a consideration of normality, the residuals for the period 1919–82 
do not have an even approximately normal distribution; they fail a Filliben 
(1975) test for normality at the 0·5% level (Filliben Test Correlation Coefficient 
0·945). Further, it is noted that an examination of the skewness and kurtosis of 
the residuals for the period 1933–82 and 1946–82 suggests that the distribution 
of residuals is becoming less normal. The non-normality of the residuals is 
illustrated in Figure 2, which shows the normal distributions estimated from the 
residuals superimposed upon a histogram of the residuals themselves. It can be 
seen that the normal distribution under-estimates the proportion of large and 
small negative residuals. but over-estimates the proportion of medium negative 
residuals; also, it over-estimates the proportion of large positive residuals. 

It is interesting to compare these results with the study of 40 daily financial 
time-series conducted by Taylor (1986). Finding residual correlation over a wide 
range of lags, the study concludes that linear models (including ARIMA models) 
are inadequate because of changes in either the unconditional or conditional 
variances of returns, and proceeds by fitting non-linear models. 

4. SENSITIVITY 

The non-independence and non-normality of residuals outlined in Section 3 
indicate that, on the one hand, in the short-term, the model cannot be expected to 
reflect the process of retail price inflation particularly closely. Further, the 
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Figure 2. Force of inflation 1919–1982: distribution of residuals (actual and estimated normal). 

problems are amplified because the stochastic component of the model is large 
relative to the systematic component. For example, the probability of deflation in 
a particular year approaches 21%. 

On the other hand, in the long-term, the model will, of course, reproduce the 
overall rate of retail price inflation inherent in the data. However, it must then be 
borne in mind that the estimate of this rate is itself based on what amounts to very 
limited observations. Indeed, the period on which the estimate is based (1919–82) 
is selected from the longer period for which the data are available (1661–1982) 
because the structure of the process generating the data appears to change over 
time. For example, the period 1919–82 includes a maximum of four non- 
overlapping 15-year periods, with average annual rates of retail price inflation of 
about –2·2%, 3·6%, 3·5% and 10·8%, respectively. 

5. CONCLUSION 

In conclusion. it can be seen that the model of retail price inflation is relatively 
insensitive to the effects of non-independence and non-normality, in so far as it is 
ultimately more sensitive to the effects of other assumptions—particularly the 
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validity of long-term parameter estimates. It is possible that the development of 
non-linear or dynamic time-series models might provide a closer fit to retail price 
inflation data; but, ultimately, such models will suffer the limitation of all 
financial time-series models—the inability to anticipate future changes in the 
process which generated historic data. 

On this final note, however, it is appropriate to return to Wilkie’s own 
comments on the model. He concludes that “. . . inflation over a long period will 
possibly be high and is certainly uncertain . . .” (1981), and argues for the 
indexation of financial contracts. 
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APPENDIX 
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DETAILS OF ESTIMATION OF ILLUSTRATIVE 
SEQUENCE PROBABILITIES 

The probability, for a sequence of 64 independent random variables from a 
standard normal distribution, of two or more sequences consisting of seven or 
more consecutive negative variables, is calculated as a quarter of the probability 
of two or more sequences consisting of seven or more consecutive variables of the 
same sign. This latter probability is estimated by simulation. As a computational 
simplification, instead of using random variables from a standard normal 
distribution, and testing whether they are negative, random variables from a 
uniform (0,l) distribution are tested for being less than 0·5, which is theoretically 
equivalent. 

A simple BASIC program is used to simulate 100,000 sequences of 64 random 
variables, and to calculate the probability estimate, and the associated standard 
error: 

10 C=0 
20 FOR S = 1 TO 100000 
30 P=RND: L=1:F7=0 
40 FOR I = 2 TO 64 
50 U=RND 
60 IF((U<0·5 AND P>=0·5) OR (U>=0·5 AND P<0·5) OR I=64) 

THEN 90 
70 L=L+1 
80 GOTO 110 
90 IF L>=7 THEN F7=F7+1 

100 P=U: L=1 
110 NEXT I 
120 IF F7>=2 THEN C=C+1 
130 NEXT S 
140 PRINT C/100000, SQR((C/100000)*((100000–C)/100000)/100000) 

The output from this program is: 

0·06986, 0·0008061 




