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ABS'I'RACT 

A method of graduation by mathematical formula is extended to cover the simultaneous graduation 
of more than one comparable experience and is applied to the recent U.K. mortality experience of 
smoking and non-smoking assured lives. 
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IN a recent study conducted by the CMI Bureau, reported by Evans (1993) 
and in CMIR 13 (1993), the increased risk of premature death for smokers 
compared with non-smokers is demonstrated using well-tried actuarial meth- 
ods. These comprise a comparison of the actual deaths reported in the various 
study groups with the expected deaths predicted on the basis of comparable 
standard actuarial life tables, together with the construction and comparison of 
the curve of deaths associated with the various study groups. The main purpose 
of this short paper is to present an alternative methodology for comparing the 
mortality between such well-defined groups. The approach, which does not 
involve recourse to standard tables, is based on an extension of the graduation 
methods outlined by Forfar, McCutcheon & Wilkie (1988) and has much wider 
application, see, for example, Renshaw, Haberman & Hatzopoulos (1994). In 
addition, the results stemming from the analysis are of considerable interest in 
their own right and are wholly supportive of the conclusions to be drawn from 
the CMI findings. 

2. THE DATA 

The data are denoted by: 

comprising the actual numbers of deaths a,, accruing from central exposures 
eu, for a set of units {u}. The data currently available relate to the two-year 
calendar period 1988–89, and are based on policy rather than head counts. 
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Here, by way of illustration, we focus on assured lives (whole-life and 
endowment) for all policy durations combined. The data are categorised as 
follows: 

gender (g) with i = 1 female, i = 2 male 

{ 

j = 1 non-smoker 
habit (h) with 3 levels j = 2 smoker 

j = 3 undifferentiated 
status (s) with two levels k = 1 medical, k = 2 non-medical 
age (x) arranged in 18 grouped levels 1 l- 15, 16-20, . . . ,96- 100 

giving rise to 2x3x2x 18 = 216 cross-classified cells or units, U. Write: 

The actual deaths a,, are presented in Table 2.1. Ten of the cells, which are 
empty, are given zero weight in order to eliminate them from the ensuing 
analysis. A further 33 cells have zero deaths, 10 of which occur in the youngest 
age category 1 l- 15 years, and a further 17 of which occur in the medical status 
category. All of these cells are retained in the ensuing analysis in which age x is 
modelled as an error-free variable and the remaining three covariates, gender, 
habit and status, modelled as categorical factors. 

Gender 
Status 

Table 2.1. Actual deaths, assured lives, 1988-89 
Females Males 

Medical Non-Medical Medical Non-Medical 

11-15 
16-20 
21-25 
26-30 
31-35 
36-40 
41-45 
46-50 

Age 51-55 
56-60 
61-65 
66-70 
71-75 
76-80 
81-85 
86-90 
91-95 
96-100 

1 
0 

5 
4 
4 
7 
3 

1 

2 3 1 2 3 1 2 
— 0 0 0 0 0 — 

8 1 1 10 2 1 17 3 1 1 
0 1 5 0 7 0 2 
0 4 2 21 0 0 
0 8 11 

: 
51 3 1 

8 1: 30 27 30 12 140 88 4 0 7 5 

1 18 33 19 171 8 9 
2 31 26 28 192 10 16 
1 24 22 19 110 6 20 
1 

:i 
16 16 74 22 12 183 33 

2 7 3 42 12 9 204 17 

3 
0 

: 
3 

22 
82 
97 

164 
287 79 
366 56 

0 
5 

25 
18 
17 
32 
37 
51 

103 

2 43 2 8 27 14 20 298 13 
1 35 1 1 12 5 15 287 2 
1 7 0 0 4 0 13 138 - 
0 4 - 0 0 - 4 45 - 
I 2 - 1 1 -- 0 10 -- 
(habit: l- non-smoker, 2- smoker, 3- undifferentiated) 

2 
0 

:, 
6 

ad-, 
52 
72 

113 
121 
87 
29 
23 
13 
8 
1 
2 
0 

3 
0 

4; 
44 

110 
224 
454 
658 

1045 
1339 
1262 
366 
266 
166 

;: 
8 
2 
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3. THE MODEL 

563 

We take as our starting point the Gompertz-Makeham graduation formula: 

expressing the force of mortality , at age x, as an exponentiated polynomial of 
degree (s - 1) in x. The unknown parameters lend flexibility to the formula. 
They are estimated in any graduation of data under the assumption that the 
actual numbers of deaths A,, are distributed as independent Poisson responses 
with mean: 

where denote the matching central exposures. Full details of this are available 
in Forfar et al. (1988). Scrutiny of Table 2.1 immediately reveals that it is not 
practical to apply such a technique to each separate column of Table 2.1 due to 
the low number of recorded deaths in many of the cells. We seek instead to 
broaden the technique so that it might still be applied to cross-classified 
mortality data of this type. 

Thus motivated we target the force of mortality , a function of the units u 
described in Section 2, using the two-stage formula: 

The (possible) explanatory variables-gender, habit, status and age--enter the 
right side through a variety of specified covariate structures , while the 
unknown parameters lend flexibility to the formula. For technical reasons we 
set z, = 1, and refer to as the general mean. The log function on the left side, 
which is monotonic and differentiable, maps the positive reals onto 
the whole of the real line, and therefore has desirable technical properties. It is 
also consistent with the Gompertz-Makeham formula discussed previously. The 
formula also leads to sufficient statistics for the s in the model-fitting process 
described next. 

To fit such models to the data, it is necessary to estimate the s and to assess 
the improvement in the goodness-of-fit of such formulae as more complex 
(nested) structures are contemplated for the right side of equation (3.1). To 
achieve this we require a further assumption. In keeping with modern actuarial 
graduation practice (see Forfar et al. 1988; Renshaw 1991,1992), we model the 
actual number of deaths a,, as independent over-dispersed Poisson response 
variables A,, with mean and variance: 

(3.2) 
The scale or dispersion parameter ø > 1, is included, since the data are based on 
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policy rather than head counts. While there is evidence to suggest that ø varies 
with age, x, such variation has a very minor effect on the modelling process as a 
whole, and its effect is neglected for the purposes of this analysis. The 
corresponding expression for the log likelihood is then: 

(3.3) 

which is optimised to provide the maximum likelihood estimators for the s. 
These enter expression (3.3) through the rearrangement: 

of the predictor-link relationship: 

comprising the log link function and linear predictor This formula is 
consistent with equation (3.1) on taking logs of the identity taken 
from expressions (3.2). The term log( ), in the linear predictor does not involve 
a parameter and, as such, offsets the value of the general mean Denote the 
resulting maximum likelihood estimates for the current model c, by These 
are computed by resorting to the interactive computer software package GLIM. 

In addition to model fitting, we also require the means of model or formula 
selection. Define the deviance of the current model c, to be: 

where: 

denote the corresponding fitted values. The deviance is twice the difference 
between the log likelihood expression (3.3) evaluated when and when 

While the latter are the fitted values under the current model c, we 
likewise interpret the former as the fitted values under the saturated or full 
model f. The model f, which is characterised by the fitted values implies 
a perfect fit for the data. Differences: 

in the scaled deviances as we change from one (nested) predictor structure c1, to 
a more complex predictor structure c2, are used to assess the significance of the 
improvement in the model fit. These differences may be referred, as an 
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approximation, to the chi-square distribution subject to the appropriate degrees 
of freedom. At the same time we look at the significance of the individual 
parameter estimates in order to safeguard against possible over-parameter- 
isation. We also monitor the fit of the current model c, through a graphical 
analysis of the associated deviance residuals defined by: 

where is the value of the uth component of the model deviance D(c, f) defined 
by equation (3.4). 

The scale parameter ø, is concerned with the second moment properties of the 
model and, as such, has an input into the construction of the standard errors of 
the parameter estimates, but not the estimates themselves, since it is assumed to 
be constant. The net effect is to increase the standard errors slightly to allow for 
the increased uncertainty induced by the presence of duplicate policies. This 
parameter is estimated by: 

where the degrees of freedom v, denote the number of observations minus the 
number of independent parameters in the predictor. 

4. THE ANALYSIS 

Applying the modelling technique outlined in Section 3 to the data described in 
Section 2, we begin with a search for a suitable model formula of the general 
type (3.1) which captures the underlying pattern of mortality in the data. The 
resultant deviance profile for just one of the many model building sequences 
possible is presented in Table 4.1. The table is to be interpreted by reading 
downwards. In this sequence, age effects are introduced first in the form of a 
polynomial predictor up to degree three and the coefficients then adjusted, in a 
variety of ways, to allow for the effects of the other three factors-gender, habit 
and status. It is possible to identify the specific nature of the various model 
structures by referring to the first column of Table 4.1. Thus reading down the 
table, the first nine graduation formulae fitted to the data in this sequence are: 
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Table 4.1. Deviance profile, assured lives, 1988-89 
First differences 

Degrees of 
Model Deviation Deviance freedom 
1 18523 

17499 1 
+x 1024·0 

35·4 1 
+x2 988·6 

116·0 1 
+x3 872·6 

353·6 1 
+g.x 518·9 

186·4 2 
+h.x 332·5 

2·4 2 
+g.h.x 330·1 

5·2 1 
+s.x 324·9 

0·6 1 
+g 

2 
+h 310·6 

3·9 2 
+ g.h 306·7 

0·8 1 
+s 305·9 

5·6 1 
+g.x2 300·3 

0·4 2 
+h.x2 299·9 

0·5 2 
+g.h.x2 299·5 

25·9 1 
+s.x2 273·6 

x---age, g-gender, h-smoking habit, s--medical status 

and so on. Note how the predictor structures are built up sequentially, with the 
structure at any one stage in the process contained within the structure at any 
subsequent stage of the process, while both the (log) link function and the over- 
dispersed Poisson modelling distribution remain the same throughout. Such 
hierarchical predictor structures are said to be nested. An examination of the 
reduction in the (unscaled) deviance as more complex predictor structures are 
introduced, the third column of Table 4.1, together with an examination of the 
resulting parameters estimates and their standard errors, leads to the adoption 
of the model structure: 

(4.1) 
In particular, the entries in Column 3 of Table 4.1 may be referred, as an 
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Table 4.2. Parameter estimates, assured lives, 1988-89 

Deviance is 332·52 on 199 degrees of freedom from 206 observations, 
with scale parameter = 1·671 
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approximation, to the chi-square distribution subject to the degrees of freedom 
documented in the matching entry of Column 4 of Table 4.1. Since scale 
parameters of the order 2 are common for data sets of this type, chi-square 
critical values taken from standard tables are multiplied by a factor of 2 as a 
rough working guide. For technical reasons this predictor is subject to the two 
constraints = = 0, and therefore involves a total of seven parameters. The 
maximum likelihood estimates, their standard errors, together with the estimate 
for the over-dispersion parameter ø, are presented in Table 4.2. The ratio of any 
of the parameter estimates to its standard error, the so-called t-statistic, may be 
loosely interpreted as a standardised normal variate so that a value outside the 
range -2 to +2 may be interpreted as being statistically significant. This is the 
case for all seven parameter estimates in this model. For this model, both gender 
and habit impact additively on the coefficient of x, while the remaining 
coefficients of the cubic predictor are constant. Attempts to increase the 
complexity of the structure of the coefficients result in only small reductions 
in the model deviance, as is apparent from Table 4.1, and the simultaneous 
incorporation of non-significant parameter estimates, which is difficult to 
justify. In particular, the effect of status (non-medical or medical) is not 
statistically significant. Thus effectively the complete data set is modelled 
using a Gompertz-Makeham formula: 

defined by equation (4.1), in which one of the polynomial coefficients is additive 
in gender and status effects. Finally, as part of the residual analysis for this 
model, the histogram of deviance residuals together with the deviance residual 
plotted against age arc reproduced in Figure 4.1. Both of these plots, together 
with other plots not reproduced here, are consistent with a satisfactory fit. This 
is regarded as a vital diagnostic checking procedure to ensure that the adopted 
model formula capsulates the underlying mortality patterns present in the data 
as a whole. 

The force of mortality predicted by this model at five-yearly ages and cross- 
classified according to gender and habit (non-smoker, smoker, undifferentiated) 
is tabulated in Table 4.3. These rates form a useful complement to the CMI 
published analysis. The main features are as follows: 
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-In each category, the force of mortality initially decreases with age before 
starting on an upward trend in the mid to late twenties, consistent with 
known patterns of human mortality. 

-Comparison within a given gender by habit at specific ages reveals that the 
force of mortality is consistently higher for smokers over non-smokers at all 
corresponding ages, with the force of mortality for the undifferentiated 
category intermediate, again for all corresponding ages. This is true of 
both females and males. 

-While it is well established that mortality in females is lower than in males for 

Figure 4.1. Deviance residual plots, assured lives 1988–89 
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Table 4.3. Predicted force of mortality by age, gender and smoking habit, 
assured lives, 1988-89 

Gender 
Habit 
11-15 
16-20 
21-25 
26-30 
31-35 
36-40 
41-45 
46-50 

Age 51-55 
56-60 
61-65 
66-70 
71-15 
76-80 
81-85 
86-90 
91-95 
96-100 

Non-Smoker 
0·0004359 
0·0003408 
0·0003097 
0·000O3217 
0·0003756 
0·0004846 
0·0006792 
0·0010169 
0·0015992 
0·0025973 
0·0042831 
0·0070516 
0·0113960 
0·0177749 
0·0263092 
0·0363334 
0·0460316 
0·0526031 

Females 
Smoker 

0·0004650 
0·0003877 
0·0003759 
0·0004165 
0·0005187 
0·0007138 
0·0010672 
0·0017045 
0·0028593 
0·0049533 
0·0087132 
0·0153016 
0·0263779 
0·0438866 
0·0692899 
0·1020720 
0·1379413 
0·1681462 

Undiffed Non-Smoker 
0·0004544 0·0004550 
0·0003703 0·0003713 
0·0003508 0·0003523 
0·0003799 0·0003820 
0·0004624 0·0004655 
0·0006218 0·0006268 
0·0009085 0·0009171 
0·0014181 0·0014334 
0·0023248 0·0023530 
0·0039358 0·0039890 
0·0067659 0·0068665 
0·0116120 0·0118003 
0·0195623 0·0199063 
0·0318073 0·0324100 
0·0490771 0·0500741 
0·0706528 0·0721847 
0·0933106 0·0954617 
0·1111572 0·1138723 

Males 
Smoker Undiffed 

0·0004854 0·0004743 
0·0004225 0·0004035 
0·0004275 0·0003990 
0·0004945 0·0004511 
0·0006428 0·0005730 
0·0009234 0·0008044 
0·0014411 0·0012268 
0·0024025 0·0019988 
0·0042068 0·0034204 
0·0076074 0·0060447 
0·0139684 0·0108467 
0·0256061 0·0194317 
0·0460763 0·0341711 
0·0800211 0·0579962 
0·1318791 0·0934082 
0·2027898 0·1403682 
0·2860669 0·1935104 
0·3639939 0·2406272 

comparable ages, all other things being equal, a comparison of the predicted 
force of mortality for female smokers with male non-smokers reveals that 
this situation is reversed for all ages. Here things are not all equal, certainly in 
at least one known respect. 

To compute the predicted rates of mortality at intermediate ages the following 
transformed version of equation (4.1) is needed: 

i=l, 2;j=l,2,3 

where x is now the age in years, and we have modified the notation identifying 
the unit associated with the specific value of m in an obvious manner. Then, 
using the approximation: 

to compute the 
ordinates 

probability , that a life aged x dies before age (X +1), the 
of the curve of deaths are computed for individual ages x, 

making use of the identity: 

and the arbitrary radix = 100,000. The resulting curves of death for non- 
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Curve of deaths, male non-smokers (right), smokers (left) 

Curve of deaths, female non-smokers (right), smokers (left) 

Figure 4.2. 
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smokers and for smokers are plotted on the same axes for females and for males 
separately in Figure 4.2. It is of interest to note that the maxima for these curves 
occur at the following ages: 

non-smoker smoker 
females 92 
males 87 81 

The findings of this analysis reinforce those of the CMI study group using more 
traditional actuarial methods. 

5. IMPLEMENTATION 

The re-analysis of the CMI smokers mortality data presented here was carried 
out using the GLIM software computer package. The interactive nature of the 
package means that it is possible to tailor a program to meet the specific needs of 
the problem. This package has much to offer the actuarial practitioner as a tool 
for analysing data in both life and non-life insurance, as is apparent from the 
ever-increasing number of actuarial applications of GLMs to appear in the 
literature. 
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