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Introduction 

 

The purpose of this paper is to introduce the concepts of agent based modelling to the 

actuarial community. The paper will provide a brief introduction to the subject, will 

look at examples of agent based models, and will identify where they might be used in 

future and what the implications might be for actuarial practice and theory. 

 

Agent based modelling (ABM) was motivated by the observation that there appears to 

be a commonality between different systems in the world – including ecosystems, 

financial markets and the weather. Their development was facilitated by the increased 

availability of computing power and the development of computational models 

(Miller and Page, 2007). 

 

ABM was not developed specifically for finance, but there is a growing interest in its 

use in the field.  We believe that the insights from ABM could have profound 

consequences for the risk management of financial institutions, and could also be 

fruitfully utilised by actuaries. However, in saying that ABM is currently in an early 

stage of development – whilst current models produce outputs which look like the real 

markets – they are a long way from producing reliable calibrated models with 

predictive power. 

 

Disclaimer: We have drafted this paper to be informative and provocative. There are 

many views on agent based models, and the working party did not always reach 

unanimous views. Therefore, the reader should not assume that all the authors fully 

endorse every statement in this paper. 

 

 

1. What is agent-based Modelling ? 
 

1.1. The World as an Adaptive System 

 

Proponents of agent based modelling views the economy (and indeed the world) as a 

complex adaptive system, the structure of the markets, the interplay between agents 

and time lags are the cause of much of the complexity and interesting behaviour we 

see in the real world. Much of science (including economics) is reductionist, an 



attempt to reduce the world to its basic elements. However, the interaction of these 

elements causes behaviour – often described as emergence - which cannot be 

predicted by studying the elements themselves – think of ant colonies, the brain and 

economies (Miller and Page (2007)). 

 

The agents of a complex system, often by following simple rules, form a system that 

behaves qualitatively differently from the individual agents themselves. A good 

example of this sort of system is an ant colony – the colony as a whole can perform 

complex tasks – such as defending the colony from an aggressor by way of the 

individual ants processing simple pieces of information. 

 

1.2. Typical Attributes of Agent-based Models 

 

ABMs attempts to capture this and typically have the following features: 

 

1. Heterogeneous agents: there are a finite number of heterogeneous agents. These 
agents are allowed to follow rules; these rules can be very simple (for example if 

stock goes up buy) to highly complicated rules. Heterogeneity arises as groups of 

agents are allowed different rules. This contrasts with neo-classical economic 

models which tend to assume there is only 1 or an infinite number of 

homogeneously rational agents. 

2. Adaptation: agents are often allowed to adapt; i.e. individual agents can learn 

during the running of the model, or are allowed to combine with other agents 

(“sexual reproduction”) or evolve as the less successful die off and the more 

successful agents flourish. Again, this contrasts with neo-classical economic 

models where agents are the same through time. 

3. Feedback loops: agent behaviour can have positive or negative feedback – for 
example if agents buy when a stock goes up this will cause a positive feedback 

loop which would result in an asset bubble. Again, this contrasts with neo-

classical economic models which assume that systems return to equilibrium.    

4. Local interactions: neo-classical economic models assume that all agents can trade 
with each other. ABMS can allow for markets to have structure, for example 

traders can only deal with brokers, there are time lags and possible geographic 

affects (although the latter is not so important in financial markets). 

5. Externalities: agents interact with their environment, which is in turn affected by 
agent’s behaviour. 

 

1.3. Parsimony and Realism 

 

As can be imagined from the above discussion, the skill of ABM involves a playoff 

between parsimony and realism. On the one extreme, many neo-classical financial 

models reduce the workings of a market to a few easily solved equations. Whilst these 

equations or soluble and rigorous and useful in many circumstances, they lose much 

of the interesting features of real-world markets. On the other extreme, a 1-1 scale 

map of the world is almost completely useless (although for some circumstances, e.g. 

predicting weather it would be useful, provided you had a big enough computer). 

 



The early results from ABM show that a complex emergent behaviour can result from 

relatively simple rules amongst agents, increasing the complexity of the agents often 

does not result in altering the system’s behaviour. Many of the interesting “life-like” 

results from ABMs, for example asset bubbles and crashes, income distributions, are 

generated endogenously from the models due to the interaction of the 5 features 

described above – these are often assumed away of treated as exogenous by ne-

classical economic models. 

 

 

2. Agent-Based Modelling – A Brief History 
 

2.1. Origins 

 

The idea of agent-based modelling was developed as a relatively simple concept in 

the late 1940s. Since it requires computation-intensive procedures, it did not become 

widespread until the 1990s.   The history of the agent-based model can be traced back 

to the Von Neumann machine, a theoretical machine capable of reproduction. The 

device von Neumann proposed would follow precisely detailed instructions to fashion 

a copy of itself. The concept was then improved by von Neumann's friend Stanisław 

Ulam, also a mathematician; Ulam suggested that the machine be built on paper, as a 

collection of cells on a grid. The idea intrigued von Neumann, who drew it up—

creating the first of the devices later termed cellular automata. 

 

Another improvement was introduced by the mathematician John Conway. He 

constructed the well-known Game of Life. Unlike von Neumann's machine, Conway's 

Game of Life operated by tremendously simple rules in a virtual world in the form of 

a 2-dimensional checkerboard. However, it is still not a game in a traditional sense – 

there is only one player, and no concept of strategy. The game simply evolves. 

 

The creation of agent-based models of social systems is often credited to the computer 

scientist Craig Reynolds. He tried to model the reality of lively biological agents, 

known as artificial life, a term coined by Christopher Langton. 

 

2.2. Computational and Mathematical Organisation Theory 

 

At the same time, during the 1980s, social scientists, mathematicians, operations 

researchers, and a scattering of people from other disciplines developed 

Computational and Mathematical Organization Theory (CMOT). This field grew as a 

special interest group of The Institute of Management Sciences (TIMS) and its sister 

society, the Operations Research Society of America (ORSA). Through the mid-

1990s, the field focused on such issues as designing effective teams, understanding 

the communication required for organizational effectiveness, and the behaviour of 

social networks. With the appearance of SWARM in the mid-1990s and RePast in 

2000, as well as some custom-designed code, CMOT -- later renamed Computational 

Analysis of Social and Organizational Systems (CASOS) -- incorporated more and 

more agent-based modelling. Samuelson (2000) is a good brief overview of the early 

history, and Samuelson (2005) and Samuelson and Macal (2006) trace the more 



recent developments. Bonabeau (2002) is a good survey of the potential of agent-

based modelling as of the time that its modelling software became widely available. 

 

Joshua M. Epstein and Robert Axtell developed the first large-scale ABM, the 

Sugarscape, to simulate and explore the role of social phenomenon such as seasonal 

migrations, pollution, sexual reproduction, combat, and transmission of disease and 

even culture. 

 

Agent-based models consist of dynamically interacting rule based agents. The 

systems within which they interact can create real world-like complexity. These 

agents are: 

• Intelligent and purposeful, but not so intelligent as to reach the cognitive 

closure implied by game theory.  

• Situated in space and time. They reside in networks and in lattice-like 
neighbourhoods. The location of the agents and their responsive and 

purposeful behaviour are encoded in algorithmic form in computer programs. 

The modelling process is best described as inductive. The modeller makes 

those assumptions thought most relevant to the situation at hand and then 

watches phenomena emerge from the agents' interactions. Sometimes that 

result is an equilibrium. Sometimes it is an emergent pattern. Sometimes, 

however, it is an unintelligible mangle.  

 

2.3. Agent Based Models as an Extension of Traditional 
Methods 

 

In some ways, agent-based models complement traditional analytic methods. Where 

analytic methods enable humans to characterize the equilibria of a system, agent-

based models allow the possibility of generating those equilibria. This generative 

contribution may be the most mainstream of the potential benefits of agent-based 

modelling. Agent-based models can explain the emergence of higher order patterns -- 

network structures of terrorist organizations and the Internet, power law distributions 

in the sizes of traffic jams, wars, and stock market crashes, and social segregation that 

persists despite populations of tolerant people. Agent-based models also can be used 

to identify lever points, defined as moments in time in which interventions have 

extreme consequences, and to distinguish among types of path dependency. 

 

Rather than focusing on stable states, the models consider a system's robustness -- the 

ways that complex systems adapt to internal and external pressures so as to maintain 

their functionalities. The task of harnessing that complexity requires consideration of 

the agents themselves -- their diversity, connectedness, and level of interactions. 

 

2.4. Modern Applications 

 

Agent-based models have been used since the mid-1990s to solve a variety of 

business and technology problems. Examples of applications include supply chain 

optimization and logistics, modelling of consumer behaviour, including word of 

mouth, social network effects, distributed computing, workforce management, and 



portfolio management. They have also been used to analyze traffic congestion.  In 

these and other applications, the system of interest is simulated by capturing the 

behaviour of individual agents and their interconnections. Agent-based modelling 

tools can be used to test how changes in individual behaviours will affect the system's 

emerging overall behaviour. 

2.5. Online Resources 

 

A simple and accessible program for creating agent-based models is NetLogo. 

NetLogo was originally designed for educational purposes but now numbers many 

thousands of research users as well. Many colleges have used this as a tool to teach 

their students about agent-based modelling. A similar program, StarLogo, has also 

been released with similar functionality. Swarm was one of the first general purpose 

ABM systems. Swarm, developed by the Swarm Development Group, uses the 

Objective C programming language, and is recommended for C programmers with 

little object-oriented programming experience. Swarm can also be implemented by 

Java programmers, as can Ascape. Both MASON and Repast are widely used, and 

EcoLab is suitable for C++ programmers. Cormas is another platform, focusing on 

natural resources management, rural development or ecology research, based on the 

SmallTalk language. All the toolkits described previously are based on serial von-

Neumann computer architectures. This limits the speed and scalability of these 

systems. A recent development is the use of data-parallel algorithms on Graphics 

Processing Units (GPUs) for ABM simulation. The extreme memory bandwidth 

combined with the sheer number crunching power of multi-processor GPUs has 

enabled simulation of millions of agents at tens of frames per second. 

 

3. Simple Environment Models: Cellular Automata 
 

Most agent-based models can be thought of in two parts: an environment and a 

collection of agents. The environment sets ground rules but evolves only passively. 

Agents, that live on the environment  

 

Cellular automata is a field of academic study in its own right, and forms the 

environment half of ABM (the other half being the agents that “live on the 

environment).  While the environments used for illustration in this paper have a direct 

physical interpretation they can have a much more abstract construct.  For example in 

a financial model the stocks that are traded are part of the environment. 

 

What cellular automata demonstrate is how complexity emerges from very simple 

rules.  Consider a one dimensional line of cells, and each cell can be coloured black or 

white.  The colour of each cell in the next time period is determined by the colour of it 

and its immediate two neighbours (one on each side) in the current time period 

according to a rule that does not change across time.  Between one time period and 

the next the new colour of each cell is determined independently from each other 

according to the rule then all cells change to their new colour. 

 

 



3.1. The 256 Possible Evolutionary Rules 

 

There are eight different combination of how three cells can be coloured either black 

or white.  Each combination can specify whether the cell should be black or white at 

the next time period.  So there are 256 distinct rules that are possible.  Examples of 

six rules are given below, referred (0 to 255) using an obvious binary notation.  For 

each rule the eight combinations are shown and below each the new cell colour that 

results. 

 

Rule 0 

  
 

Rule 30 

 
 

Rule 90 

 
 

Rule 110 

 
 

Rule 250 

 
 

Rule 255 

 
 

The time evolution, regardless of initial condition, of Rule 0 and Rule 255 should be 

clear: all cells become either white or black.  To investigate the other four rules we 

consider an initial condition of one black cell with all other cells white.  In the 

diagrams below each line as you move from top to bottom represents the next time 

period. 

 

 



3.2. Example Rules 

 

Rule 250 gives the simple behaviour of repetition. 

 
 

Rule 90 gives a more complex “nesting” behaviour.  While the pattern may be 

reminiscent of a fractal remember that the diagram has been built up by applying the 

same rule repeatedly line by line from top to bottom.  It is not the result of a global 

rule or equation, which is for example how the Mandelbrot set is constructed.  And 

the structure of Rule 90 is identical to Rule 250 (or 0 or 255) with just the detail 

changed.  The first indication that simple rules can create something interesting. 



 
 

Rule 30 illustrates “from simple becomes complex” even further.  The behaviour that 

results is random, showing no regularity, even though its construction is deterministic. 



 
 

 

As the last we look at Rule 100, which exhibits localised structures.  Periods of 

regularity punctuated by non-regularity; perhaps the basis for modelling the behaviour 

of a financial market.  



 
 

 

4. An Interactive Economic Model - SugarScape 
 

 

Sugarscape is described in the book “Growing Artificial Societies” by Joshua Epstein 

and Robert Axtell, and in the book they deploy the model to investigate a wide range 

of social structures.  Here we will look at just two.  The first is growing a Pareto 

distribution of wealth which fits that which is observed.  The second looks at trading 

between agents and the result that the actual price in a trade is often far from the 

equilibrium price determined from supply and demand curves of textbook economics. 

 

Sugarscape consists of a 50 cell by 50 cell grid (actually a torus, if an agent goes off 

the left it reappears on the right, for example).  For each point on the grid there is a 

maximum capacity of sugar that can be supported, but at a point in time the capacity 

may be less than the maximum.  The initial distribution of sugar is such that the are 

two “mountains” of sugar.  The landscape is subsequently extended to include a 

second commodity – spice – and there are two separate spice mountains.  There is a 

rule on how sugar (or spice) grows back each time period.  In this respect the 

landscape is a cellular automata.  What makes it an ABM is the introduction of 

agents: cellular automata + agents = Sugarscape.  So there are three types of rule: 

• Environment – Environment (eg sugar grows back after cutting) 

• Environment – Agent (eg harvest sugar, move) 



• Agent – Agent (eg metabolise sugar, metabolise spice, trade) 
 

In the simulations we will look at all agents are identical, though do show variation in 

their “genetic” makeup.  (Other simulations, for example, differentiate between male 

and female agents and there is a rule for reproduction, and models can include 

different “species” of agent.)  Each agent has a “vision” which determines how many 

grid cells (1 to 6) ahead (north, south, east and west, no diagonal) it can see the 

amount of sugar or spice.  Each agent has a metabolism for sugar and spice, that is 

how many units of sugar or spice it consumes each time period (1 to 4).  Each agent 

has a maximum age (which could be infinite) before it dies, if it has not already died 

from starvation (when its supply of either sugar or spice reaches zero).  

 

4.1. Initial State 

 

These genetic characteristics are randomly assigned for each agent initially (and 

similarly when a new agent is introduced when an existing one dies), together with a 

random position on sugarscape (no two agents can occupy the same position) and a 

random initial supply of sugar and spice between 5 and 25 units (there is no limit to 

the size of each agent’s “wealth” of sugar/spice it can accumulate).  Once a simulation 

has been set up there is no further random element, except when a choice needs to be 

made between two otherwise equal selections.  So though not completely 

deterministic a simulation is definitely more deterministic than stochastic post an 

initial random set up. 

 

A simulation consists of the initialisation and letting the environment and agents 

follow the rules that govern them.  Basically the sugarscape just wants to grow back 

to maximum capacity.  And basically the agents just want to move to where they can 

get the best amount of sugar and spice, harvest all of it, trade with a neighbour if that 

can further improve their situation, and metabolise.  In each time period the agents 

take their turn to move etc in an order that is random each time period (agents go one 

at a time whereas cellular automata go all at once). 

 

4.2. Model Evolution 

 

With sugar and spice (and generally with two or more commodities) answering what 

is the “best” allocation of sugar and spice requires a quantitative specification of 

welfare to effect the move and/or trade rules.  However, the qualitative description 

given in the text still holds and describes conceptually how Sugarscape operates.  

Readers are referred to “Growing Artificial Societies” for the detail which Epstein and 

Axtell implemented for their model, which they considered the simplest that could be 

constructed
1
.  The detail is just that, a detail to make the model operate in practice and 

is not something that its design rests upon.  Nor are the results presented sensitive to 

the formulation of the detail. 

 

                                                
1 Much of the book can be viewed at 

http://books.google.co.uk/books?id=xXvelSs2caQC&printsec=frontcover&dq=animation+IV-

2&source=gbs_summary_r&cad=0  



The diagram below shows the initial distribution of sugar with each cell at its 

maximum capacity. 

 
 

The shades of yellow represent 0, 1, 2, 3 and 4 units of sugar.  (The red dot in the 

bottom left corner is a rather lonely agent.) 

 

When spice is introduced the initial set up becomes as show in the next diagram, with 

sugar in yellow and spice in orange, the red dots being agents. 

 
 

The agents obey the following rules.  The rules are presented in generic form, a 

particular simulation will specify the necessary parameters.  And the rules are 

presented in English rather than computer code, which will be dependent on the 

software being used. 



 

Sugarscape grow back rule Gα 

� At each lattice position, sugar grows back at a rate of α units per time interval 
up to the capacity at that position 

 

Agent movement rule M 

� Look out as far as vision permits in the four principal lattice directions and 

identify the unoccupied site(s) having the most sugar 

� If the greatest sugar value appears on multiple sites then select the nearest one 

� (If it appears at multiple sites the same distance away, the first site 
encountered is selected, the site search order being random) 

� Move to this site 
� Collect all the sugar at this new position 

 

Multi-commodity agent movement rule M 

� Look out as far as vision permits in each of the four lattice direction 
� Considering only unoccupied lattice positions, find the nearest position 

producing maximum welfare 

� Move to the new position 

� Collect all the resources at that location 
 

Agent replacement rule R[a,b] 

� When an agent dies it is replaced by an agent of age zero having random 

genetic attributes, random position in the sugarscape, random initial 

endowment, and a maximum age randomly selected in the range [a,b] 

 

Agent trade rule T 

� Agent and neighbour compute their marginal rate of substitution (MRS); if 
these are equal then end, else continue 

� The geometric mean of the two MRS is calculated – this will serve as the price 
p [more elaborate bargaining could be constructed] 

� The quantities to be exchanged are if p>1 then p units of spice for 1 unit of 
sugar; if p<1 then 1/p units of sugar for 1 unit of spice 

� If this trade will (a) make both agents better off (increase their welfares) and 
(b) not cause the agents’ MRS to cross over then the trade is made and return 

to start, else end 

 

With these rules we first look at simulation ({G1}, {M, R[60,100]}) applied when there 

is just sugar (no spice).  The sugarscape grows back at 1 unit per time period (recall 

that agents harvest all sugar at a site when they move to it).  Agents move as per the 

single-commodity rule and die when they reach their maximum age which is set at 

birth randomly between 60 and 100 time periods (or die of starvation). 

 

Readers can run the simulation at by selecting experiment 3 at: 

http://complexityworkshop.com/models/sugarscape.html 

Agents swarm around the two sugar mountains, with some moving between the two.  

Those agents with metabolism equal to 1 can survive without moving on the 

“lowland” of sugarscape where the maximum capacity is 1 and regenerates each time 

period. 

 

http://complexityworkshop.com/models/sugarscape.html


4.3. Wealth Distributions 

 

The chart below is taken from the simulation after about 100 time units, it is an 

emergent structure, a stable macroscopic pattern, that statistical in nature.  It shows 

the distribution of wealth: along the horizontal axis there is the range of wealth of all 

the agents split by decile; the vertical axis shows the number of agents in each decile.  

(The complexity workshop website has NetLogo embedded as the ABM software; 

NetLogo uses “turtle” as the label for “agent”.) 

 

 
 

The distribution is Pareto: majority of agents have little wealth and a few have great 

riches.  Recall that all agents are created equally with random variation of their 

genetic characteristics; no agents were favoured.  It is the wealth distribution that is 

observed in the real world.  Its growth in a simple model like Sugarscape is a 

powerful statement of what ABM can achieve. 

 

4.4. Sugarscape with trade 

 

The second simulation is ({G1}, {M, T}) in the sugarscape with both and spice.  The 

movement rule is modified as above and a trade rule has been added.  The death by 

old age rule has been dropped for simplicity as the focus is on trade as agents seek to 

better their welfare.  We can observe each trade (volume transacted and price) in a 

time period and hence calculate averages for what actually happened at that time 

period.  We can also “ask” each agent its situation regarding supply and demand for 

sugar or spice and corresponding price, eg how much sugar would it want to buy at 

what price if there was unlimited supply.  This gives the aggregate supply and 

demand by price: the supply and demand curves of neo-classical economics with the 

intersection being the equilibrium volume of trade and price. 

 

A snapshot of the supply/demand vs price, actual and equilibrium, that results is given 

below.  We see the shape of the supply and demand is textbook, but remember that it 

is an emergent feature, not an assumed structure.  We also see that equilibrium is 

never attained – we have a model to explore the dynamics of non-equilibrium. 



 
 

A movie showing a longer time evolution is available at  

http://www.brook.edu/es/dynamics/sugarscape/animations/AnimationIV.mov 

 

The charts below show the development of the equilibrium and actual price and 

quantity for the first 150 time units.  The key observations are: 

• The volume traded is always below equilibrium level (not surprising as agents 
can only trade with immediate neighbours and not on a wider scale basis) 

• The average equilibrium quantity is 906.6, the average actual quantity is  
212.5 

• The equilibrium price or quantity is not stable 

• Nor is the actual price or quantity 

• The actual price can be either above or below the equilibrium price (it is above 
56% of the time). 

• The average prices are similar: for equilibrium it is 0.895 and for actual it is 

0.911 

• The actual price or quantity exhibits greater volatility than equilibrium 

• The standard deviation for actual price is 0.0762 (8.4% of the mean) whereas 
the standard deviation for equilibrium price is 0.032 (3.6% of the mean) 

• The standard deviation for actual quantity is 146.9 (69.2% of the mean) 
whereas the standard deviation for equilibrium quantity is 89.4 (9.9% of the 

mean) 

• The distribution of price is visibly non-Gaussian with evidence of fat tails.  
 

http://www.brook.edu/es/dynamics/sugarscape/animations/AnimationIV.mov
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The movement of agents is also more complicated.  Agents can no longer swarm on a 

single mountain top as agents need both sugar and spice to survive and these 

mountains are not coincident.  Movements of agents which resemble trade routes 

emerge.  

 

5. Agent-Based Stock Market Models 
 

 

This section is largely a summary of an earlier and much more detailed paper (Palin, 

2003, http://citeseer.ist.psu.edu/palin02agentbased.html) which contains a 

mathematical specification of the model and further results and commentary. 

 

5.1. Motivation 

 

Stockmarkets and other financial markets share many stylised features. These include 

a distribution of returns that is more peaked and “fat-tailed” than the Gaussian 

distribution; periods of persistent high volatility; periods of persistent high trading 

volume; and correlation between volatility and trading volume.  

 

Traditional economic models have tended either to use a simple distribution of returns 

such as the Gaussian and treat extreme events as outliers, or to construct a statistical 

process which reproduces some of these features. But such an approach is purely 

descriptive and offers no understanding of why these characteristic properties should 

be seen and persist across so many markets.  

 

To demonstrate a true understanding of the origins of these properties we would like 

to build a model which (i) produces these features without them being “hard-coded” 

into the model; and (ii) allows us to turn these features on and off by changing 

parameters of the model.  

http://citeseer.ist.psu.edu/palin02agentbased.html


 

5.2. Description of Le Baron’s model 

 

We’ll focus on a model by Blake Le Baron. While there are a number of models with 

broadly similar features, Le Baron’s model is attractive because it is makes uses of 

many features of classical economics. 

 

The model has just two assets: cash, with a constant rate of return; and an equity 

which pays a random dividend in each monthly time-step. For the equity only the 

dividend is specified (by a lognormal process); the price of the equity is an emergent 

property of the model which arises through the interactions of the agents. 

 

The model also has a large number of agents. Unlike the earlier Sugarscape model 

there is no geographic distribution of agents: instead they all compete equally in the 

same market. Agents have an initial wealth and must decide at at each time-step how 

much wealth to consume, and how to invest their wealth. The agents make their 

decisions in order to maximise lifetime utility. This framework allows the agents to 

draw on standard results from lifecycle finance (due to Samuelson and Merton) in 

order to make their decisions; but in order to do so the agents must take a view on the 

distribution of equity returns over the next time-step.  

 

The agents form their views on future equity returns by drawing on a pool of trading 

strategies. Each agent has several hundred rules which turn historic market 

information into a prediction. The rules are in the form of a neural network, which 

allows great flexibility in potential rules and can encompass rules which we might 

describe as “value”, “growth”, and “momentum”, as well as complex combinations of 

these. The agents monitor the success of each of their rules over previous time-steps 

and act upon the rule which has proved most successful. Different agents have 

different lengths of “memory” over which they assess their rules. Some may only look 

at the last ten time-steps while others may use hundreds of time-steps. 

 

The market price is determined using a “Walrasian auction” Under this method each 

agent says how many shares he would like to buy or sell at any given price, and the 

auctioneer chooses the price so that total supply and demand are equal. This method 

has been used in real stockmarkets in the past but is not in common use currently. 

 

The model also contains elements of adaptation and evolution. If a rule has proved 

unsuccessful over a number of time-steps then it well be replaced by another rule. 

And agents which are unsuccessful in their trading will also be replaced. 

 

5.3. Rational expectations price 

 

A consequence of the grounding of Le Baron’s model in economic theory is that we 

can calculate the “rational expectations price”. This is the share price that would hold 

if all agents held the same rational views of the market. We find that the rational 

expectations price is equal to a constant multiple of the dividend; ie that the dividend 

yield is constant. 

 



Pensions actuaries may recall that a decade ago it was common in a pension scheme 

valuation to use an actuarial value of assets rather than the market value. The 

“discounted dividend” method of assigning an actuarial value to equities is similar to 

using the rational expectations price. The agent-based model allows us to consider 

under which conditions the rational expectations price would or would not be seen in 

practice. 

 

5.4. Results from the model 

 

We’ll look at a few different settings of the model. In each case the model is run for 

many time periods to avoid any artefacts caused by the initial conditions. 

 

We first look at the case where all agents have a “long memory”: they choose which 

rule to use based on performance over a period of around twenty years (240 monthly 

time-steps). In this case (Figure 1) we find that the share price does converge to the 

rational-expectations price, and the share price in the chart below is lognormal (since 

it just a multiple of the dividend which is itself lognormal). We also find in this case 

that there is no trading, since each agent is happy to maintain the same constant mix 

of cash and equity. 

 

 
Figure 1: The “long memory” case. The rational expectations price is observed. 

 

We can contrast this with the “all memory” case where agents’ memories vary from 

six months to over twenty years. In this case (Figure 2) we see significant deviations 

from the rational expectations price with bubbles and crashes. We also find that in 

contrast to the “long memory” case there is significant trading volume as agents 

change their views in response to the changing market. The trading volume is 

correlated with changes in share price, with trading volume being particularly high 

during the instability around time 10000 and 10200. 

 



 
Figure 2: The “all memory” case. Significant deviation from the rational expectations 

price.  

 

We would like to know whether the deviation from the rational expectations price in 

the “all memory” comes from the diversity of agents’ memory lengths or just from the 

presence of “short memory” agents. To address this we consider the “short memory” 

case where all agents have memories that range from six months to three years. This 

shows rapid cycles of bubbles and crashes. 

 

 
Figure 3: The “short memory” case. Very rapid cycles of bubbles and crashes. 

 

5.5. Cautions and criticisms 

 

Le Baron’s model is a partial success. It allows us to investigate how a share price can 

emerge from the actions of individual agents, and it shows how changing a parameter 

of the model (agents’ memory length) can move from lognormal share prices to 

stylised features of markets with fat tails, bubbles and crashes, and persistent 

volatility. 

 

But while we can get a good qualitative result it is difficult to find a calibration which 

gives a good quantitative calibration. Changing memory length gives a sudden shift 



from rational expectations price to a wild caricature of the real world (the kurtosis of 

returns is an order of magnitude too high).  

 

Also different models give different apparent reasons for features of real markets. One 

model claims that a calibration with fast evolution of agents and strategies is 

necessary to see fat tails; another shows fat tails without any evolution. 

 

Although agent-based stockmarket models as they currently stand do not seem ready 

as an investment tool they remain a very useful tool for investigation. The processes 

which drive stock returns are not well understood with much commentary, 

particularly in the popular media, being glib and applied only after the event. The 

complex dynamics seen in LeBaron’s model are valuable in showing that simple 

explanations of stock prices in terms of a single event are probably wrong. 

 

6. Agent Based Models and Finance 
 

When the authors of this paper were setting out on our careers, actuarial valuation 

methods were typically deterministic, based on expected outcomes minus implicit or 

explicit margins for prudence. On the pensions side, this is the “funding” approach to 

liability valuation (Exley et al (1997)), while in insurance liabilities were valued by 

reference to “reliable yields” (a calculation still required). The underlying 

methodology was challenged in the 1990s by a series of papers arguing in favour of 

market valuations
2
. These were backed up on strong modern financial economic 

foundations, a discipline which hitherto had had little impact on actuarial practice. 

These papers were highly influential in convincing the profession to alter practice, for 

example the adoption of market based valuations, which are now generally common 

practice in actuarial valuations and for accounting purposes in pensions and insurance.  

Alongside this move to market valuation was the growth of computing power which 

allowed the deterministic approach to be replaced with a stochastic one. 

 

Agent-based modelling is not a mere tweak to neo-classical finance theory, but an 

alternative world view which matches many participants’ intuition of what real 

markets look like – not necessarily a guarantee of their veracity. For example, agnet 

based models are inherently lumpy, while much of classical finance makes 

assumptions about infinitely divisible agents and investment markets in order to apply 

differntial calculus. Some agent based models consider market and intrinsic values 

separately, and explain how these two numbers diverge for significant periods of time. 

The agent-based model generates bubbles, crashes and high volatility endogenously, 

rather than exogenously as in the efficient market hypothesis (Farmer (2001)). For 

anyone who works with real markets, they are intuitively appealing.  

 

6.1. Financial Uses of ABM 

 

The use of agent based models so far has been dominated by aspects of explanation 

rather than prediction.  Consideration of explanation and prediction need to 

differentiate between qualitative and quantitative, issues of calibration being more 

important for the latter.  For example a model (agent based or otherwise) of financial 

                                                
2 For example Exley et al (1997) and Sheldon and Smith (2004)  



markets needs to generate bubbles as they have been observed.  A model which does 

not is clearly defective in either explanative or predictive capability.  Having 

generates bubble behaviour it is for calibration techniques (which may not currently 

exist) to achieve a realist scaling between model and observation.  Models which have 

passed the qualitative test may fail the subsequent quantitative test. 

 

6.2. Modigliani, Miller and Agents 

 

A series of papers 1990s laid the foundations of what we now call “market consistet 

modelling”. These papers applied the emerging discipline of finance economics to 

actuarial theory. For example, a seminal paper was Exley et al (1997) which applies 

the  Modigliani – Miller theorem (that the value of two firms is the same irrespective 

of their financial structures (Modigliani – Miller (1958))) to defined benefit pension 

scheme valuation and investment strategy.  

 

The paper argues that a shareholder of a company with a defined benefit pension 

scheme has three equivalent ways of changing his asset mix: 

 

1. Altering his directly held assets 
2. Changing the balance sheet of the company 

3. To modify pension fund asset strategy (assuming the shareholder has power to do 
this) 

 

The implications of this equivalence are profound as they imply that it is impossible 

to achieve an optimal investment portfolio, as the shareholder can alter his own 

investments instead of the pension funds. 

 

The paper is now going to look at how we might take an agent based approach to 

modelling a pension fund. The aim of this exercise is not to describe a realistic model, 

but to question whether ABM could give rise to a different outlook to Modigliani-

Miller.  

 

Doyne Farmer of the Sante Fe Institute constructs two kinds of traders, a seasonal 

trader and a technical trader. There is no movement in the underlying “value” of the 

commodity in the market. The seasonal traders buy and sell in a predictable pattern – 

they could represent, for example, farmers or even companies who need to meet 

emissions targets. The technical traders are purely in it for the money and are allowed 

to develop a variety of trading strategies; the more successful a strategy is, the more 

capital the trader gets and the more they influence the market. The result is shown in 

Figure 4. What happens is that the market becomes “efficient” after about 5,000 

iterations when the technical traders make money off the seasonal traders and “iron” 

out the predictable seasonal fluctuations. But after that, as you see, the model 

suddenly goes mad. This is because the technical traders, who have now acquired 

practically all the capital (as shown in graph B), start trading against each other, 

devising ever more sophisticated trading strategies which work for a while until 

another trader develops a better strategy (Farmer (2001)). 

 



6.3. Pension fund as agent? 

 

To answer this question let us imagine a scenario in which an equity and bond 

portfolio both gave the same performance over a 5 year period, but equities increased 

by 50% over the 1
st
 3 years and then declined to meet the level of the gilts after 5 

years – i.e. one not unlike our current experience. 

 

At the end of this period, the shareholder is equally well off if he invested directly in 

bonds or equities. However, the outcome of shareholder value if the pension fund 

invested in equity or gilts might be quite different. If the pension fund invested in 

equity, at some point there would be an actuarial valuation, which would show a 

surplus – this could give rise to a reduced contribution rate and possible change to a 

more aggressive investment approach. The reduction in contributions would mean 

that the company has more cash available to invest in other activities. The positive 

balance sheet may boost the companies’ share price, making capital cheaper which it 

then might invest favourably. The subsequent drop in equity value (exacerbated by 

the more aggressive investment policy) may put the scheme into deficit, causing the 

 
Figure 4 Behaviour of market with 2 types of trader (Farmer 2001) 

 

company to close the scheme, maybe boosting share value but also alienating the 

workforce. 

 



This is the potential action of the pensions fund – we could in theory build up 

predictable investment rules for the pension fund, which could then be modelled as an 

agent. However, many pension funds tend to face the same issues at the same time. If 

we model pension funds as agents we could introduce them into the a Farmer or 

LeBaron type model, which are likely to challenge the  Modigliani-Miller 

equivalence.   

 

This scenario above is oversimplified– the aim is to demonstrates that the pension 

scheme’s decision to invest in equity or gilts could have an effect on the pension 

scheme, the value of the company and shareholder value quite different to his decision 

to change his personal investments.  

 

7. Implications for Actuarial Practice 
 

7.1. Early Stages 

 

Agent-Based Modelling is still at an early stage. What we have now is a collection of 

example computer models. The inputs are a collection of agents with assumed 

behaviour patterns, and ways of interacting. The outputs include simulated paths of 

financial variables, which in most cases share prices. 

 

The models we have, and future we may build, allow us to conduct many 

experiments. With a combination of carefully controlled experiments and the growing 

mathematical insights from the field of dynamical systems, we can aspire to a better 

understanding of what in the model is most important at driving the outcomes. For 

example, is the absolute number of agents critical, or is there some point beyond 

which the model is “large” and adding extra agents does little to change behaviour. 

How could we measure the diversity of behaviour among agents? Is it the absolute 

level of irrationality or the difference between rationality of different agents that 

matters most? To what extent do different forms of irrational behaviour cancel out in 

observed market behaviour? Does the behaviour of all agents contribute equally to the 

modelled behaviour, or does a cadre of leaders emerge whose behaviour is more 

influential on the market as a whole? 

 

7.2. The Need for Calibrations 

 

We are far from understanding these issues at the current state of knowledge. But this 

is likely to improve as experimentation and analysis proceeds. An ability to rank 

inputs in order of importance is a pre-requisite for empirical calibration. The ranking 

tells us what aspects of real trader behaviour should be captured in order to build a 

useful model of the economy. Having determined the most important inputs, 

calibration might proceed by surveys, interviews and trading on market simulators. 

All this provides a way to calibrate the behavioural aspect of the models. 

 

Without a calibration, the model tells us nothing concrete about the real world. 

Models of efficient markets have existed for some time. ABM provides us, in 

addition, with many alternative models of different ways markets could be inefficient. 



Building an abstract computer model of inefficient markets cannot prove that markets 

are inefficient. Efficiency, or otherwise, is an empirical question for which disciplined 

observation of the real world is critical. That is why calibration is so important. A 

fully calibrated and tested ABM, with demonstrable predictive power, can add to our 

knowledge about real markets, not just to our knowledge of computer models. We are 

not there yet, so a view that ABM will one day provide insight into market efficiency 

remains, for now, a hunch, albeit a widely held hunch among ABM enthusiasts. 

 

7.3. Rigour in testing Goodness of Fit 

 

Informal model tests involve checking that the model accounts for observed data 

patterns. A more rigorous process takes account of the number of parameters 

estimated. The argument is that, with a large enough parameter count, a model can 

reproduce any data set. The trick in classical statistics is to find a parsimonious model 

than explains as much as possible of the observed data with a small number of 

parameters. Neo-classical optimising agents fit well into this framework; a 

parsimonious objective function is specified, and all aspects of behaviour are in 

single-minded pursuit of the chosen objective. Specifying the behaviour of a non-

optimising agent requires an exhaustive list of responses to any eventuality. Without 

any over-arching optimisation at work, the potential number of rules is vast. As a 

result, ABM can generate many thousands or millions of parameters. In a statistical 

sense, such high parameter counts imply a high threshold for the model’s ability to 

explain real world outcomes. 

 

7.4. Forecasting Ability 

 

Let us now conduct a thought experiment, and imagine we have a calibrated and 

tested ABM. What could we do with it? 

 

The most obvious use is market prediction. A rejection of market efficiency is a 

rejection of the notion that returns are unpredictable. So an ABM that consistently 

predicts market prices (more accurately than a random walk) would pose a substantial 

challenge to theories of efficient markets. Orthodoxy might fight back, for example by 

rationalising observed biases as a reward for risk, but if the rewards are large enough 

then a latent risk is a less plausible explanation. The implications for portfolio 

construction and investment strategy are profound. We do not know how many of 

these are in use already; the owner of such money-making machine may be reluctant 

to publicise the fact. Conversely, if ABM’s do not ultimately give better forecasts 

than a random walk, then the ABM has instead illustrated how irrational agents can 

nevertheless contribute to market pricing – a result that would also be of considerable 

interest albeit less lucrative. 

 

It is less clear how other financial theories would need adapting. The Black-Scholes 

model for option pricing does not rely on market efficiency. It does rely on being able 

to trade continuously, without transaction costs, and on having accurate volatility 

forecasts. These conditions do not fully hold in real markets, yet the Black-Scholes 

and related models are still widely used. In our view, it is unlikely that the increasing 



use of ABM would dent the use of Black-Scholes model, but it could well provide 

new insights into the elements driving an appropriate choice of volatility parameter. 

 

7.5. Adapting Modigliani and Miller 

 

The work of Modigliani and Miller on capital structure has had a profound impact on 

recent actuarial thought, particularly in pensions. The underlying arguments are based 

on arbitrage and do not require markets to be efficient. However, to exploit the 

arbitrage of a violation of Modigliani and Miller, would require an arbitrageur to take 

offsetting long ands short positions in two shares with equal core businesses but 

different capital structures or different pension plan investments. Such trades are in 

practice impossible to execute, because companies do not come in such convenient 

pairings. We can instead turn to equilibrium arguments to imply the same (M&M) 

conclusions, but now we have introduced the additional hypothesis that economic 

agents are trying to optimise something. Take away optimising agents, and the 

arguments become much more delicate. Everything becomes very model dependent; 

for example under Modiglinai and Miller (and excluding tax, bankruptcy or benefit 

leaage) an extra €1000 pension fund contribution should have no effect on a 

company’s share price. The usual lesson taken from this argument is that optimal 

contributions much therefore take account of tax, bankruptcy and leakage effects. 

However, in an agent based model, we cannot easily unpick the effect of contributions 

on share prices. ABM might suggest we need to know a great deal more in depth 

about the investor community in order to recommend pension contribution rates. 

 

7.6. Feedback Loops 

 

Some ideas of market inefficiency are already embedded in regulatory thinking. If 

markets are efficient, and prices reflect best information, then there can be little 

market benefit from regulatory interference in trading volumes. If a regulator prevents 

an institution from selling a risky asset, then the share price of the institution itself 

falls, so the fall in aggregate value of the economy’s assets is unchanged by the 

regulation. One could even argue that a regime discouraging fire sale of assets expose 

policyholders or pension plan members to further risk, because in a default event it is 

policyholders or plan members who have to scrape around the remaining assets to 

recover some of their promised benefits. 

 

Under agent based models, however, positive feedback loops may operate to 

exacerbate the effect of crashes. Relaxation in solvency regulation, and corresponding 

easing of the pressure on institutions to sell risky assets, could mitigate the market fall 

itself. This increases aggregate economic wealth and reduces some of the refinancing 

costs that otherwise might have applied. As calibration technology develops, we may 

well see a day when ABM provides meaningful support to regulators searching for the 

best way to protect plan members or policyholders in turbulent financial times. 
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