CONTINGENT ASSURANCE FUNCTIONS

By C. M. O'BRIEN, M.A., F.I.A.
Assistant Manager, Royal National Pension Fund for Nurses

It is now many years since any functions suitable for the calculation of contingent assurance premiums have been published. (Indeed, when a complicated quotation involving more than two lives is required, a special calculation on a 'modern' basis can produce results which are embarrassingly inconsistent with simple two-life quotations based on a very much out-of-date published table!) The appended Tables 7 and 8 giving the functions $\ddot{a}_{m f}$ and $A_{m f}^{1}$ are put forward, together with various adjustments detailed below, to meet this, admittedly small, need.

Basis

The main calculations have been done on the following basis:
Failing (or male) life: C.M.I. Assured Lives 1947/48, ultimate mortality (see F.I.A. 77, 117).

Counter (or female) life: $a(55)$ ultimate mortality.
Interest: $2 \frac{1}{2} \%$.
It was considered appropriate to use an up-to-date table for the failing life, rather than the Ar924-29 table, particularly since many years are likely to elapse before any further calculations of this type are made. It is not suggested that office premiums should at present be based on these tables, as they stand. Approximations to other bases can, however, be made with sufficient accuracy.

Method of calculation

Values of $\bar{a}_{m f}$ and $A_{m f}^{1}$ were calculated by using Simpson's approximate integration formula at intervals of three years. $\ddot{a}_{m f}$ was then calculated by the formula

$$
\ddot{a}_{m f}=\bar{a}_{m f}+\frac{1}{2}+\frac{-1}{12}\left(\mu_{m}+\mu_{f}+\delta\right) .
$$

Specimen values so obtained are compared in Table i with values calculated by the formulae

$$
\begin{gathered}
\ddot{a}_{m f}=\frac{\mathbf{I}}{D_{m f}} \sum_{t=0}^{\omega} D_{m+t: f+t} \\
A_{m f}^{1}=\frac{v^{\mathbf{1}}}{D_{m f}} \sum_{t=0}^{\omega} D_{f+t}\left(\mathrm{I}-\frac{1}{2} q_{f+t}\right) d_{m+t}
\end{gathered}
$$

and
From these figures it is clear that the errors of the approximate integration method, even at extreme ages, are negligible. Some divergence between the values of $\bar{A}_{m f}^{1}$ at extreme ages of the failing life is only to be expected, partly because of the difficulty of calculating μ at these ages and partly because the assumptions implied in the two calculations are not identical.

Mortality

The $a(55)$ female table has been used throughout for the counter life.
The A 1924 -29 standard table might be regarded as a suitable basis for the failing life in this particular class of policy at the present time. Tables 2 and 3 show the decrease per mille in the annuity value and the increase per

Table I

Ages		$\ddot{a}_{m f}$		$\bar{A}_{m f}^{1}$	
Male	Female	Approx. integration	Formula	Approx. integration	Formula
21	21	27.277	27.277	.2120	.2120
39	39	21.178	21.178	.3122	.3122
57	57	13.102	13.102	.4455	.4454
75	75	5.678	5.678	.5549	.5545
84	84	3.377	3.375	.5714	.5698
90	90	2.468	2.444	.5676	.5595
21					
33	74.915	14.915	.0266	.0266	
33	75	9.406	9.405	.0222	.0222
42	84	5.946	5.946	.0233	.0234
48	90	4.256	4.254	.0255	.0256

mille in the assurance value respectively if C.M.I. 1947/48 mortality is replaced by A1924-29 mortality.

It is clear that the annuity values can be obtained with great accuracy. The assurance function changes relatively rapidly, but interpolation to second differences gives satisfactory results.

Rate of interest

Any of the usual devices for approximating to values at other rates of interest could probably be used. Satisfactory results were obtained for annuity values by comparing with single-life annuity values based on the $a(55)$ female mortality table and for the assurance values by comparing with values of v^{n} where n was taken as three quarters of the lower complete expectation of life of the two lives involved.

Selection

It may well be thought suitable to use select mortality tables for both lives, since the effect of selection may be considerable in a class of assurance which is very sensitive to changes in mortality.

Table 4 sets out the increase per mille of the ultimate annuity value to give the select value. The select rates of mortality for the male life were calculated from the ultimate rates of the C.M.I. 1947/48 table by the same formulae as were used in the A 1924-29 table.
It was found that the function $\left(\bar{A}_{m f}^{1}-\bar{A}_{[m \mathrm{l} \mid f]}\right)$ was nearly independent of the age f. Select values of the assurance function can therefore be obtained from Table 5 .

Tests of approximations

To test the accuracy of the final result when these approximations are combined, various values have been calculated by these means on the basis of A 1924^{-29} standard mortality for the failing life, interest at 3%, and select mortality for both lives. These values are shown in Table 6, together with the corresponding values calculated directly on this basis using Simpson's formula.

The ages chosen were intended to include some in which the approximations would be difficult because of the rapid change of value of $\bar{A}_{m f}^{1}$.

Contingent Assurance Functions

：	$111 \mathrm{ll\|l\|l\|l\|l\|l\|l\mid c口}$
\％	
${ }^{+}$	
${ }_{\infty}$	$+1101119$
：	111011100
\cdots	
N．	
\％	
$\%$	
\bigcirc	11：11101｜｜80｜｜
$\stackrel{\square}{0}$	1＝111511才11｜in 111111
in	2115111＋11f1111111111
	11511年117
子	－111界11क11111
\％	
\％	$118111 \pm 111111111111111$
¢	18111 m 1111111111111111
\cdots	玉111811111111111111
$\stackrel{\square}{8}$	｜11玉11111111111111111
${ }_{\text {as }}$	1181111111111111111111
\pm	｜os 111111111111111111111
$\stackrel{\square}{\sim}$	$\sim_{*}^{\infty} 111111111111111111111$

Table 3．Value of $1000\left(\frac{\bar{A}_{m f}(1924 / 29)}{\bar{A}_{m f}^{1}(1947 / 48)}-1\right)$

\％	
：	
¢	118．111嫁1
\pm	
$\stackrel{\sim}{\infty}$	
\％	111790180
\cdots	
$\underset{\sim}{2}$	
\％	
－	
\bigcirc	
8	
寺	
$\left\lvert\, \begin{gathered} \text { H. } \\ 0 \\ 0 \end{gathered}\right.$	
4	ますご118011
${ }_{+}$	1会1｜あり11
子	
q	
9	11号11号11111111
$\stackrel{1}{\circ}$	
m	\％¢111801111111111111
\％	111 ± 11111111111111
	$11 \stackrel{\rightharpoonup}{\text { ¢ }} 11111111111111111$
	1吉11111111111111111111
	81111111111111111111111
\％${ }^{4} 80$	

Table 4． $1000\left(\ddot{a}_{\left[m_{\mathrm{I}} f \mid\right.} / \ddot{a}_{m f}-\mathrm{I}\right)$

$\begin{gathered} \text { Age } \\ \text { of } \\ \text { male } \end{gathered}$	Age of female						
	21	33	45	57	69	75	81
21	I	2	2	3	9	15	25
33	－	2	2	4	9	15	25
45	－	－	3	5	10	17	26
57	－	－	－	10	15	22	31
69	二	－	－	－	31	36	45
75 81	二	二	－	－	－	53	60 89

Table 5

Age of male	$\left(\bar{A}_{m f}^{1}-\bar{A}_{[m]}^{1}(f)\right.$
21	.0008
33	.0006
45	.0013
57	.0037
69	.0089
75	.0130
$8 \mathbf{r}$.0190

Table 6

Age		$\ddot{a}_{[m][f]}$		$\bar{A}_{[m][f]}^{1}$	
Male	Female	Correct	Approximation	Correct	Approxi－ mation
22	74	9.654	$9 \cdot 655$	． 0220	． 0222
26	46	19.890	19.883	－1131	－1121
46	74	9.285	9.277	－0881	－0888
56	64	11．195	11.153	$\cdot 3405$	－3392
71	77	5.977	6.003	$\cdot 4409$	$\cdot 4443$

It is suggested that Table 6 shows that the values obtained by these methods of approximation are sufficiently accurate to be used for obtaining office premiums．

The author＇s thanks are due to Mr G．E．Wallas，F．I．A．，for his helpful suggestions and assistance in checking the calculations．

Table 8. $A_{m f}^{1}$ at $2 \frac{1}{2} \%$

Age of male	Age of female						Age of male
	21	24	27	30	33	36	
21	$\cdot 2120$	-1954	-1774	-1585	$\cdot 1397$	-1214	21
24	-	$\cdot 2255$	$\cdot 2075$	-1880	-1675	-1471	24
27	,	-	.2401	- 2206	-1994	- 1773	27
30	-	-	-	$\cdot 2561$	-2350	$\cdot 2120$	30
33	-	-	-	-	$\cdot 2733$	$\cdot 2505$	33
36	-	-	-	-		-2922	36
	39	42	45	48	51	54	
21	-1044	. 0889	. 0752	.0633	-0531	- 0445	21
24	-1274	-1089	-0922	. 0774	-0645	- 0535	24
27	-1552	${ }^{1} 338$	-1139	-0958	-0798	-0659	27
30	$\cdot 1881$	-1642	-1411	-1996	-1001	-0828	30
33	$\cdot 2257$	-1999	-1740	-1491	-1259	-1049	33
36	$\cdot 2675$	$\cdot 2407$	- 2129	-1850	${ }^{1} 581$	-1331	36
39	-3122	$\cdot 2856$	$\cdot 2567$	- 2267	-1967	-1678	39
42	-	$\cdot 3335$	- 3049	$\cdot 2738$	-2415	- 209 I	42
45	-		$\cdot 3555$	$\cdot 3247$	-2912	-2564	45
48	-	-	-	- 3779	-3447	$\cdot 3087$	48
51	-	-	-		$\cdot 4005$	'3647	51
54	-	-	-	-	-	$\cdot 4233$	54
	57	60	63	66	69	72	
21	-0374	-03I5	- 0266	- 0226	-0192	-0163	21
24	- 0443	. 0366	$\cdot \cdot 303$	$\cdot 0251$	-0209	-0174	24
27	-0541	-0442	. 0360	-0293	-0238	-0194	27
30	-0678	-0551	-0445	.0357	-0285	-0228	30
33	-0863	-0702	-0565	$\cdot 0451$	-0358	-0282	33
36	-1104	-0904	-0731	. 0585	-0463	-0364	36
39	-1408	-1164	.0950	-0765	-0608	-0479	39
42	- 1780	- 1490	-1229	-0999	. 0802	-.0636	42
45	-2216	-1882	- 1571	- 1292	- 1047	. 0838	45
48	-2712	$\cdot 2338$	-1980	-1648	-1350	-1090	48
51	$\cdot 3259$	$\cdot 2856$	$\cdot 2455$	-2071	-1718	-1402	51
54	- 3848	-3430	- 2998	-2569	-2161	- 1786	54
57	-4455	-4041	$\cdot 3593$	-3131	-2674	-2241	57
60	-	$\cdot 4669$	$\cdot 4224$	$\cdot 3745$	$\cdot 3252$	$\cdot 2769$	60
63	-	-	$\cdot 4867$	-4391	$\cdot 3881$	- 3359	63
66	-	-	-	-5047	-4539	$\cdot 3997$	66
69	-	-	-	-	-5210	- 4672	69
72	-	-	-	-	-	- 5377	72
	75	78	81	84	87	90	
21	-OI39	-0118	-0099	-.0083	-0069	-0057	21
24	-0145	- 0121	- 0101	-0084	-0069	. 0057	24
27	- 0158	-0129	- 0106	-0087	-0071	-0058	27
30	-0182	-0145	- 0116	-0093	-0075	-0061	30
33	-0222	-0174	-0136	-0107	-0084	-0067	33
36	$\cdot 0284$.0221	-0171	. 0132	$\cdot \mathrm{O}, 03$	-0080	36
39	-0374	-0291	-0224	. 0173	-0133	-0103	39
42	-0500	-0389	-0302	-0233	- 0180	-0140	42
45	'0663	-0520	-0405	-0315	-0244	-0190	45
48	-0870	-0686	-0537	. 0419	-0326	-0255	48
51	-1129	-0898	-0707	-0554	-0432	-0338	51
54	-1454	- 1968	-0928	.0732	-0575	. 0452	54
57	-1847	-1500	$\cdot 1204$	-0958	-0757	.0599	57
60	.2313	- 1902	- 1542	- 1239	-0988	. 0787	60
63	$\cdot 2849$	$\cdot 2373$	- 946	-1578	- 1270	-1019	63
66	$\cdot 3446$	-2912	-2418	-1980	-1606	-1297	66
69	-4101	-3525	- 2970	- 2460	-2013	-1635	69
72	-4812	-4218	$\cdot 3622$	$\cdot 3053$	-2535	- 2084	72
75	-5549	-4968	-4361	$\cdot 3757$	-3186	$\cdot 2668$	75
78		$\cdot 5675$. 5079	- 4464	$\cdot 3861$	$\cdot 3297$	78
81	-	-	$\cdot 5698$	$\cdot 5093$	- 4480	$\cdot 3891$	81
84 87	-	-	-	$\cdot 5714$	$\cdot .5104$	- 4497	84
87	-	-	-	-	$\cdot 5676$	- 5082	87
90	-	-	-	-	-	$\cdot 5676$	90

Table 7．$\ddot{a}_{m f}$ at $\mathbf{2} \frac{1}{2} \%$

Age of	Age of female						$\begin{gathered} \text { Age } \\ \text { of } \\ \text { male } \end{gathered}$
	21	24	27	30	33	36	
21	27.277	26．956	$26 \cdot 557$	26.073	25.497	$24 \cdot 824$	21
24		$26 \cdot 443$	$26 \cdot 097$	$25 \cdot 669$	$25 \cdot 149$	24.532	24
27			25.540	$25 \cdot 169$	24：709	24.154	27
30				24.564	24．166	23.676	30
33			－	－	23.511	23．087	33
				－		22.380	36
	39	42	45	48	51	54	
21	24.055	$23 \cdot 192$	22：237	$2 \mathrm{I} \cdot 195$	20.072	18.874	21
24	23.815	$22 \cdot 998$	22.084	21.078	19.985	18.810	24
27	23.496	${ }^{22} 736$	21.873	20.912	19.857	${ }^{18.714}$	27
30	23.085	22.390	21.588	$20 \cdot 682$	19.675	18.574	30
33	22.567	21.943	21.212	20.371	19.424	18.376	33
36	$2 \mathrm{~L} \cdot 932$	21.385	20．731	19.966	19.090	18.105	36
39	21．178	$20 \cdot 708$	20．136	19.454	18.659	17.750	39
42	－	19.912	19.423	18.828	18.122	17.300	42
45		－	18.598	18.092	17.479	$16 \cdot 750$	45
48				17.253	16.733	$16 \cdot 103$	48
$5{ }_{5}^{51}$		－			15.883	15.351	51
	－	－	－	－		$14 * 493$	54
	57	60	63	66	69	72	
21	17.607	$16 \cdot 282$	14.914	13.525	12.134	$10 \cdot 764$	21
24	17.562	16.251	14.895	13.513	$12 \cdot 126$	10．760	24
27	17.492	16.201	14.861	13.490	12.112	$10 \cdot 753$	27
30	17.386	$16 \cdot 124$	14.805	13.452	12.086	$10 \cdot 735$	30
33	17.232	16．008	14.720	13.390	12.043	$10 \cdot 705$	33
36	17.018	15.842	14.594	13．297	11.976	$10 \cdot 658$	36
39	16.732	15.616	14.420	$13 \cdot 165$	11．878	10.587	39
42	16.362	15.319	$14 \cdot 186$	12.986	11.743	10.488	42
45	15.904	14.946	13.889	$12 \cdot 754$	11.567	$10 \cdot 357$	45
48	15.355	14.492	13.523	12.466	11.346	$10 \cdot 191$	48
51	14.706	13.946	13.076	12．109	11．068	9.981	51
54	13.952	13.299	12.536	$11 \cdot 671$	$10 \cdot 722$	9.715	54
57	$13 \cdot 102$	$12 \cdot 556$	11.904 1.186	11．149	$10 \cdot 303$ 0.808	9.387	57
60		11．728	11．186	10.543	9.808	8.994	60
63	－	－	$10 \cdot 392$	$9 \cdot 861$	9.239	8.535	63
66 69	二	二	二	$9 \cdot 117$	8.606	8.013	66
69 72	二	二	－	－	7.907	7.425 6.755	69
	－	－	－	－		6.755	72
	75	78	8r	84	87	90	
21	9.443	8－195	7.042	6.004	5.092	$4 \cdot 315$	21
24	9.441	$8 \cdot 193$	7.041	$6 \cdot 003$	5.092	4.315	24
27	$9 \cdot 436$	$8 \cdot 191$	7.039	$6 \cdot 002$	5.092	4.315	27
30	$9 \cdot 425$	$8 \cdot 184$	7.036	6.000	5.091	$4 \cdot 314$	30
33	$9 \cdot 406$	$8 \cdot 172$	$7 \cdot 028$	5.996	5.088	4.313	33
36	$9 \cdot 373$	8.150	$7 \cdot 013$	5.986	5.082	4309	36
39	$9 \cdot 323$	$8 \cdot 115$	6.990	5.971	5.072	$4 \cdot 302$	39
42	9.251	8.064	$6 \cdot 955$	$5 \cdot 947$	5.055	$4 \cdot 291$	42
45	9.156	$7 \cdot 996$	$6 \cdot 907$	5.913	$5 \cdot 033$	$4 \cdot 276$	45
48	9.034	7.909	$6 \cdot 846$	5.871	5.004	4.256	48
51	8.879	7.797	6.767	5.817	4.967	4.231	5 I
54	8.680	7.651	$6 \cdot 663$	$5 \cdot 743$	4.916	4．197	54
57	8.43 I	7.467	6.529	5.649	4.851	4.151	57
60	$8 \cdot 128$ $7 \cdot 768$	7.240 6.066	${ }_{6} 6363$	5.530	4.767	4.093	60
63	77768 7.353	6.966 6.647	$6 \cdot 161$ $5 \cdot 922$	5．384	4.663 4.539	4.020 3.933	63 66
69	6.874	$6 \cdot 270$	$5 \cdot 636$	4.999	4.388	3.827	69
72	$6 \cdot 312$	$5 \cdot 815$	5.280	4730	4－190	3.685	72
75	$5 \cdot 678$	$5 \cdot 283$	4.848	4.390	3.931	3.491	75
78 81 1		4.748	4.402 3.998	4.029 3.698	3.647 3.383	3.273 3.069	78 81 81
84	－	－	3.998	3.698 3.377	3.383 3.123	3.069 2.864	81 84
87	－	－	－	－	$2 \cdot 853$	2.646	87
90	－	－	－	－	－	$2 \cdot 468$	90

