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Why are we interested in
correlation/dependency?

• Risk management

• Portfolio management

• Reinsurance purchase

• Pricing



How does dependency arise in the
insurance world?

Related Events

• insurance cycle

• economic factors

• physical events

• social trends

• reinsurance failure



Items to be covered:

1. Simulations of correlated variables

2. Problems with the traditional approach

3. Copulas



Statement of problem

Suppose we have n classes of business with
each class of business having its own
marginal distribution.

How do we model the portfolio?

Traditionally this problem is tackled using
correlation as the measure of dependence.



• The mean does not tell everything about
a distribution.

• The coefficient of correlation does not
tell everything about the dependency
structure.



Standard Simulation Technique

Step 1

Simulate an n-dimensional multivariate normal distribution
with correlation matrix ρ



Simulate Multivariate Normal Variables

Simulated Independent Normal

-5

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

N1

N
2

Simulated Multivariate Normal
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Step 2
generate n series of the appropriate marginal distributions and
put into a matrix

Step 3

Apply Normal multivariate dependency structure from step 1

Standard Simulation Technique



Simulated Independent Gamma 
Variables
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Standard Simulation Technique



Observations

• The Spearman rank correlations are matched
rather then the Pearson correlations

• The solution is not unique

• In particular use of normal distribution
influences the tail of the modelled portfolio



The same Correlation, but
Different Dependency Structures
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Observation

In the majority of applications a symmetric
approach is used in determining the dependency.

However in practice this need not be the case.

Example: An earthquake may cause a stockmarket
crash but a stockmarket crash will not cause an
earthquake.

Skewed distributions may be used to get around
this problem.



Asymmetric Dependency Structure
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The same Correlation, but
Different Dependency Structures
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Two Fallacies
Fallacy 1

Marginal distributions and correlations
determine the joint distribution

Fallacy 2 (not for rank correlation)

F1, F2 marginal distribution for X1, X2

∀   ∈  [-1,1]  ∃  F   such that F is the joint
distribution and X1, X2 have Pearson
correlation

ρ

ρ



Other problems with Pearson correlation

• A correlation of zero does not indicate
independence of risk.

 Problem 2  (not for rank)

• Correlation is not invariant under
transformations of the risk.

 Problem 3

• Correlation is not an appropriate dependence
measure for very heavily-tailed distributions.

Problem 1



Why dependency structures?

   We need to amend our concept of
dependency to allow for desirable features

• In particular we have to introduce non-linear
dependency. For example:

• Need to reflect special features of tail
dependence.

• In general, single numeric measures of
dependency are insufficient.
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The Copula approach

• Operates by separating marginal distributions
from dependency structures

• Combination of copula and marginal will yield
original distribution exactly

• No longer have the problems associated with
correlation



Definition of Copula
   For m-variate distribution F with j th univariant margin Fj

the copula associated with F is a distribution function

(Note: if F is a continuous m-variate distribution the copula 
associated with F is unique)
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Construction of a Copula

• Construction of a copula
– parametric

– non-parametric

• parametric form needed for higher dimension
problem



Example of Parametric Copula (1)

Independent Copula
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Example of Parametric Copula (2)

Normal copula
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Example of Parametric Copula (3)

Gumbel Copula

For ∞<≤δ1
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Note: this is an extreme value copula



Independent (Product) Copula Density
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Simulation of a copula

• simulate a value u1 from U (0,1)

• simulate a value u2 from C2 (u2 u1)

• simulate a value un from Cn (un u1…. un-1)

where Ci = C(u1,….,ui,1,….,1) for i=2,….,n



• Stop Loss on two classes of business

• Assumptions

• Limit:  15%

• Deductible: 107.5%

• Expected L/R:  91.5%

Example: Reinsurance Pricing

Class A Class B
mean L/R 91.14% 91.85%
st. dev. of L/R 10.98% 9.21%
Premium 100 100

gumbel delta 1.2
rank correlation 0.25



Distribution of Loss Ratios for Classes A and B

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50% 70% 90% 110% 130% 150% 170%

Loss Ratio

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n

Class A

Class B

Loss Ratios are assumed to be lognormally distributed



The same rank correlation (   =0.25), but different
dependency structures especially at the tail

ρ



Distribution of Losses to the Stop Loss Layer
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Results

Expected amount of loss to the layer is
underestimated approximately by 50%, if a
multivariate Normal dependency structure is
used.
Losses to the Stop Loss

Gumbel Independent Mult.Normal
mean 0.325 0.116 0.220
standard deviation 2.297 1.169 1.735
Rate on Line 1.1% 0.4% 0.7%



Conclusions

• Correlation is not a sufficient measure of
dependence.

• Opportunities may be missed by remaining in
the correlation framework.

• True dependency reflected in the copula
approach by separating marginal distribution
from dependency structures.


