
CRITERIA OF SMOOTHNESS 

BY H. A. R. BARNETT. F.I.A. 

1. INTRODUCTION AND HISTORY 

1.1 The actuarial profession has for decades, indeed centuries, used age- 
related tables, particularly (although not exclusively) of mortality, which in 
preparation have been subjected to the process known as graduation. Five 
purposes of such graduation have recently been set out by Vallin, Pollard and 
Heligman(11) and these may be summarized as follows: 

(1) to smooth the data, make them easier to handle, remove irregularities and 
inconsistencies; 

(2) to make the result more precise on the reasonable assumption that the real 
mortality underlying the observations is a smooth curve, i.e. to remove 
sampling and other errors; 

(3) to aid inferences from incomplete data; 
(4) to facilitate comparisons of mortality; 
(5) to aid forecasting. 

Of these purposes, (1), (2) and (3) may all be paraphrazed as implying that the 
purposes are to make the table smooth, and (4) and (5) as indicating uses to which 
a table may better be put if smoothed. So the purposes of what the profession has 
come to term ‘graduation’ all boil down to the production of a smooth table, and 
for the rest of this paper until the last section I shall use the word ‘smoothing’ 
rather than ‘graduation’. But what is smooth? 

1.2 The main purpose of this paper is to consider what is meant by ‘smooth’, 
or rather what has been achieved in the past by the process of producing tables 
which have been regarded as smooth. There is a risk, which must be mentioned 
early, of the arguments going round in circles. In answering the question “What 
is smooth?” we look at what has been done to produce smoothness, we follow 
certain smoothing processes, we look at various orders of differences, and we 
come back to the original question. Perhaps a subsidiary purpose of the paper 
could be stated as the breaking of this vicious circle. An earlier draft has been 
criticized because of the cyclical nature of the development of the arguments 
which is, however, inevitable; some of these criticisms will be mentioned. 

1.3 The paper will be particularly concerned with mortality tables, and it must 
be remembered that mortality observed over a number of years of experience 
depends upon many different factors. Mortality has been observed to change 
with the passing of time, but year passed through is not the only side of the 
environmental die. Year of birth has some bearing on the subject, apart from 
being the year passed through minus the age. And so do all previous years passed 
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through by the lives being observed. The mortality of a cohort born at a certain 
time has rarely been traced throughout the lives of the members of the cohort as, 
e.g., by Giles and Wilkie,(8) and by the time it has been so traced the results have 
been of little more than academic interest to actuaries, although they have been 
of medical interest. But apart from age and time variations, mortality also 
depends upon changes in the different causes of death, the effects of epidemics 
and changes in climate, occupation, various types of selection, and (dare we say 
it) sex and possibly race. So we must not lose sight of the fact that mortality is a 
somewhat complex function which does not necessarily have to follow a simple 
mathematical formula. This leads to the further observation that there is likely 
always to be some conflict between smoothness and goodness of fit, and 
sometimes the one has to be sacrificed for the benefit of the other. However, the 
paper is not primarily concerned with fidelity to data, which has been amply 
covered in the different text books which have been compiled over the years, and 
no further mention will be made of it apart from stating that fidelity can prevent 
the attainment of absolute smoothness (whatever that may be). 

1.4 This paper could never have been conceived had it not been for the earlier 
work by Bizley(4) and the discussion thereon. But the history needs to go back 
further, to the preparation of my earlier work(2) in which I started as a puppet, 
with the late Wilfred Perks and Ronald Barley pulling the strings. Their original 
suggestion was that a synthesis of tests was required, and my initial work 
concentrated entirely on tests of adherence to data. It was then that Barley wrote 
the letter from which I quoted in the discussion on Bizley’s paper, the quotation 
ending “. . . there is a lot more to be said about smoothness.” Until then I had 
given smoothness too little thought, but in due course the vague definition was 
produced that “a series is smooth if it displays a tendency to follow a course 
similar to that of a simple mathematical function”, the word ‘simple’ being used 
with the intention of cutting out polynomials of a very high degree. On reflection, 
the definition needs amplification by stating that the simpler the mathematical 
function, the smoother would the series be regarded, so that a series tending to 
follow the course of a function with n parameters would be taken as smoother 
than one following a function with (n + 1) parameters. 

1.5 Tetley’s(10) excellent textbook (but now superseded many times) is 
understood to have been criticized for his use of the quotation natura non agit per 
saltum, but this gives as good an appreciation as any of what actuaries 
understand by smoothness. The quotation may have been dropped for a time, 
but it certainly appears in the current textbook by Benjamin and Pollard(3) who 
also quote Bizley’s definition that “a… curve is smooth at those points which 
are such that the absolute value of the rate of change of curvature with respect to 
distance measured along the curve is small.” But how small is small? Benjamin 
and Pollard accept that Bizley’s definition is equivalent to a requirement that 
third-order differences be small, again without specific quantification, and follow 
the accepted practice of concentrating on the first three orders of differences 
without saying exactly why. I will refer to this accepted quality as ‘smoothness of 
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the third order’ or ‘third-order smoothness’ without assuming that this is 
necessarily the required criterion. What seems to be missing is a more precise 
definition of what is understood by smoothness in age-specific, duration-specific 
or time-specific series, which need not necessarily be the same as the definition 
which other professions might give to the quality. It is clearly desirable that when 
a series is being smoothed the operator keeps in mind what he aims to achieve; 
also that a clear definition be given to actuarial students. 

1.6 Bizley quoted generously from my own paper, and it may seem ungracious 
to repay him with criticism. He devised a system of ‘symmetrical differential 
coefficients’ (S.D.C.‘s) such that the S.D.C.‘s of x with regard to y are identical 
with the S.D.C.'s of y with regard to x. His criterion was that the third S.D.C. 
should be small, the acme of smoothness being a circle or a straight line. The 
straight line might be an acceptable acme in theory, but to follow it in practice 
would mean defining the object of smoothing as to reduce the series to as near a 
straight line (the simplest mathematical formula) as possible, or in other words to 
achieve smoothness of the first order; this would usually be an unattainable 
perfection. The circle as another object of perfection was bound to emerge from 
Bizley’s algebra, but the process of smoothing a time series is unlikely to be 
satisfactory if it reduces it to a circle, so this example of second order smoothness 
is also unacceptable. But surely, if a circle is ideally smooth, and so is a straight 
line tangential to it, a curve midway between circle and tangent must also be 
smooth. And if first and second order smoothness are too perfect, must we stop at 
the third order? 

1.7 The old concept used to be that a series is smooth if its third differences are 
small, or if they themselves are smooth. I have already asked “How small is 
small?” Bizley stated correctly that if qx is smooth then 1000 qx must also be 
smooth, but the third differences of the latter are 1000 times larger than those of 
the former, so a better criterion (if one considers third differences at all) would 
seem to be the ratio between the third difference of a function and the function 
itself, but how small should that ratio be? If y=2x, successive differences are 
equal to each other and each line of differences repeats the previous line. If y = 3x, 
successive differences increase and each line of differences repeats the previous 
line multiplied by 2. Are we then to say that these curves are not smooth? And this 
raises another question, how smooth is smooth? The apparent requirement that 
third differences should be smooth if they are not small seems to take us into sixth 
differences, and so on, and one is reminded of the indeterminate definition, used 
by the now discredited German dictatorship in the years of World War II, that a 
man was a Jew if his grandfather was a Jew (and, presumably, so on). Indeed, if 
y=f(x) is smooth, are y=ef(x) and y = log f(x) (assuming f(x) > 0) not also 
smooth? Or does the transformation make them rather less smooth in some 
sense? The function y = a + b f(x) is surely just as smooth as y = f(x), since it can 
be derived from the latter by a change of origin and scale of they axis on the same 
graph. What then about y = a+b f(x) + c f(x)2? Does this have a degree less 
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smoothness, in some sense? If not, then we could argue that any polynomial of 
f(x) was equally smooth, which clearly conflicts with our intuition. 

1.8 The only other paper which has attempted to define smoothness was that 
by Elphinstone(7) who saw that the smoothing process is concerned with relations 
between neighbouring rates, or serial correlations. In place of the traditional 
acceptance of the third order of differences as the necessary medium for assessing 
smoothness, he devised a measure of roughness of any order, by defining 
roughness of the order k as the product of the exposed-to-risk and the square of 
the kth difference of the superimposed errors inherent in the crude rates, all 
divided by the factorial function 2kCk. The fact that he pursued this definition no 
further may have been because he was not wholly satisfied with it, or may have 
been because his paper was primarily concerned with summation methods of 
smoothing, about which he had plenty to say. The definition was not even given 
in his synopsis. Without answering “What is smoothness?” and “How smooth is 
smooth?” he has asked a third question “To what order should it be measured?” 
His was a brave try, but I find it not wholly satisfying; so, I suspect, did 
Elphinstone. 

1.9 To conclude this section I must refer once more to Barley. Mention has 
already been made of a quotation from his letter which first programmed me into 
a particular line of thought. The same letter described the whole process of 
smoothing as a matter of answering the question “When is a wave not a wave?” 
Unfortunately the letter no longer survives. But how much richer the profession 
would have been if it had had the benefit of a paper by Barley on this subject. 

2. A MATHEMATICAL EXCURSION 

2.1 It is tempting to see whether we can draw on the ideas of mathematical 
analysis for a more precise definition of smoothness. But books such as Apostol(1) 
do not use the term. Instead we find concepts of continuity and differentiability. 
What can we make of these? 

2.2 Let us start by restricting ourselves to functions in Cartesian co-ordinates. 
This eliminates the circle, even though it is a function in Polar co-ordinates. 
Mortality data expresses qx. or µx as a function of x; we can think of µx which is 
defined for all x in a suitable compact range. We can certainly say that a function 
that is not continuous is not smooth. A step function, discontinuous at a finite 
number of points, we would not consider smooth; how much less smooth is a 
function that is everywhere discontinuous, such as 

f(x) = 0 if x is rational, 
1 if x is irrational, 

even though it would look like two straight lines when drawn! 
2.3 Differentiability seems to be a second requirement. A function that is not 

differentiable at a finite number of points would feel ‘angular’; how much less 
smooth is a function that is nowhere differentiable, such as a realization of a 
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Wiener process, useful though such a function is in representing many types of 
continuous stochastic process. 

Continuous and once differentiable functions then: but how many orders of 
differentiability do we need? A function with a single discontinuity in the second 
derivative may pass as fairly smooth. Consider 

f(x) = –x2 if x<0 
x2 if x 0, 

which is continuous and differentiable once everywhere, but has a discontinuity 
in the value of f” (x) at x = 0. We might feel there was rather a conspicuous point 
of inflexion, but I do not think we would reject it as not being smooth. 

2.4 Most of the parametric formulae used to smooth mortality rates are such 
as can be differentiable any number of times. except for those that involve 
blending functions over some discrete range. which almost always have a 
discontinuity in the derivatives of some order at the joins. 

2.5 Cubic splines, however, have discontinuities in their third derivative at the 
‘knots’, though they are designed so that the first and second derivatives exist 
everywhere. Yet cubic splines look and feel smooth in practice. Indeed, the 
original ‘spline’ was a flexible thin metal strip that, when constrained in some 
way, would find a position that minimized its internal strain, and so in some 
physical sense got itself as smooth as it could in the circumstances. The fact that 
in some circumstances its comfortable position was in fact a cubic spline suggests 
that in some way these functions are ideally smooth, even though derivatives of 
all orders do not exist everywhere. 

2.6 Having derivatives of all orders everywhere is in any case not a sufficient 
condition for smoothness. Consider the simple sinusoidal function: 

f(x) = a sin (bx), 

which drawn on a suitable scale and with suitable values of a and b will look like a 
gently rolling smooth wave. If a is held constant, and b is increased the smooth 
wave form becomes more and more compressed and corrugated until the curve 
begins to look like a rasp, and eventually becomes a jagged oscillation. If at the 
same time a is reduced, the curve may keep its smooth wave form, but on a 
smaller and smaller scale, so that it begins to resemble a straight line, until we 
magnify the scale of x and f(x) again and see the original smooth wave we started 
with. 

2.7 This suggests that smoothness is a matter of scale. A well-polished piece of 
wood feels smooth to the touch. Through a magnifying glass we can see how 
serrated its surface may still be, on a different scale. A well-made road surface 
may give a smooth ride even to an ill-sprung car, but will feel very rough to the 
fingers and will hardly provide a smooth surface for a child’s toy car. 

2.8 If smoothness is then a matter of scale, are we not forced back to consider 
changes in the function over some discrete step size, compatible with the size of 
the fingers, or the car wheels? In effect, look at differences instead of differentials, 
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as indeed actuaries have traditionally done. The natural step size for mortality 
rates is a year. We know that within a calendar year the numbers of deaths may 
fluctuate irregularly because of chance, weather, accidents or epidemics; and we 
usually ignore this for actuarial purposes. Even if the same fluctuations could be 
shown to occur within years of age, we should still ignore them (except perhaps if 
we were dealing with events such as retirement, recruitment. etc. which may 
occur by definition at fixed ages). 

2.9 I shall therefore restrict myself for the rest of this paper to considering 
mortality tables, where qx is quoted at annual intervals. The only area where this 
is not satisfactory is just at and after birth, where we know that the incidence of 
deaths is not at all even over the first few days. weeks. and months of life. 

3. CRUDE DATA: THE NEED FOR SMOOTHNESS 

3.1 It is arguable whether a paper of this nature should first consider 
smoothness and then apply whatever criteria are deduced to whatever data are to 
be smoothed, or have been smoothed: or whether it should first consider the 
crude data and why these are not deemed already to be sufficiently smooth. 
Before we can do the latter we come back to the question posed in the last three 
words of § 1.1 and we risk going round in circles before we are off the ground. 
Inevitably the paper started with an historical section which could not avoid 
mentioning smoothness, so it seems appropriate now to look at the crude data 
thrown up by observations. 

3.2 The paper will be concerned in particular with mortality data, which are 
the data most frequently observed by actuaries, although there is no reason why 
similar considerations should not apply to sickness inceptions, withdrawals, 
marriages, obsolescence of machinery, and so on. The crude data derived from 
observations will usually consist of exposed-to-risk or populations, and actual 
deaths (or whatever event is being observed) and from these may be derived crude 
values of, for example, qx or colog px. 

3.3 These crude rates will tend to progress with greater or less regularity from 
age to age but such progression may be uneven, and may not always be in the 
same direction. Table 1 shows over a range of 40 ages the crude mortality rates at 
durations 2 and over underlying the A 1967-70 ultimate table, together with 
columns showing the first three orders of differences of these rates, the figures 
having been derived from the exposed to risk and actual deaths given in J.I.A. 
101, 160-2. The rates themselves show a tendency to decrease through most of 
the twenties of age and to increase thereafter, but these progressions are 
somewhat irregular. Considering the “relations between neighbouring rates” 
(see § 1.8), an examination of the first differences shows that they change sign 9 
times, while the signs of both second and third differences show more sign 
changes than non-changes. It is clear that however many columns of successive 
differences are calculated, the series will not become regular until, perhaps, 
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Table 1. Assured lives 1967–70, durations 2 and over: crude values of rates of 
mortality at ages 20½ to 59½ inclusive, and their first three orders of 

differences 

Age 

20½ 
21½ 
22½ 
23½ 
24½ 

25½ 
26½ 
27½ 
28½ 
29; 

30½ 

106qx 106 qx 106 2qx 

1,087 -237 155 
850 -82 57 
768 -25 -43 
743 -68 107 
675 39 -175 

106 3qx 
–98 

– 100 
150 

–282 
344 

714 -136 
578 33 
611 44 
655 -4 
651 11 

169 
11 

-48 
15 

-158 
-59 

63 

3 
-12 
-9 

662 14 –6 43 
31½ 676 8 37 -12 
32½ 684 45 25 97 
33½ 729 70 122 -351 
34½ 799 192 -229 502 
35½ 991 -37 273 
36½ 954 236 -185 
37½ 1,190 51 -135 
38½ 1,241 -84 567 
39½ 1,157 483 -368 

-458 
50 

702 
-935 

466 
40½ 1,640 115 98 -70 
41½ 1,155 213 28 -2 
42½ 1,968 241 26 75 
43½ 2,209 267 101 - 155 
44½ 2,416 368 -54 46 
45½ 2,844 314 -8 
46½ 3,158 306 480 
47½ 3,464 786 -468 
48½ 4,250 318 294 
49½ 4,568 612 -156 
50½ 5,180 
51½ 5,636 
52½ 6,432 
53½ ,088 
54½ .5 0 

456 340 -480 
796 -140 -34 
656 -174 1,080 
482 906 – 1,488 

1.388 -582 1,187 
55½ 8,958 
56½ 9, 64 

11,175 
11,91 
13,932 

806 
1,411 

742 
2.015 

605 
- 669 
1,273 

488 
-948 

762 
-450 

496 

– 1,274 
1,942 

57½ 
58½ 
59½ 
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thirty-seventh differences, when the column over this range of ages will have only 
three entries. 

3.4 So, the crude series is seen to be not very regular. Irregularities can arise (a) 
from errors in the data, (b) from the fact that the underlying mortality rates really 
are irregular, (c) from the fact that however large the observations, they only 
represent a sample from a hypothetical universe, or (d) from a preponderance of 
‘duplicates’, if numbers of policies rather than numbers of persons have been 
counted in the exposed-to-risk or the deaths. Let us examine these in turn. 

3.5 It is always hoped that errors in compiling the data will have been 
eliminated or reduced to insignificant proportions before the crude rates are 
calculated, otherwise the whole exercise is a waste of time. Where there are errors 
resulting from mis-statements of age. as in population censuses or national 
statistics derived from death certificates. their effects have usually, to some 
extent, been minimized by suitable grouping of the data into age-groups. It must 
be assumed that whenever errors of significant dimensions are present they will 
be corrected or, if this is not possible, the data will be discarded. 

3.6 If it is believed that for some reason the underlying probabilities really do 
have irregularities (rather than progressing regularly with age) it is necessary to 
decide whether for reasons of convenience it is desirable to smooth them out, or 
whether some irregularities should be retained in an otherwise smoothed series. It 
might be found inconvenient if an uneven series of probabilities resulted in life 
assurance premium rates which progressed unevenly or which decreased with a 
rise in age, either of which might occur if the rates of mortality employed were 
irregular. On the other hand, if it is thought that the true rates really do decrease 
with age this could be a feature which it would be wrong or even dangerous to 
ignore, particularly in the calculation of term-assurance premium rates. 

3.7 If the observed and limited data give uneven mortality rates and it is felt 
that mortality, being a mainly natural process. should not be expected to 
progress in jerks from age to age, this feeling can only be justified if it is thought 
that a much larger set of observations would give a more regular progression of 
probabilities; this gives rise to the admittedly arguable concept of an underlying 
smooth series which would have been observed if the data had been infinitely 
large, and to assess this underlying series it is necessary to try to eliminate the 
random errors which have arisen through the limitation of the observations. This 
concept has been criticized. and the critics presumably also disagree with § 11.55 
of Benjamin and Pollard. 

3.8 Duplicates cause wider deviations from this universe than would arise just 
from sampling errors, and their effects also need to be ironed out if it is desired to 
estimate the underlying rates. 

3.9 The three preceding paragraphs indicate the reasons why it is desirable to 
smooth the observed data, and these may be summarized as (1) convenience and 
(2) the need to estimate the true underlying probabilities. To some extent these 
could conflict. Where rates of mortality do fall with age, as in the case of deaths in 
the twenties of age when greatly affected by accidents, it is necessary to balance 
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the convenience of rates which do not decrease against the knowledge that the 
decrease is really there. There could be other respects in which local roughnesses 
inherent in the data may have to be retained in an otherwise smooth series. 
Whether such roughnesses are in fact retained depends upon the reliability of the 
data, upon the purposes to which the series is to be put, and to some extent upon 
the personal opinion or choice of the smoother having regard to all the relevant 
circumstances. 

3.10 It has already been implied that this paper is concerned mainly with the 
smoothness of probabilities, which have by definition to lie between zero 
(impossibility) and unity (certainty), and § 3.2 referred to other types of 
probability besides mortality. Reference will also be made briefly later to 
diverging functions. The view has been expressed to me that smoothing should be 
confined to probabilities or similar functions, such as qx, colog px, qx/px or µx. But 
as will be seen later, at times the function upon which the operation has been 
carried out has been I,. And it will also be seen that the resulting smoothness can 
depend upon the function chosen. 

4. METHODS OF SMOOTHING 

4.1 Mr E. A. Johnston wrote to me. in a private letter, that the methods (of 
smoothing) now in use seem to be more automatic and less sophisticated than in 
the days of Starke and Perks. This paper is not intended to be primarily about the 
different methods, but a later section will examine a number of mortality tables to 
see what the profession has accepted in the past as being sufficiently smooth, and 
thus to deduce what criteria have been applied. albeit subconsciously; and it will 
be necessary to recall by which methods they were smoothed. Accordingly the 
different possible methods will now be catalogued with particular reference to 
their possible smoothing properties. but it will be assumed that readers either 
already have a working knowledge. or can have recourse to Benjamin and 
Pollard’s textbook which covers most of them; also that, automatic or not, 
sophisticated or unsophisticated, the advantages and disadvantages of the 
various methods are understood. 

4.2 The graphic method consists of drawing a graph through or near the crude 
values of the function to be smoothed. Smoothness has been alleged to be 
achieved or improved by hand-polishing the values to make the third differences 
as small as possible. This means that the process is, in effect, attempting to fit a 
series of third difference curves, i.e. to fit overall what I choose to call a poly- 
polynomial. This method is not usually used for standard tables, but for the 
purpose of comparing with the examples to be given in a later section I have used 
the table of smoothed lx’s produced by Lambert.(9) A description of Lambert’s 
work was given by Daw(6) and I am grateful to him for making Lambert’s figures 
available to me. 

4.3 The summation method consists of applying a finite difference formula 
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involving successive summations to the crude values. The accepted ‘smoothing 
coefficient’ or ‘smoothing index’ is related to third differences, and it follows that 
the more powerful the smoothing index of the formula chosen, the closer the 
process comes to the fitting of a poly-polynomial. My example of a table 
smoothed by this method will be the A 1924-29 ultimate table. 

4.4 The kernel method recently described by Copas and Haberman(5) is an 
elegant variation of the summation method. which avoids the necessity of filling 
in the smoothed values at the two ends of the table. The figures published in their 
paper give rates of mortality to four places of decimals only-. and unfortunately 
they have been unable to supply figures to further places for the purposes of my 
examples. 

4.5 The method of osculatory. interpolation. which aims at achieving identical 
third differences at points where different sections of the smoothed function (or 
do I mean the smoothed curve’?) meet one another, is also a finite difference 
method which fits a poly-polynomial. Such a method, producing a series passing 
through (say) 22 pivotal points calculated from the crude values, and linking 7 
third difference curves at 6 points of intersection, is no doubt substantially 
smoother in its results than a 21st difference curve passing through the same 
pivotal values. The English Life Tables No. 10 will provide the figures for the 
examples. 

4.6 The spline method is a variation on the method of osculatory interpola- 
tion, but third differential coefficients take the place of third differences. Again 
the method is tantamount to the fitting of a poly-polynomial, and again it is an 
improvement on the fitting of a single formula with many parameters. Figures for 
the examples are taken from the English Life Tables No. 13. 

4.7 The curve fitting or parametric method, or the fitting of a formula, has 
sometimes been said to give ideally smooth results, but whether it does must 
surely depend upon which formula or curve has been fitted. Various standard 
tables are available for examples and I have examined FA 1975–78, A 1967-70, 
A 1949-52, HM, and a(90), using the aggregate table for HM and the ultimate 
tables for the others, as well as PA(90) and English Life Tables No. 12. These 
cover a wide variety of different formulae. The a(m) and a(f) tables have also 
been examined to show the effects of blending two curves. 

4.8 For the sake of completeness it is necessary to mention smoothing by 
reference to a standard table, which usually consists of adjusting the standard 
table values by the application to them of a simple formula. Clearly the degree of 
smoothness must depend very largely upon the smoothness of the standard table 
used, and for the purpose of this paper no example is included. 

4.9 It will be seen from the preceding paragraphs of this section that every 
method of smoothing is a device or an attempt, to fit or nearly to fit, a curve or 
series of curves, each of which follows a mathematical formula. This will no 
doubt be regarded as a controversial statement, particularly by actuaries who 
advocate the use of any of the above methods other than curve fitting. But it is 
submitted that it represents the facts, and helps in determining just what it is that 
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actuaries understand by smoothness. Perhaps the statement is merely repeating, 
at greater length, what I tried to say in 1950. 

5. CONCEPTS OF SMOOTHNESS 

5.1 Traditionally, the profession has considered smoothness to be in some 
way related to third differences, although consideration of divergent exponential 
functions makes it difficult to devise a suitable measure, and no reason has been 
given for the particular importance of this order of differences rather than, say, 
fifth or sixth differences. The fact that actuaries are usually concerned with 
functions which do not diverge or, if they do, diverge only slowly, has no doubt 
had some effect on the thinking. Before starting to write this paper, I inclined to 
the view that in a smooth curve the second differences should not change sign 
more than once unless the series had an inherent inflexion which was an essential 
feature needing to be retained; and that third, or some other order of, differences 
should be small when expressed as a ratio of the function itself, just how small 
needing to be determined. On re-reading Bizley it will be found that this was 
virtually what L. V. Martin said in the discussion, apart from the fact that he was 
referring to differentials rather than differences, and the discussion was not 
considering a higher order than the third. It is perhaps a tribute to Martin that his 
comments could affect one subliminally. The Appendix gives an elementary note 
on second differences. 

5.2 Let it be considered at this stage whether it is necessary to go even as far as 
third differences. Is it sufficient if second differences pass through zero as 
infrequently as possible, once for the curve itself (and, indeed, every straight line 
passes through zero once unless it is parallel with the axis) and twice for each 
inherent inflexion? The answer to this must be in the negative, as any number of 
sequences of second differences could be found to meet this criterion. So it has to 
be necessary to add that third differences should be as small as possible, and if 
this should prove to be not very small, then differences of some higher order 
should be small. 

5.3 The use of higher orders is implicit in the old suggestion that third 
differences should be either small or smooth. If they are themselves smooth this 
presupposes that a higher order becomes small, and this in turn leads to the 
concept that smoothness is not something one can measure by size, but 
something which can be expressed in terms of the order of differences at which 
they become insignificant. It has to be remembered that a difference is the result 
of adding and subtracting different values of the main function, after applying 
various weights; thus. the third difference is made up of four values with the 
weights – 1, 3, – 3, 1 and the fifth difference of six values with the weights – 1, 5, 
– 10, 10, – 5, 1. The differences can only be expressed to as many decimal places 
as are shown for the main function. and the error caused by the omission of the 
next decimal place becomes multiplied up as more differences are calculated. By 
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the time one gets to third, fourth or fifth differences at least one decimal place has 
to be discarded if one is not to retain an unreliable figure. 

5.4 Diverging series do not arise when probabilities are being examined, but 
they should be given brief consideration. Perhaps a criterion of smoothness 
should be applied to the reciprocal of a function when the value of the function 
exceeds unity, and to the function itself when less than unity; the slope of the 
function is of course the negative of the slope of its reciprocal at the point where 
the function has a value of exactly unity. Alternatively it might be said that a 
satisfactory degree of smoothness is obtained so long as successive differences 
tend to a curve no less simple than that of the function itself. 

5.5 In § 3.10 it was seen that smoothness could be affected by the function 
upon which it is decided to operate. And it follows from § 5.3 that smoothness can 
also depend upon the scale used, and some smoothness may be lost if insufficient 
significant figures are retained in the smoothed table. 

5.6 If all methods of smoothing are tantamount to fitting a curve or a series of 
curves, and thus ironing out as many irregularities or roughnesses as possible, the 
concept seems to be materializing that smoothness implies the following, or the 
tendency to follow, some rule or law. Indeed Bizley’s concept itself seems to 
assume that the function becomes differentiable after being smoothed, and 
Elphinstone’s concept of serial correlations implies some regularity or conti- 
nuity. 

5.7 Mention was made in § 5.2 of inherent inflexions. One of these frequently 
occurs in mortality tables around the age at which motor accidents suddenly 
reach important dimensions. i.e. age 17 in the United Kingdom. particularly in 
the case of male mortality; in this instance a non-natural set of occurrences causes 
a sudden saltum followed by a decrease in mortality over a number of years of 
age. Another, but quite different. disturbance occurs just after birth, causing the 
plunging semi-neckline in the mortality curve which defies differences to become 
small in the first few years of life. An inflexion could occur around retirement age 
if a table were constructed relating to employees and pensioners in a certain 
industry, and similar disturbances might be caused by different types of 
retirement, but these do not in fact apply to the PA(90) table which was based 
only on the mortality of lives who had retired at or after the normal retiring age, 
with mortality at lower ages filled in by a blend with assured lives’ mortality. 
There could be a disturbance in assured lives’ mortality tables around the more 
common maturity ages where the size of the data may have dropped rapidly with 
age. And in any female table there could be irregularities in the progressions with 
age as a result of childbearing deaths, or around the menopausal ages, but as each 
such effect would be averaged over a number of ages it would probably not 
appear as a saltus. There could possibly be roughnesses in the mortality of 
medically examined assured lives if these include cases where there was originally 
a non-medical proposal, but where as a result of some of the answers the 
underwriters requested an examination; the non-medical cases clearly accepted 
without examination would be excluded from the medical data, which would 
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thus suffer a degree of reverse selection over and above the selection by 
examination, but this effect would suddenly be eliminated if non-medical 
proposals are only accepted up to a certain age. 

5.8 To sum up, 

(a) A series is smoothed to the greatest degree possible if it is fitted to the 
simplest possible function consistent with statistical adherence to the 
crude data, the word ‘simplest’ implying that the function has the smallest 
possible number of parameters. (The analogy to Occam’s razor is evident.) 

(b) Second differences should pass through zero no oftener than once for the 
curve and twice for each acceptable inherent inflexion or roughness; this 
automatically excludes sinusoidal curves from acceptable smoothness. 

(c) There is no absolute measure of smoothness, but a series may be regarded 
as satisfactorily smoothed if successive differences follow a curve no less 
simple than the series itself. 

(d) As an alternative to (c), a series may be regarded as smooth to the k’th 
order if k’th differences are insignificant bearing in mind the decimal place 
at which the figures in the series itself have been cut off. 

(e) It follows from (d) that to some extent smoothness depends upon the scale 
used. 

(f) Smoothness can also depend upon the function upon which it is decided to 
operate. 

5.9 The next section will examine a number of standard tables of mortality to 
see to what extent they comply with these criteria, and thus to see whether the 
criteria fulfil what the profession has accepted in the past and the present. We 
may then begin to see how smooth is smooth, how small is small, when is a wave 
not a wave, and when is a blend not a blend. 

6. EXAMINATION OF STANDARD TABLES 

6.1 We now proceed to the examination of a number of tables, and in 
particular of their differences. In these examinations, it must be remembered that 
the last figure shown in the series to be differenced may, due to the cut-off, be 
anything up to .5 out. It follows that the last figure of the calculated second 
differences can easily be wrong by 1, and sometimes by 2, and accordingly when 
looking at the sign changes in second differences any values of 1 should be 
regarded as if they were zeros. and similarly any values of 2 so long as they are 
not too frequent. When assessing the sizes of third, fourth, fifth or sixth 
differences it is best to discard one decimal place (assuming the main series lies 
between 0 and 1) and to remember that even then the last figure may be out by 1 
or 2. Once a stage has been reached at which differences are insignificant there is 
no point in going any further as this would do no more than magnify the errors 
due to the cut-off, possibly making subsequent differences progressively larger. 
Another effect of the cut-off is that a smoothed series taken in the first instance to 



344 Criteria of Smoothness 



Criteria of Smoothness 345 



346 Criteria of Smoothness 

a small number of decimal places only, is automatically treated more leniently 
than one taken to, say, 7 or 8 decimal places, the differences of which will take 
more stages to reach the point of insignificance. 

6.2 Table 2 shows the second differences of the rates of mortality taken from 
certain published standard tables of mortality for assured lives, using the 
ultimate rates. The tables operated upon are the three most recent, i.e. FA 1975– 
78, A 1967–70 and A 1949–52, all smoothed by different parametric methods, 
A 1924-29 which was smoothed by a method of summation, and HM which was 
smoothed by yet another parametric method. To avoid a proliferation of figures, 
higher order of differences than second are not shown in the tables. Table 2a 
shows the second differences of the national logarithms of the rates of mortality 
from the same tables, and comparisons of the figures in Tables 2 and 2a will be 
made in Section 7. 

6.3 FA 1975–78 was the first standard table for female assured lives. The data 
were smoothed by the fitting of a 5-parameter formula, and although there were 
few statistics for the youngest ages the formula was used to produce values down 
to age 0. For this reason the plunging semi-neckline was not reproduced. It will 
be seen from table 2 that the second differences have only one sign change, which 
occurs near the top end of the table. If 105 3qx, is calculated (dropping the sixth 
decimal place) it will be found that it lies between 0 and 2 for all x up to 69, while 
105 4qx, lies within the same range for all x up to 88. Differences for the whole 
range from 0 to over 100 become insignificant if the process goes to the fifth 
order, 105 5qx, lying wholly between – 3 and + 7. The highest value, 7, occurs at 
ages 100-102 where it may be compared with 105qx, of approximately 50,000. It 
may certainly be said that the table has fifth order smoothness, but if we go back 
to third differences we shall see that the highest 105 3qx, is only 91 (disregarding 
the sign) which is less than 2 per 1000 of the corresponding qx. Can we then say 
that the table, in effect, has third order smoothness? I believe we can. 

6.4 A 1967-70, the latest standard table for male assured lives, was smoothed 
by the fitting of a 4-parameter formula, and tabulated to 8 decimal places after 
age 16. Up to age 16 the same number of digits were printed, but after the fifth 
decimal they were all shown as noughts so at this part of the table where a blend 
with national mortality was made (but again without the plunging semi-neckline) 
there were virtually only 5 decimal places. Second differences show three sign 
changes; two of these occur between ages 15 and 17 where an otherwise smooth 
curve has had to be affected by the sudden rise in accidental deaths at age 17, an 
inherent feature which was deliberately not smoothed out of the table. The 
resulting roughness has to be accepted, and the fact that rates of mortality 
decrease from age 17 to 28 does not otherwise affect the smoothness as the 
formula was chosen to accommodate this feature although it could not also 
accommodate the saltum at age 17. There is only one other sign change, which is 
satisfactory; this occurs at the top end of the table, and may be compared with the 
similar feature in FA 1975-78. (The reason for these single sign changes late in 
life is not obvious; could it perhaps be related to the need for the rate of change to 
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be toned down to prevent the probability ever exceeding unity?) It will be found 
that 107 5qx above age 16 is in single figures as far as age 96, the highest value of 
17 occurring at age 100, which may be compared with a value of 107 qx, of over 4 
million. But if, as in the case of FA 1975-78, we were to cut off at 105 3qx, we 
would find the highest value above age 16 to be 10 at ages 101–104 where 105qx, 
lies between 43,000 and 51,000. So over the adult range this table is even 
smoother than FA 1975-78, which was perhaps to have been expected from the 
smaller number of parameters in the formula. We are beginning to conceive 
smoothness as a relative quality by which tables may be compared with one 
another, as well as an absolute quality assessing A 1967–70 as also having third 
degree smoothness, or fifth degree smoothness if as many decimal places as have 
been published are taken into account. (For ages below 17, where only 5 decimal 
places effectively appear in the published series, it will be found that 104 3qx, is 
virtually zero up to age 14, the high values at ages 15 and 16 being due to the 
inherent roughness already noted as a feature of the data.) 

6.5 A 1949–52 was smoothed by a 5-parameter formula and tabulated from 
age 10, to 5 decimal places only, with the rate of mortality arbitrarily (as a result 
of the formula employed) constant from age 10 to 22. This was also a male 
assured lives’ table, and it was decided to iron out the decreasing mortality in 
young adult life. Ignoring two values of – 1 early in the table there was only one 
sign change in the second differences, again at the top end of the table. 104 3qx, lay 
between – 1 and + 1 throughout, so this table also had third order smoothness; 
the value of – 1 from age 88 onwards compares with 104qx, lying between 2,000 
and 4,000. The deliberate wave-cut already noted over the younger ages could be 
said to be due to a preference for smoothness and a continuously rising curve 
(after the range of constant rates of mortality) to the retention of what is now 
regarded as an inherent feature of male mortality. 

6.6 A 1924–29, also a table of male assured lives’ mortality, was smoothed by 
a summation formula with strong smoothing powers. Second differences change 
sign once only, on passing into the twenties of age, the feature at the upper end of 
the table observed in the later assured lives’ tables being absent. Perhaps the 
parametric methods used later have introduced a feature which is not really 
inherent in the data. and the summation formula has given a truer represen- 
tation; but this is only conjecture. 104 3qx (which is as far as the published 
decimal places for A 1924–29 allow us to go) is 0 or 1 throughout the range from 
10 to 96, so this table also has third order smoothness. 

6.7 The HM table. which was a much earlier assured lives’ table for males, was 
smoothed by another parametric formula, Makeham’s formula. Details are 
given by Woolhouse(12) from which it will be seen that the original smoothed 
function derived from the process was lx, from age 28 onwards. This was 
expressed to integers, the resulting integral values being taken as absolute, with 
the result that at the highest ages only one significant figure is valid. Nevertheless, 
second differences of the rate of mortality have been calculated and shown in 
table 2; the plunging semi-neckline is seen to have been reproduced at the 
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infantile ages, and the disturbance around age 17 shows three sign changes in the 
second differences; after that there is only one sign change (ignoring l’s) in the 
late twenties, and several in the nineties due to the cut-off to only one significant 
figure. Third differences are negligible up to age 86, after which they too are 
seriously distorted by the cut-off. 

6.8 Table 3 shows the second differences of the a(90) ultimate tables, and of 
the PA(90) tables. These were forecast tables based on projections from a number 
of experiences, smoothed by two-parameter formulae down to age 50, blended 
down to age 20 with A 1967-70 for males, and with figures adjusted from the 
A 1967-70 table for females. Second differences of the rates of mortality for a(90) 
males. ultimate, change sign only once, at the top of the table; for a(90) females, 
ultimate, they change sign twice in the twenties of age, possibly due to the blend, 
but there is no sign change at the top of the table; this sign change at the high ages 
is also present in both PA(90) tables, but the only other sign changes are in the 
male table in the twenties of age, where there is probably no call for comment, 
and in the fifties where a sudden negative second difference in a long row of 
positive differences causes two adjacent sign changes. This last feature has been 
caused by the adjustments at age 56 downwards, described in the preface to the 
tables, and clearly the blend has caused a local roughness. Third differences of the 
rates of mortality for the a(90) ultimate tables are small throughout, the highest 
values of 104 3qx, being 9 at ages 103–106 in the male table and 14 at 105–106 in 
the female table, compared with 104qx in each case of over 4,000; so at the third 
order these tables are not quite as smooth as the assured lives’ tables, but they 
certainly have fourth order smoothness. The PA(90) female table has similar 
third differences, as does PA(90) male from age 58 onwards, but the male table 
has relatively large third differences at ages 55 and 56, as well as in the twenties, 
again due to the blend. Table 3a shows the second differences of the natural 
logarithms of the rates of mortality from the same tables. 

6.9 Table 4 shows the second differences of the rates of mortality of the a(m) 
and a(f) ultimate tables, which were also forecast tables. The u(m) was smoothed 
by blending two Gompertz 2-parameter curves, the a(f) by blending two 
Makeham 3-parameter curves. in each case with arbitrary values below age 50. In 
both tables second differences are all positive (apart from an insignificant – 1 at 
age 49 in the female table) and the values of 104 3qx, are all negligible, so that the 
blends have achieved third order smoothness. Second differences of the 
logarithmic functions are shown in table 4a. 

6.10 The English Life Tables are based on data in which the stated ages cannot 
be checked, and indeed the census returns and death certificates are known to 
contain some inaccuracies. From time to time different systems of grouping the 
data have been adopted to minimize their effects. Table 5 shows the second 
differences of the rates of mortality of E.L.T. No. 13 (smoothed by the spline 
method), E.L.T. No. 12 (smoothed by fitting a 7-parameter curve), and E.L.T. 
No. 10 (smoothed by osculatory interpolation). All these tables were published 
to 5 decimal places only. The three male tables have two sign changes each in the 
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second differences in a run starting at age 16, due to the feature resulting from 
accidental deaths already mentioned in §5.4; a similar feature appears in the 
female tables, but to a scarcely significant extent. Otherwise, E.L.T. No. 13 has 
no second difference sign changes in either the male or the female table, both the 
E.L.T. No. 12 have one sign change late in the age range, while both E.L.T. No. 
10 have a wobble at age 86 causing two second difference sign changes, as well as 
a similar wobble at age 4. Apart from these wobbles, the reasons for which are 
not clear, the tables satisfy the second difference test; but it is interesting that it is 
the parametrically smoothed E.L.T. No. 12 which shows the late age sign 
changes already observed in the parametrically smoothed assured lives’ tables. 
E.L.T. Nos. 12 and 13 show the semi-neckline from ages 0 to 2 while in both 
E.L.T. No. 10 it continues through to age 5. E.L.T. Nos. 12 and 13 have no 
significantly large third differences, except for E.L.T. No. 13 males at ages 15 and 
16 due to the start of the accidental effect. E.L.T. No. 13, both tables, suffer from 
the wobble in the eighties where 104 ∆ 3qx at ages 85 and 86 respectively has values 
of –13 and +16 in the male table and –18 and +21 in the female table, 
compared with 104qx of between 2,250 and 2,500 for the males and 1,800 and 
2,000 for the females. If a ratio of between ½% and just over l% is acceptable then 
these tables all have third order smoothness, but it can be said that E.L.T. No. 10 
was not smoothed so powerfully as E.L.T. Nos. 12 and 13, having suspect 
smoothness in the eighties of age. Table 5a shows the second differences of the 
logarithmic functions from these E.L.T’s. 

7. DIFFERENCES OF NATURAL LOGARITHMS 

7.1 The function qx usually tends toward the shape of a Gompertz curve over a 
considerable range of ages, and this suggests that a lower (i.e. more powerful) 
order of smoothness would be demonstrated by the differences of the logarithm 
of the function. Tables 2a, 3a, 4a and 5a show the second differences of the 
natural logarithm of qx for all the standard tables so far examined. It will be seen 
from table 2a that after the childhood, early adult, and twenties periods of age, 
the second differences of In qx from FA 1975–78 and A 1967–70 only change by 
small amounts, and the third differences accordingly are all small. These two 
tables thus display third order smoothness in the logarithmic functions over most 
of the ages, and second order smoothness over a considerable range. Similar 
third order smoothness appears in A 1949–52 only from the middle forties 
upwards, and in A 1924–29 from the late thirties; while HM shows second order 
smoothness between ages 50 and 89, irregularities elsewhere being partly due to 
the way qx was derived from integral values of lx. 

7.2 Table 3a shows that the four annuitant and pensioner tables have third 
order smoothness in the logarithmic functions from the late thirties, apart from 
the hiccup already observed in PA(90) males around age 56, and these four tables 
also have second order smoothness over a considerable range. The a(m) and a(f) 
tables (see table 4a) show a number of irregularities due, no doubt, to the blends 
involved in their construction. 
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Table 4. Second differences of rates of mortality according to the a(m) and a(f) 

Age 
x 
20 
21 
22 
23 
24 

105 ∆ 2q x 
a(m) ult 

1 
0 
0 
1 
1 

1 

1 

25 1 
26 0 
27 0 
28 1 
29 0 

1 

1 

30 1 
31 0 
32 0 
33 1 
34 0 

1 

1 

35 1 
36 0 
37 0 
38 1 
39 0 

1 

1 

1 40 1 
41 1 
42 1 
43 1 
44 2 

1 

45 2 
46 2 
47 3 
48 5 
49 28 

1 

1 

50 12 
51 9 
52 7 
53 6 
54 10 

3 
1 
8 
1 

55 8 
56 8 
57 14 
58 9 
59 14 

105 ∆ 2qx 
a(f) ult. 

0 
0 

0 

0 
0 

0 

0 
0 

0 

0 
0 

0 

0 
0 

0 

0 

0 
–1 

6 
6 
7 

6 
8 
11 

tables 

Age 

60 
61 
62 
63 
64 

105 ∆ 2qx 105 ∆2 qx 
a(m) ult a(f) ult. 

10 9 
16 13 
16 14 
14 13 
20 16 

65 17 22 
66 22 18 
67 21 26 
68 23 27 
69 28 31 

70 48 34 
71 66 37 
72 74 43 
73 92 49 
74 99 55 

75 51 59 
16 35 68 
71 26 75 
78 15 82 
79 9 110 

80 57 156 
81 67 101 
82 70 69 
83 75 46 
84 79 61 

85 84 69 
86 85 75 
87 91 75 
88 93 80 
89 96 79 

90 
91 
92 

102 80 
100 82 
105 84 
104 81 
105 82 

93 
94 

95 106 80 
96 103 81 
97 98 72 
98 96 74 
99 89 67 

100 79 60 
101 73 57 
102 59 56 
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Table 4a. Second differences of natural logarithms of rates of mortality according 
to the a(m) and a(f) tables 

Values of 103 ∆ 2ln qx according to: 

Age Age 
x 
60 
61 
62 
63 
64 

–3 2 
5 
3 
3 
3 

1 –1 
1 

1 65 
66 
67 
68 
69 

a(m) ult 
–1 
–2 
–3 

a(f) ult. 
0 

–2 
–4 

1 
–2 

a(m) ult a(f) ult 
20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

–1 
1 

1 
1 30 

31 
32 
33 
34 

3 

5 

3 
2 
3 
1 
2 
2 
2 

2 
0 
1 
1 
3 

5 

35 
36 
37 
38 
39 

1 0 

1 

40 
41 

2 
0 

0 

0 
–2 
–2 

0 
–2 

0 
–1 
–3 

5 
–3 
–3 

2 
–3 

0 
0 
0 

4 

70 
71 
72 

–2 
–1 

0 
–2 

6 

1 
–2 

73 
74 

6 
4 

75 –3 
76 –4 
77 –6 
78 –6 
79 –6 

1 80 
81 
82 
83 1 
84 

0 
–1 

0 
0 

–2 

–2 
–2 
1 

0 
–3 

–2 –1 

0 
–1 
–2 

0 
0 

–1 
2 

–2 
–6 
–1 
–4 

1 

2 
1 
7 
0 
4 

–5 
–3 
–3 
–3 
–2 

–4 
0 

–4 
–1 
–3 

–2 
–1 

42 
43 
44 –1 

0 
0 

–2 

45 2 
46 3 
47 –5 
48 7 
49 26 

85 1 
86 –2 
87 
88 
89 

90 
91 
92 
93 
94 

3 
5 
2 
4 
5 

95 
96 
97 
98 
99 

–1 

100 
101 
102 

0 
–1 

0 

–2 
0 

–1 
–1 
–2 

0 
–2 

–3 

50 
51 
52 
53 
54 

6 
2 
0 

–2 
1 

0 
–1 

55 
56 
57 2 
58 –2 

–3 
–2 –2 

–1 

–2 
–2 
–1 

59 2 –1 

–2 
–3 

0 
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7.3 From table 5a we see that E.L.T. Nos. 12 and 13 settled down to third 
order smoothness from the middle forties, E.L.T. 12 having second order 
smoothness in the upper half of the table. E.L.T. No. 10 similarly had third order 
smoothness over the same range, apart from the irregularity around age 86. 

7.4 It does thus seem to be borne out that, particularly for the tables smoothed 
parametrically, the logarithms of the rates of mortality display a lower order of 
smoothness than the rates themselves. But this is not put forward necessarily as a 
reason for preferring the parametric method. 

8. EXAMINATION OF OTHER TABLES 

8.1 Copas and Haberman give in table 2 of their paper a number of smoothed 
series, lettered A to M inclusive, all derived from the same crude rates of 
mortality. B to H inclusive were smoothed by graphical or parametric methods. 
Series A gives their first smoothed series obtained by the kernel method and series 
J to M inclusive give the results of further smoothings by this method derived by 
taking different values of their constant h, apparently after considering the results 
of the parametric smoothings. Table 6 shows the second differences of series A, L 
and M. Ignoring, as before, values between –2 and +2, it will be seen that A and 
M each have 6 sign changes in the second differences but L has none. The rates 
given in their paper are expressed as 104qx and accordingly third differences can 
only be claimed to be shown as far as 103 ∆ qx, at which they are all zero for series 
L and all between –2 and +2 for A and M. Whether it is right to ignore values of 
–2 or +2 when the rate itself is only available to two significant figures is 
doubtful, but Copas and Haberman can certainly claim perfect third order 
smoothness in series L. Whether they can also claim to have made out their case 
for the use of the method when the smoothing is demonstrated over a range of 36 
ages only, and to 4 decimal places only, is arguable, particularly as L seems to 
have been derived indirectly from one of the parametric series. Dr Haberman 
informs me that the data used are not available for a larger range of ages, and that 
there would be complications in providing the series to more decimal places, but 
the exposition of the method seems to need a smoothing of a set of data over a 
complete range of ages, not hitherto smoothed by any other method, and with the 
results shown to at least five significant figures. Until this is done, the case for the 
method must be regarded as not proven. 

8.2 Table 7 shows ∆ 2lx derived from Lambert’s graphical smoothing of a life 
table. It could be argued from §5.4 that it would have been better to operate on 
the reciprocal of lx but, rightly or wrongly, it has been thought appropriate to use 
Lambert’s figures direct, as lx is not a divergent series, and whether or not it 
exceeds unity depends entirely upon the radix. The radix could have been unity, 
with lx shown as a fraction throughout, and indeed this might have had the result 
of more significant figures being retained. It will be seen that there are two sign 
changes in the second differences at age 17 and in the thirties, indicating that even 
in the eighteenth century there was some inflexion around these ages. If it is 
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Table 6. Second differences of rates of mortality from 

363 

Age 

x 
35 
36 
37 
38 
39 

40 
41 
42 
43 
44 

45 
46 
47 
48 
49 

50 
51 
52 
53 
54 

55 
56 
57 
58 
59 

60 
61 
62 
63 
64 

65 
66 
67 
68 

miscellaneous* tables 

C & H C & H 
Series A Series L 
104 ∆ 2q x 104 ∆ 2qx 

–2 2 
0 –1 
1 2 
4 –1 
2 1 

2 0 
1 0 
1 –1 

–6 1 
–6 –1 

–2 1 
2 1 
5 0 
3 2 
4 0 

0 2 
2 2 

–1 0 
–1 2 

1 1 

4 2 
3 1 

–3 1 
–2 2 

4 2 

2 1 
0 3 

12 1 
12 3 

–6 2 

–15 3 
0 3 

13 3 
4 4 

C & H 
Series M 
104 ∆ 2qx 

0 
0 
1 
0 
0 

0 
1 

–6 
–6 

–3 
6 
5 
0 
3 

–4 
7 

–1 
1 
1 

0 
2 
2 
1 
2 

1 
13 
–17 
12 
3 

2 
4 
2 
5 

* Taken from Table 2 of Copas and Haberman(5) referred to in 
headings as C & H. 

thought that the run of + l’s in the forties and of –2’s in the fifties are too long to 
be ignored there are two more sign changes. Third differences are negligible after 
the semi-neckline, so the lx column has third order smoothness, but if qx is 
calculated it will be found that the cut-off has had the same effect as in the HM 
table. 
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Table 7. Second differences of Lambert's 1x table 

Age Age 
x ∆ 2lx 
0 2,000 
1 270 
2 107 
3 64 
4 29 

5 24 
6 20 
7 16 
8 12 
9 10 

10 8 
11 5 
12 3 
13 3 
14 2 

15 2 
16 2 
17 –3 
18 –3 
19 –4 

20 –5 
21 –6 
22 –4 
23 –4 
24 –3 

25 –2 
26 –2 
27 –1 
28 –1 
29 –1 

30 –2 
31 –1 
32 –2 
33 –2 
34 –1 

35 
36 
37 
38 
39 

–1 

1 
0 
1 
1 
1 

40 
41 
42 
43 
44 1 

45 
46 
47 
48 
49 

–1 
–1 

50 
51 
52 
53 
54 

55 
56 
57 
58 
59 

60 
61 
62 
63 1 
64 2 

65 
66 
67 
68 
69 

∆ 2lx 
0 

0 

1 

0 
–1 

–2 

–2 
–2 
–2 
–2 
–2 

–2 
–2 
–2 
–2 
–2 

–1 
–2 
–2 

3 
4 
3 
4 

Age 

70 
71 
72 
73 
74 

∆ 2lx 
3 
2 
1 
2 
2 

75 2 
76 3 
77 4 
78 4 
79 6 

80 6 
81 7 
82 8 
83 10 
84 7 

85 
86 
87 
88 
89 

90 
91 
92 
93 
94 

95 
96 
97 
98 
99 

100 
101 

5 
3 
1 
1 
0 

0 
0 
1 
0 
0 

1 
0 
1 
1 
1 

2 
0 

3 

9. CONCLUSIONS 

9.1 In summing up the smoothness tests made in sections 4 and 5 it is necessary 
to bear in mind the considerations of §6.1 and, in particular, that the greater the 
number of decimal places and significant figures given in the original series, the 
more severe will be the tests. In the ridiculous extreme, if only one significant 
figure is shown the series can only go up in integral steps, there would be no real 
curve, and it would be impossible to test for smoothness. 
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9.2 No attempt has so far been made to quantify precisely how small the ratio 
between the nth difference of a probability and the probability itself ought to be 
for the smoothness to be accepted as being of the nth order. This must be a matter 
of personal judgement, in the same way as personal judgement determines 
whether statistical significance should be measured at the 5%, the 1%, or any 
other level of probability. If criterion (d) of §5.8 rather than criterion (c) is being 
adopted, a possible suggestion might be that a ratio of 1: 7n should be the target 
for nth order smoothness, by the argument that 1 is small in relation to 7 or more 
and that the differences should become successively smaller. On that basis the 
assured lives’ tables examined all have third order smoothness except for HM 
after age 86, as do a(m), a(f) and a(90) males ultimate; while a(90) females 
ultimate and PA(90) females have fourth order smoothness. PA(90) males has 
third order smoothness from age 58 onwards, but below age 58 the smoothness is 
distorted by the blend. In the same way E.L.T. Nos. 12 and 13, males and 
females, all have third order smoothness after the first few years of life (apart 
from E.L.T. No. 13 males at ages 15–16) but E.L.T. No. 10 could only claim 
fourth order smoothness. There seems to have been quite a high level of 
consistency by the profession in its acceptance of what it believes to be 
smoothness in its standard tables. 

9.3 The tables in Copas and Haberman are difficult to test because of the small 
number of decimal places (and significant figures) shown, but as far as can be 
judged the series L has third order smoothness. I would like to see their method 
used in production of series to, say, 5 or 6 decimal places, to see how it would then 
stand up to the smoothness tests I have suggested. 

9.4 It is not claimed that there is anything original in this paper, which has 
aimed at bringing together a number of different ideas, at endeavouring to 
express them in the form of acceptable criteria of smoothness, and at testing 
various tables on the bases of these criteria and on a suggested quantification. 
But it is thought that the profession and its students need these ideas to be 
brought out of the purely intuitive protective cocoon in which they have lain in 
the past, and consolidated into something tangible. 

9.5 It was stated in §1.1 that I would avoid the use of a certain word and its 
derivatives. According to Chambers’ Twentieth Century Dictionary ‘to gra- 
duate’ means to divide into regular intervals or to mark with degrees. According 
to the Shorter Oxford English Dictionary (the one with some 2,500 pages) it 
means to divide into degrees or arrange in gradations (a gradation being a series 
of successive steps) or to change gradually; and ‘gradual’ means advancing step 
by step. (There are other definitions, but these are the main ones.) What is not 
being done in the processes we have been considering is arranging the series in 
steps, as in the ridiculous example instanced at the end of §9.1. What is being 
done, and only what is being done, is the smoothing process. That being the case, 
it becomes necessary to define ‘smooth’ and ‘smoothness’. But this is where we 
came in. 

9.6 My grateful acknowledgements go to Professor A. D. Wilkie and to Mr R. 
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H. Daw for many helpful suggestions which have been incorporated into the final 
draft of the paper. 
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APPENDIX 

ALGEBRAIC NOTE ON SECOND DIFFERENCES 

This somewhat elementary note is appended for the benefit of those who may 
have forgotten just what second differences are. As the main paper has been 
largely concerned with rates of mortality the use of the symbol qx will be retained. 

The second difference ∆ 2qx = qx+2–2qx+1+q, 

If A2qx is positive. then ½(qx+2+qx) is greater than qx+1 and it follows that at 
this point the qx curve is convex when viewed from the x axis. In the same way if 
A 2qx is negative the qx curve is concave when viewed from the x axis, and if ∆ 2qx is 
zero then these three values of qx are in a straight line. It follows that a sign 
change in ∆ 2qx indicates an inflexion in the qx curve. This is why second 
differences are so important in assessing smoothness. If values close to zero are 
taken as zero then a small inflexion is being overlooked; this does not-matter so 
long as the inflexion is no larger than could have been caused by cutting off at the 
last decimal place retained in the accepted values of qx. Clearly the smaller the 
scale, and the fewer the decimal places retained. the rougher will the curve be, and 
the more important the inflexions which have to be overlooked because of the 
smallness of the scale. 

The traditionally accepted shape of the qx curve contains a change from 
convexity to concavity fairly high up the age scale. Precisely where it appears in 
the smoothed curve may not matter as it occurs at ages where data are usually 
relatively scanty. Those smoothed curves where this feature is absent have 
possibly had an inherent feature removed in the smoothing process (inflexion- 
cutting rather than wave-cutting). And those curves where it is retained have a 
second difference sign-change late in life. Alternatively, if the traditionally 
accepted shape of the qx curve is the result of the use of Makeham or 
Makehamesque curves, and if the inflexion is not present in the data (but has 
been created for the purpose of curve fitting) then the curve fitting process has 
distorted the underlying curve. 




