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CURRENCY RISK MODELS IN INSURANCE: 
A MATHEMATICAL PERSPECTIVE 

SAMUEL H. COX AND HAL W. PEDERSEN 

ABSTRACT. In this paper we consider a general two-country model 
of exchange rate dynamics in which interest rates are stochastic. 
Special cases of this model are also illustrated in which the inter- 
est rates are constant in each country and when interest rates are 
Gaussian in each country. Uncertainty in this gloabl economy con- 
sists of the exchange rate between the two countries and the noise 
in interest rates in each local economy. This model provides an im- 
portant tool for actuaries dealing with global risk which includes 
valuation of currency derivatives (forwards, futures, options and 
swaps), frequency/severity claims model with exchange rate risk 
in the claim size (i.e. the claims are paid in a foreign currency), 
valuation of individual insurance contracts written in foreign cur- 
rency, and valuation of general interest sensistive claims in foreign 
currency. Typical examples of practical importance include ma- 
rine insurance, health insurance, and life insurance. The simple 
case of the model for which interest rates are constant in each lo- 
cal economy is used to explain and analyse the “Siegel paradox” 
[32] (or lack thereof) which we describe because it has confused 
some readers of the 1970 era currency risk literature. We illustrate 
the model with the calculation of forward prices, currency options, 
a simple life insurance contract, and a marine ineurance policy. 
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1. THE BLACK-SCHOLES CURRENCY MODEL 

1.1. Introduction. In this section we consider a simple two-country 
model in which interest rates are fixed. The only source of uncertainty 
is the exchange rate between the two countries. The model has been 
described elsewhere. Baxter and Rennie [1] give a good introduction. 
Garman and Kohlhagen [13] develop foreign currency option values for 
this model. Our aim is to write a self-contained account for actuar- 
ies which includes valuation of derivatives (forwards, futures, options 
and swaps) as well as valuation of insurance products with embedded 
currency risk. We show how to estimate model parameters from obser- 
vations. The model explains the Siegel paradox [32] (or lack thereof); 
we describe this briefly because it has confused some readers of the 
1970 era currency risk literature. 

We assume that the reader is familiar with the Black/Scholes model 
for European options on a stock as described in Hull [16], Musiela and 
Rutkowski [20] or Cox and Rubinstein [10]. 

1.2. Model Description. Suppose the two currencies involved are 
US dollars and British pounds (also called sterling). These are merely 
convenient labels – we could call the currencies 1 and 2. There is 
nothing special (as far as the model is concerned) about the particular 
countries except that there is a well-developed dollar – pound currency 
market. The Black/Scholes model for stock options specifies two basic 
securities: a default free constant interest rate bond and a risky stock. 
All investors have the same information, skills, access to the markets, 
etc. Moreover trading takes place continuously and there are no trans- 
actions costs or taxes. Finally, there are no arbitrage opportunities in 
the market for the securities and their derivatives. We assume the same 
here, but for emphasis (and because this confuses some students) we 
say again there is only one type of investor in this international market. 
All traders have access to all securities whether they are denominated 
in dollars or pounds. In this model the terms “dollar investor” and 
a “pound investor” merely refer to the denomination of the security 
– dollars or pounds – that the investor is considering. There are no 
distinctions between domestic and foreign investors as far as the model 
is concerned. 

The dollar bond is denoted B(t) = ert where r is the continuously 
compounded default free interest rate for dollars. One dollar invested 
at time t is worth B(T)/B(t) at time T. The sterling bond is denoted 
D(t) = eut where u is the continuously compounded default free rate 
for pounds. The dollar value of 1 pound at time t is denoted C(t) and 
we assume that C(t) is a geometric Brownian motion. There are two 
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equivalent mathematical descriptions of C(t). The first is to write 

where is a standard Brownian motion. The second is to 
require that C(t) satisfies a stochastic differential equation 

subject to an initial condition C(t) = Co. In each description the 
parameters µ and are given constants, called the drift and volatility 
respectively. The two descriptions are equivalent; this follows from 
ItÔ ’s formula [22, page 37]. Baxter and Rennie discuss this at a less 
rigorous level [1, page 60]. 

We assume that everyone uses the same Brownian motion 

and the same parameters and µ. There are two dollar denominated 
investments: B(t) - the dollar bond and C(t)D(t) - the dollar value 

of the sterling bond. Similarly, there are two sterling denominated 
investments, D(t) - the pound bond and B(t)/C(t) -the pound value 
of the dollar bond. Let P(t) = B(t)/C(t). The dollar value of the 
pound bond can be written in terms of the Brownian motion 

or as a differential equation: 

1.3. Brownian Motion. Here briefly are some of the facts about 
Brownian motion that we will use. The details are in Öksendal [22] 
and Karatzas and Shreve [17]. We can think of Brownian motion as 
the space C of all continuous functions equipped with 
a probability measure P satisfying conditions (i) - (iv) below. An el- 
ement W of C is called a sample path, or realization of the Brownian 
motion C. An abuse of the notation is common - often we say W is a 
Brownian motion when in fact W is a sample path. Similarly, we use 
shorthand notation such as to denote the set of sample paths 

for which The u-algebra F of subsets of C generated 
by sets of the form for various t and w, are assumed to be 
P-measurable. For a given t, the sub-algebra generated by 
for various w, is denoted by Ft. These are the defining conditions for 
Brownian motion: 

(i) W(t) is a continuous function oft for all 
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(ii) For all 

This suggests another interpretation: W(t) is a random variable 
with a normal distribution having mean zero and variance t. 

(iii) For all t > 0, 

We can interpret this to mean that W(s + t) - W(s) is a normal 
random variable with mean 0 and variance t. 

(iv) For all the events 
and are P-independent. This means that the increment 
W(t+s)- w(t) is independent of values the process takes at earlier 
times. Another way of saying this is that W(t + s) - W(t) and 
Fu are P-independent for and s > 0. 

Two measures P and Q on C are said to be equivalent if, for all 
A F, 

P(A) = 0 if and only if Q(A) = 0. 

A very useful and elegant theorem, called the Cameron-Martin-Girsanov 
Theorem, provides equivalent Brownian motions, i.e., equivalent mea- 
sures on C. We can make an equivalent measure by changing the drift. 
Let be a given constant and define W(t) = W(t)+ for This 
defines a transformation of the space C onto itself. The theorem says 
there is an equivalent measure Q for which the transformed sample 
paths satisfy the conditions (i) - (iv) with P replaced by Q. More- 
over, the Q-expectation of an FT-measurable random variable YT can 
be calculated in terms of the P-measure: 

(4) 

where 

The random variable 

is called the Radon-Nikodym derivative of Q with respect to P. There 
is a converse to the theorem: If Q is equivalent to P, then there is a 
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positive F-measurable function for which 

for all When ø is given, then we can identify the Rsdon- 
Nikodym derivative – it is just ø – and when ø has the explicit form 

then the process is a 
Q-Brownian motion. Moreover, in this case Q-expectations can be 
calculated by the formula: 

Because is a P-martingale, this simplifies 
to 

We illustrate the change of measure with the dollar value of the pound 
bond S(t). Using the Brownian motion representation (3) we can write 

Now substitute W(t) where The new 
representation is 

which turns out to be convenient for calculations. For example, relative 
to the new measure Q we have 

Since is Brownian motion relative to Q, then using the 
moment generating function’ of the normaI distribution we obtain 

Therefore, relative to the Q messure the expected time T value of 1 
dollar invested in the pound bond at time t is 

at time t. The P expectation is different. 

1Recall that for a normal random variable X,the moment generating function of 
X.is 
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We frequently run into a another form with ø given by 

where is a Q-Brownian motion. In other words, we 

switch from the real-world (or physical) measure P to an equivalent 
pricing measure Q. Then we switch to another measure QT which is 
convenient for calculations regarding securities maturing at time T. 
This second change of measure formally is just substituting one Brow- 
nian motion for another and one parameter for another. In this case, 
the formula relating the expectations takes this form, letting QT denote 
the new measure: 

The corresponding transformation of the Brownian motion is given by 

This is a good place to introduce a separation theorem - an applica- 
tion of the converse to the CMG theorem. The Q-expectation of the 
product S(T)YT can be written as the product of the Q-expectation of 
S(T) and the QT-expectation of LT where QT is the equivalent mea- 

sure corresponding to Here is how this goes: 
First write as 

and then substitute in the expectation: 

This is very useful because it allows us to calculate the QT-expectation 
by merely adjusting the drift of the Brownian motion. Here is a sum- 
mary of the changes of measure in terms of the three representations 
of the dollar value of the sterling bond S(T), conditional on FT: 

197 

(5)

sometimes change measures twice in the same calculation. First we



In each representation is lognormal. The volatility parameter 
is the same for each representation. The the drift parameters for the 

representations are, respectively, 

Apply this to calculate the conditional expectations: 

The Q-measure is sometimes called the dollar risk-neutral measure 
because an investment of 1 dollar in S(t) is expected to accumulate 
to er(T–t) using the Q measure. The equivalent differential equation 
representations of S are as follows: 

Similarly, the three Brownian motion representations of the exchange 
rate, conditional on Ft, are as follows: 

We can work with the pound denominated investments rather than 
dollar denominated ones. Here is how turns out. The pound value of 
a dollar is C(t)–1. Using the parameterization given by equation (1), 
we have 

which we re-write with parameters and In the 
alternative representation, the dollar value of a pound is 

which is the same form as (1). Now we can simply write down from 
(6) the pound risk neutral representation of the pound value of a dollar 
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B(t)C(t)-1 which we denote by p(t): 

(physical) 

(pound risk-neutral) 

(T -ma tu r i t y )

The pound risk neutral measure is obtained by the transformation 
where 

We note that the two risk neutral measures generally have different 
expectations. This is the basis of the so-called Siegel paradox, which 
we discuss later. When it is necessary to distinguish the two risk neutral 
measures we use Q$ for the dollar risk neutral measure is denoted and 
Q£ for the pound risk neutral measure. When no confusion can arise, 
Q denotes the dollar risk neutral measure. 

The CMG theorem and its converse simplify calculations. A process 
where f(w) is a given function can be made into a 

Q-martingale by changing from P to Q. This means that its drift is 
zero relative to Q. We will illustrate this shortly. We use the converse 
when we can identify the variable Ø. We illustrate this below also. 

Now we move on to analysis of derivatives in the Black/Scholes cur- 
rency model. 

2. DERIVATIVES 

We discuss three derivative investments or securities in detail: for- 
ward currency contracts, European currency options, and currency 
swaps. We briefly discuss futures contracts and American options. 
The currency markets such as the Philadelphia Stock Exchange have 
European style options (as well as American style options). In addition 
the currency markets provide both exchange traded futures contracts 
as well as forward contracts arranged through financial intermediaries 
such as banks and insurance companies. We have real examples of 
published prices which can be used to calibrate the model. 
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2.1. Derivative Security Pricing. Prices which avoid arbitrage op- 
portunities can be calculated as discounted expected values relative 
to an equivalent measure. Suppose we are working with dollar invest- 
ments. For convenience, the basic discounted dollar securities B(t)/B(t) = 
1 and S(t)/B(t) should be martingales (i.e. have zero drift) relative to 
the new measure. The discounted dollar bond has zero drift for any 
measure, so we take a look at the other process 

We see that if we define as 

then the equivalent measure Q defined by the transformation 

makes Z’(t) a martingale. Just substituting for W(t) gives the repre- 

sentation in terms of 

From this we see that Z(t) is a Q-martingale. Let be 
a given function and consider a contract calling for a single payment 
of f(S((T)) at time T. Let Then 
is also a Q-martingale and by the martingale representation theorem 

has the form Now 
following the Black/Scholes procedure, we make a portfolio of Ø (t) 
dollars invested in S(t) and invested in the 
dollar bond. The value of the portfolio is 

The portfolio replicates 
the derivative 

and is self-financing since 

The self-financing equation shows that changes in the portfolio value 
are due entirely to changes in the market value of the two dollar in- 
vestments and does not require dollars from other sources. Therefore, 
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to avoid arbitrage, the price of the portfolio at t is given by 

If an investor pays some other price for the derivative, she or he pro 
vides an arbitrage profit (or obtains one) to (or from) another investor. 
The Q-measure is a convenience now that we see the pricing implica- 
tions. We could always rewrite the expectation in terms of the original 
distribution if we preferred it. This price has nothing to do with our 
beliefs about the expected (relative to P) values of future exchange 
rates. Even if p + µ > r so that we expect S(t) to perform better than 
B(t) we would not price derivatives differently. 

2.2. Forward Prices. A forward contract is an agreement made at 
time t to buy one pound at time T. The forward price F(t,T) is 
determined at time t so that the contract cannot provide an arbitrage 
opportunity. Consider two investments. First, look at the forward 
market, note the price F(t,T), and invest just enough in the dollar 
bond to accumulate to the forward price at time T. That it, invest 
F(t, T)e-r (T–t) in dollar bonds. At time T, pay F(t,T) dollars for 
1 pound. Therefore the present value at time t of a pound paid at 
time T is F(t,T)e-r(T–t). On the other hand the present. value at 
t in pounds of 1 pound paid at time T is e–u(T–t), which is worth 
e–u(T-t)C(t) dollars. The two present values have to be equal or there 
is an arbitrage. Therefore, 

and 

The relation comes from the arbitrage property. The probability mea- 
sures, P and Q, are not involved. However, we can see from the dollar 
risk-neutral representation (7) of the spot exchange rate C(T) that the 
Q$ expectation of C(T) is equal to F(t, T): 

The analog for the forward price of 1 dollar G(t,T) is obtained by 
interchanging currencies. The result is 

Now consider a forward contact opened at t = 0 to buy 1 pound 
at t = T. Let F = F(O,T) = . What is the value of the 
buyer’s position at time t? The payoff function is f(c) = c - F since 
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at time T the buyer pays the agreed price F and gets a pound worth 
C(T) = S(T)/D(T) = e-uTS(T). Hence the value at time t is 

The buyer agreed at time 0 to pay F for a pound at time T. If the 
market price of a pound delivered at time T has increased (F(t, T) > 
F), then the buyer’s forward contract has a gain, a positive value. It 
could be sold for the price given by (16) without creating an arbitrage. 
On the other hand, if the price declines (F(t,T) < F), then the buyer 
would have to pay another person -V(t) to assume the buyer’s role. 
If the buyer holds the forward contract to maturity, then the gain (or 
loss) F(T,T) - F = C(T) - F is realized at time T. Now we take a 
brief look at a closely related contract - currency futures. 

2.3. Futures. A futures contract, as far as we are concerned here, 
differs from a forward contract only in that the contract requires daily 
marking-to-market. The gains or losses relative to the current futures 
price are realized daily rather than at time T. After a gain or loss 
is realized the futures contract is reset to the current futures price. 
LetFm(t,T) denote the futures market price2 in dollars at time t for 
1 pound delivered at time T. It turns out that for models with a 
deterministic dollar bond, the forward and futures prices of pounds are 
equal. This is a result of no arbitrage pricing. We illustrate this now 
for a simple futures contract opened at time t, requiring delivery of 1 
pound at time T, and requiring marking - to - market at a single time 
s, t < s < T. For t > s, the contract is identical to a forward contract 
and so forward and futures prices are identical after time s. Consider 
the buyer’s position at t < s. The buyer and sell consider at time t 
two future cash flows: 

Fm(s,T) - Fm(t) at time s and 

Fm(T,T) - Fm(s,T) at time T. 

Since the futures contract essentially becomes a forward contract at 
time s, then Fm(s,T) = F(s, t) and Fm(T,T) = F(T,T) = C(T). 

2The subscript m suggests the mark-to-market distinguishing feature of futures. 
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With no arbitrage pricing, the futures price is set at time t so that the 
dollar risk neutral expected value of the future cash flow is zero: 

The forward price F(s,T) is set at times so that 
according to (??). Therefore, when the expectations are calculated at 
time t, F(s,T) and C(T) have the same expected value so the second 
term is zero. Hence, we find that Since 
forward prices are expected spot prices (relative to Q), then {F(t, T) : 

is a Q-martingale and, therefore, 
From these relations we conclude that 

or in other words the futures contract and the forward contract always 
set the same prices. The equivalence of forward and futures prices 
(when the interest rate is deterministic) holds in general, regardless of 
the number of times the futures contract is marked to market. This 
is well known [?]. We will no longer distinguish forward and futures 
currency prices. The foreign exchange market includes both contracts. 
Futures contracts are normally exchange traded and forward contracts 
are normally arranged through banks or other financial intermediates. 

2.4. European Currency Options. The second example is a Euro- 
pean currency option. The valuation formula was derived by Garman 
and Kohlhagen [13] using different methods. Consider a call option 
providing the owner the right to buy 1 pound at time T for an exercise 
price of K. The dollar value of a pound at time T is C(T). Therefore 
the value of the call right at time T is f(C(T)) where 

The market price at time t of the call options is the Q– discounted ex 
pected value 

where I {(CT)>k) is the indirection random variable with value 1 if (cT)> 

K (the option is in the money) and 0 other wise (out of the money 
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Now we use (7) the separation theorem on the first expectation: 

Now using (7) again we see that the event 

is QT-equivalent to the event 

which, in turn, is equivalent to 

Because W(T) - is normal with mean 0 and variance T - t, we 
finally obtain an expression we can calculate from tabulated values and 
the known parameters: 

where 

and is the cumulative density function for the standard normal 
distribution. 

A similar calculation using the Q-measure leads to a formula for the 
other expectation: 
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Finally we obtain the Black/scholes formula for the price at time t of 
a European call option maturing at time T: 

(17) 

(18) 

where we used and the normal distribution property that 
for convenience. The first form(17) give the value 

in terms of the current exchange rate. The second form (18) gives the 
value in terms of the current (time t) forward price for pounds at time 
T. 

3. INTEREST RATE PARITY 

Sometimes the forward price relation (13) 

is called covered interest rate parity. As we noted earlier it follows 
from the no arbitrage condition. It does not involve expectations or 
investor attitudes about risk. If a model assumes no arbitrage, then 
the covered interest rate parity relation must hold. Confusion about 
risk and expectations are the basis of an “argument” creating Siegel’s 
paradox [32, 33, 29, 181. The “argument” goes like this: Assuming all 
investors are indifferent between holding either dollars or pounds then 
equating expected yields at time 0 on two pound investments maturing 
at time T requires that 

This is called uncovered interest rate parity. By the no arbitrage rela- 
tion, we have from equation (13) with t = 0: 

By comparison of the two equations we should have 
By Jensen’s inequality [4], 

hence 

This is the paradox - the forward price F(0, T) of the time T exchange 
rate cannot be equal to the expected value E[C(T)] of the time T 
spot rate. As Hull [16] explains (perhaps too tersely), there is no 
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Paradox here, but one has to be careful about these expectations. If 
the expectation is calculated relative to the physical 
measure, then it is not necessarily equal to Using (7) and the 
P-measure we obtain 

will this be equal to euT. With this value of µ the P-measure Brownian 
motion representation (5) of S is 

S(T) 

This is equivalent to the dollar risk-neutral representation of S. The 
only way to have the forward price be the same as the expected value 
of the spot currency rate is to use the &$-measure. This measure will 
not necessarily agree with the physical measure. Frankel[12] describes 
the Seigel paradox slighly differently. If we use the dollar risk neutral 
measure, then the forward price of pounds in the expected value of the 
market price for pounds: 

According to Frankel[12, page 193], the paradox is that using the same 
measure (the dollar risk neutral measure) the forward price of dollars 
cannot be equal to the expected value of the market price for dollars: 

(20) 

Of course, relative to the pound risk neutral measure, the forward rate 
for dollars is equal to the expected value of the market price for dollars. 

(19)
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This follows from merely interchanging the roles of dolalrs and pounds. 

We see that there is no paradox built into the model. The empirical 
question -does covered interest rate parity hold in a particular currency 
market is a different issue. 

4. INCORPORATING STOCHASTIC INTEREST RATES 

In this section we extend the basic formulation of the two-country 
model to allow for stochastic interest rates. Any reasonable model 
of currency risk must include local economic factors, such as interest 
rates, inflation, and equities indices that interact with exchange rates 
and established empirical facts such as the correlation between interest 
rate levels and exchange rates need to be allowed for. We will enlarge 
our model allowing only for interest-rate factors. In order to keep 
the model simple we assume that local interest rates can be described 
as one-factor models of the class that is discussed in [7]. The same 
mathematics can be used to extend the model to the case of multi- 
factor interest rate models. No significant changes are introduced if 
equities indices are required in both local economies3. This paper is not 
about estimation/calibration and we have not addressed this important 
issue. Information on the estimation of a wide class of term structure 
models can be found in [23], [7], and [9]. 

Our point of departure is that interest-rate dynamics have already 
been identified in each local economy. As is standard in stochastic 
modelling, there is a “reference measure” for the global economy and 
this is denoted by B. The reference measure serves to define which 
events are possible and which are excluded. The short-rate dynamics 
are denoted by the process and available for trade is the money 
market account B with price process . We assume 
that the interest-rate dynamics can be described by an arbitrage-free 
term-structure model. In the first economy we will let denote 
the price at time t of a zero coupon bond paying one unit of the currency 
of economy 1 at time T. In the first economy, bond prices will follow 
a stochastic differential equation: 

(21) 

3All that happens is two additional noise terms are needed, the change of measure 
reflects the extra noise terms, and the notation becomes a bit more involved. 
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where is the market price of risk process for the local economy 1. 
We know from financial economics4 that providing local economy 1 is 
arbitrage-free, the bond prices will follow the equation (21), and this 
point is discussed in [ll] and [24]. 

The traded assets in local economy 1 are the money market account 
and the zero coupon bonds of all maturities. The discussion we have 
just provided for local economy 1 can be repeated for local economy 2 
- the only difference being a change in the notation to reflect that we 
are in economy 2. We shall not repeat this discussion and will emrely 
assume that we also have available the traded assets in local economy 2 
which are the money market account and the zero coupon bonds of all 
maturities. Of course, all assets in each local economy are denominated 
in units of the local currency. In summary, in each local economy we 
have the traded assets as indicated in Figure 1. 

Economy 1 Economy 2 

Bt(1) B(2) 
t 

P(1)(t,T) P(2)(t,T) 

FIGURE 1. Traded assets in each local economy. 

These economies have thus far been considered in isolation. Then 
exchange rate process brings together the traded assets of each econ- 
omy and permits us to analyse the global economy. the exchange rate 
process is denoted by D. One unit of currency in economy 2 is equal 
to Dt units of currency of economy 1 at time t. Conversely, one unit 

- of currency in economy 1 is equal to l/Dt units of currency of econ- 
omy 2 at time t. We model the exchange rate process as a geometric 
Brownian motion5 process, 

The correlation structure across global economic factors is allowed for 
thorugh the correlations between the sources of noise in each economy: 

4The local economy can be described in terms of a short-rate process and a 
risk-neutral measure but this is not important to us in formulating our general 
model but this point is illustrated concretely in the subsequent section on Gaussian 
models. 

5This has been the usual practice in the finance literature but it is known that 
this is a quewstionable practice from the empirical pewrspective. 
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W(1),W(2), and Z with 

With the exchange rate process defined, we can now bring assets 
from each economy over for trade in the other economy. Consequently, 
we can define a global asset market in the units of currency of either 
local economy. This is indicated in Figure 2. 

Economy 1 Economy 2 

B(l) 
t 

D(-l) B(2) 
t t 

Dt Bt(l) Bt(2) 

P(1)(t, T) D(-1) p(l)(t,T) t 

Dt p(2)(t,T) p(2)(t, T) 

FIGURE 2. Globally traded assets in currency of each economy. 

We now seek to determine the change of measure that will value all 
uncertain cash flows in terms of the currency of economy 1. 

Theorem 1. There is a unique change of measure under which all of 
the traded assets of economy 1 are discounted martingales. It is given 
by the change of measure on the correlated factors with 

and can be expressed through the Radon-Nikodym derivative 

4.1. A General Propertyof Arbitrage-FreeForeign Exchange 
Models. It is proved in [28, page 159] and [31] that in an arbitrage-free 
model of currency risk “the exchange rate between two countries must 
be the ratio of their state-price densities”. This is an important result 
for modelling currency risk. In the modelling approach taken in [28], 

209 

(22)



which he refers to as “the potential approach to term structure mod- 
elling”, the importance of this result is summed up as: “[t]his has the 
practical advantage that if one has adopted the potential approach to 
term-structure modelling, then once the term structure has been mod- 
elled in two countries, the exchange rate between them is determined, 
no further Brownian motions are needed.” The result influences the 
way in which global models of currency risk can be constructed. We 
first recall the connection between equivalent martingale measures and 
state price densities. 

Definition 1. A state price density is a strictly positive adapted pro- 
cess such that: 

Property (1) for every traded asset the process 
is a P-martingale, and 

Property (2) 

Note that Property (1) applies to all traded assets. An equivalent 
way to describe this definition is that a state price density is a strictly 
positive adapted process p such that pt S, is a lP-martingale for every 
traded asset S. Although we will not prove it6, there is a one-to-one 
correspondence between equivalent martingale measures and state price 
densities through the relation 

We will first state and prove the result in the language of state price 
densities. Except for changes in notation, the statements in both re- 
sults are equivalent. However, we have given a different proof of each 
result. Each of these proofs is helpful for shedding light on the work- 
ings of currency risk arguments - which so often are based on change of 
numeraire. The proof of the first result is based on Rogers [28, Section 
61. 

Theorem 2 (State Price Density Version). In a complete and arbitrage- 
free model of global currency risk, the exchange rate between two coun- 
tries is equal to the ratio of their respective state-price densities. For 
our two country model, this means: 

for all

6An accessible introduction to these ideas may be found in [5, Chapters 5 and 
11]. 
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where pt(k) is the state price density for pricing all globally traded assets 
in the currency of economy k. 

Proof. As we know from general arbitrage-free pricing theory, when the 
model is complete there is a unique state price density process. This 
is equivalent to the statement that 

there exists a unique strictly positive adapted process p 
(*) such that po = 1 and pt St is a -martingale for every 

traded asset S. 

Let S, denote a generic traded asset that is denominated in the 
currency of economy 2. Then Dt St is a traded asset denominated 
in the currency of economy 1. Consequently, the processes pt (2) St and 
pt(1) Dt St are P-martingales. We may write this second process as 

where 

Therefore, the process pt-(1)Do St is a P-martingale and thus the process 
pt-(1)St is also a martingale. Therefore, the processes pt(2) St and St 
are both -martingales and the processes pt(2) and pt-(1) are both state 
price densities. Therefore, by (*) we find that pt(2) = pt-(1). 

Theorem 3. [Equivalent Martingale Measure Version] In a complete 
and arbitmge-free model of global currency risk, the exchange rate be- 
tween two Counties G equal to the ratio of their respective state-price 
densities. For our two county model, this means: 

(24) for all t > 0, 

where Q(k) denotes the equivalent martingale measure for global valua- 
tion in the currency of economy 

Proof. We shall prove the result in two ways. The first proof depends 
on the formulation of our model while the second is based solely on 
arbitrage-free pricing theory. 

Change of Measure Approach: We shall prove the result for the 
restricted two economy model we have developed. Based on that 
development, we know the form for each of Q(l) and Q(2) and thus 
we need only check directly that (24) is satisfied. 
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General Theory Approach: Suppose that the model is arbitrage 
free and complete. Therefore, 

there is a unique equivalent martingale measure for 
(**) pricing global contingent claims in the currency of 

each local economy7. 

Suppose that the trading interval for the economy is [0,T]. Let 
St, denote a generic traded asset that is denominated in the cur- 
rency of economy 2. Then Dt St is a traded asset denominated in 
the currency of economy 1. Therefore, the process 

(25)

is a (2)-martingale and the process 

is a (1)-martingale. Since Dt Bt(2) is a traded asset denominated 
in the currency of economy 1, the process 

is a (1)-martingale. Therefore, 

defines an equivalent change of messure on the trading interval. 
We claim that the process (25) is an -martingale. Indeed, for all 
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values of t > u: 

where we have applied Bayes rule (Appendix B) in the first equal- 
ity. Therefore, both and R are equivalent martingale mea- 
sures for global valuation in the currency of economy 2. Therefore, 
by (* *) we find that 

Substituting from (26) this becomes 

which is the same as 

??

5. THE GAUSSIAN MODEL 

In this section we describe a concrete case of the model we have 
developed: 

. Gaussian interest rates in each local economy, and 
??lognormal exchange rate factor. 

The interest rate models could be developed as a multi-factor economy. 
However, for simplicity we have chosen to restrict the local models 
to the single-factor case. A Gaussian version of this model from the 
Heath-Jarrow-Morton perspective may be found in [20]. 
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There are three sources of uncertainty in the global economy and 
these are modelled by three correlated Brownian motions W(l), W(2), 
and Z with correlations: 

The exchange rate is modelled by the geometric Brownian motion 
process D, 

The short-rate process for economy 1 is modelled as 

The market price of risk process for economy 1 is assumed to be 
equal to a constant which we will denote as This is equivalent to 
specifying the risk-neutral measure for the local economy 1 through the 
Radon - Nikodym derivative 

As is well known, this results in bond prices of the form 

P(1)(t,T)=exp(–rt(1)F1(T–t)–H1(T–t)), 

where 

and 

One may check directly, apply Itô’s lemma, that bond prices satisfy 
the stochastic differential equation 

The short-rate process for economy 2 is modelled as 

The market price of risk process for economy 2 is assumed to be 
equal to a constant which we will denote as This is equivalent to 
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specifying the risk-neutral measure for the local economy 2 through the 
Radon-Nikodym derivative 

Identical formulae hold for the bond prices in economy 2. 
Recall that in our notation for general model, the probability mea 

sure is the equivalent martingale measure for valuing all assets in 
the currency of economy 1. We can make a direct translation from the 
general results to conclude that this change of measure corresponds to 
the choice of processes: 

However, this is not the process that defines the Radon-Nikodym deriv- 
ative for the change of measure . Similarly, we can describe 

the operational change of measure for the equivalent martingale 
measure for valuing all assets in the currency of economy 2. As we will 
not require this measure for the examples in this section we shall leave 
it to the reader to identify 

5.1. Forward Contract. One of the simplest foreign exchange con- 
tracts is a forward contract. Let us price a forward contract for delivery 
at time T. This means that a unit of the currency of economy 2 is to 
be exchanged at time T for an amount F in the currency of economy 
1. The contract has no value at time 0 and the price F is called the 
T-year forwrd price. We compute F from the equation: 

To complete the formula we must evaluate the expectation 
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As we know from (??), under the probability measure Q(1) for each 
fixed s > 0 the process 

(28) 

is a martingale. This enables us to quickly evaluate (27) as follows. 

Thus, we find that the forward price satisfies 

5.2. Foreign Currency Options. Another important class of con- 
tracts are foreign currency options. Let us consider a simple European 
version of such a contract. Under this contract the option holder has 
the right, but not the obligation, to purchase a unit of the foreign cur- 
rency at time T for a price K which is fixed at contract initiation. The 
contingent payoff from this contract at time T is 

The price of this option is given by the expectation 

This may be rearranged as 

(29) 

which has the advantage that we are in a position to recognise a change 
of measure in this expression via the Radon-Nikodym derivative 

(30) 
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This change of measure is known as the “forward measure” (see [20, 
chapter 14] and [25]). The mean of DT under the change of measure is 
easily evaluated as 

where we have once again used the martingale property expressed in 
(28). In many cases, when we have Gaussian models, the variance of the 
logarithm of the random variable the option is written on remains the 
same under a change of measure because of special properties relating 
to the jont normal distribution. We can clearly recognize that DT is 
a lognormal random variable under Q(l). Unfortunately, the change of 
measure given by dQ(1)/dP is not normal8 and thus general9 we must 
expect 

In order to complete our evaluation of (29) we will therefore have to 
evaluate directly Since the change of measure induced . 
by the Radon-Nikodym derivative (30) is normal, we then know that 
the variance of 1og DT under the full change of measure is the same 
as This will then permit us to evaluate the currency 
option price using the usual formula for the truncated mean of a log- 
normal random variable. 

We know that 

where is a Brownian motion under the probability measure Q(l). 
Therefore, 

8This is because the stochastic integral part of log invoking dZt 
contains a term of the form 

9See [25, Lemma 6.2] for conditions when the variance is preserved under a 
change of measure. 
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Working directly from the stochastic differential for the short-rate pro- 
cess, we find that 

where is a Brownian motion under the probability measure Q(l) 
Performing a stochastic integration by parts, one can show that 

We may do a similar calculation for r(1). Again working directly from 
the stochastic differential for the short-rate process, we find that 

where is a Brownian motion under the probability measure Q(l) 
One may then check that 

Consequently, 

We can then complete the valuation formula using the usual formula 
for the truncated lognormal expectation. 

5.3. A Simple Insurance Example. The most important applica- 
tions of the general currency model to insurance occur in pricing, re- 
serving, and risk management/hedging. Suppose that a domestic com- 
pany writes a policy in a foreign country. The foreign policyholder will 
pay the premiums in the foreign currency and his claims will also be 
paid in the foreign currency. This will result in a series of net cash 
flows through time. To illustrate this, let us take a very simple ex- 
ample. Suppose that the claim is paid, if it occurs, at time t and the 
premium is paid at time 0. Let us denote the amount of the claim, in 
units of foreign currency, by L and the amount of the premium, also in 
units of foreign currency, by P. Providing that the policyholders claim 
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is contingent only on the state variables in the foreign economy, P can 
be determined through the equation 

Remark. Actually, P can also be determined as an expectation under 
the global measure Q(2) as 

where this will properly reflect P for arbitrary claim random variables. 

The company will want to price the liability in units of the domestic 
currency, since it is in this currency that they track their profits and 
reserves. The price of the policy in domestic currency is 

(31) 

If the claim does not depend on any of the underlying state variables 
(i.e. is constant if the risks are treated deterministically), such as would 
be the case when this product was a one-year term insurance, then (31) 
is equal to 

Of course, this is nothing surprising for the price today in domestic 
currency of one unit of foreign currency to be paid at time t is clearly 
equal to Do P(2) (0,t) by general reasoning. The interesting case is 
when the claim does depend on state variables (either local or global) 
in which case (31) cannot be simplified and must be directly computed. 
It is in these cases that the full currency model is essential. 

5.4. Foreign Returns Hedging. Suppose that a financial intermedi- 
ary operating in the global economy is concerned that the investment 
returns of its competitors over some time horizon, say [0,t*] might 
outperform what it can earn in its domestic investment market. Let 
us suppose that both companies are investing in T-year zero coupon 
bonds. A simple hedge against this contingency is to purchase an op- 
tion that pays the excess of the domestic dominated returns on the 
foreign T year bond over the returns on the domestic T year bond. 
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This contract would pay some notional amount of the contingent pay- 
ment 

(32)

We have not chosen this example because it is particularly realistic. 
The importance of the example is that the contingent claim expressed 
in (32) depends on all state variables and thus must be valued under 
the full currency risk model10. The numerical evaluation of 

is relatively sophisticated because in general we will not have a closed 
formula for in terms of the short-rate trajec- 
tories Consequently, for 
each simulation run to evaluate du we will have to run several 
thousand supplementary simulations over [t*, T] to evaluate P(l)(t*, T) 
and P(2)(t*, T). This problem is typical when running simulations for 
sophisticated term structure models in which the prices of fixed in- 
come securities are not known explicitly in terms of the models state 
variables. 

6. CONCLUSIONS 

In this paper we have developed a general model for currency risk. 
We have approached it from the “classical” perspective of interest- 
rate modelling based on the modelling of the short-rate process. This 
has the advantage that the reader can understand the mathematics 
of exchange rate models without requiring a new mathematical tools. 
Alternative approaches are available (at least in preliminary form) in 
the literature. The two prominent alternatives are: 

??the “potential approach” of Rogers [28], and 
??using a Heath-Jarrow-Morton formulation for the term structure 

of interest rates. 
Approaches based on the Heath-Jarrow-Morton framework are described 
in [20, chapter 17] and more tersely in [l, section 6.5]. The potential 
approach was developed in Rogers [28] and is discussed in [3, section 
6.2]. 

The class of processes that we have adopted for the exchange rate 
dynamics and interest-rate dynamics are too restrictive. It is generally 

10In other words, the claim is not adapted to either of the local information 
structures Fw(1) of FW(2). 
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thought that exchange rates are not well fit by geometric Brownian 
motion and that other classes of processes, GARCH processes being 
one example, are needed to adequately capture the empirical charac- 
teristics of exchange rate dynamics. Melino and Turnbull [19] model 
the exchange rate process using a stochastic volatility process and show 
how to estimate this model using the GMM approach. Broader classes 
of processes for both exchange rate dynamics and interest-rate dynam- 
ics are needed. Better models of the exchange rate dynamics can be 
constructed using the types of models discussed in [30]. Some exam- 
ples of the types of processes that could be used for the interest-rate 
dynamics are studied in [23], [14], [21], and [26]. 

We have not given an indication of how the model is to be calibrated 
for practical use. This is an involved and important topic that will be 
the subject of future research. These models can be estimated using a 
variety of techniques such as maximum likelihood, GMM estimation, 
and Bayesian estimation. 

APPENDIX A. GIRSANOV’S THEOREM FOR CORRELATED 
BROWNIANMOTIONS 

The usual version of Girsanov’s theorem is stated for standard Brow- 
man motion. For our model we require a version of the result which 
allows for correlated Brownian motions. However, the general version 
of Girsanov’s theorem for semimartiugales, which may be found in [20, 
page 467], [15, Chapter XII], or [27, Chapter VIII], is too general for 
our purposes here. The result we discuss is valid for an arbitrary n- 
dimensional correlated Brownian motion and is useful in a variety of 
applications to financial modelling. The result is important because 
we often seek to change measure based on readily identifiable factors 
in the financial model. If uncertainty is modelled using a correalted 
Brownain motion, it is common that the change of measure is natu- 
rally described in terms of drift adjustments to the components of this 
process. Such was the case when we computed the change of measure 
for our general currency risk model. 

It is convenient to introduce some notation for handling vector pro 
cesses. All vectors will be considered as column vectors. If x is a 
vector, the transpose of x is denoted xt. Consequently, if Z denotes an 
n-dimensional stochastic process then where 
Z(i) denotes the component of Z. When we integrate vector pro- 
cesses it is convenient to have a notation that permits us to compactly 
express certain vector integrals. We will use paranthesis to denote the 
inner product of two vector processes. For example, if A and B are 
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two n-dimensional vector processes then 

We can use the same notation to simplify the writing of stochastic 
integrals. For instance, if M is an n-dimensional semimartingale and 
an appropriate n-dimensional integrand, denoted by A, we have 

Lastly, we employ the obvious convention 

An n-dimensional correlated Brownian motion is an n-dimensional 
continuous stochastic process with independent increments such that 
the increment Wt - Ws is normally distributed with mean zero and 
covariance matrix (t - s) C, where C is a symmetric positive definite 
matrix. It is clear that the covariance matrix of W1. 
Elements of the matrix C will be denoted by pij. In the notation of [17], 
we have An n-dimensional standard Brownian 
motion is thus an n-dimensional correlated Brownian motion with C 
being the identity matrix. Since C is a symmetric positive definite 
matrix, there exists a lower triangular matrix such that 
the Choleski factorisation of C (see [6] for example). If W is an n- 
dimensional correlated Brownian motion with covariance matrix C = 

then it may be checked that is a standard Brownian motion 
which generates the same filtration as W. 

Theorem 4. Let W be an n-dimensional correlated Brownian motion 
with covariance matrix Let B denote the n-dimensional 
standard Brownian motion Let be an n-dimensional 
adapted process. Then the process 

is an n-dimensional correlated Brownian motion with covariance matrix 
under the equivalent change of measure 
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Proof. 

where is a standard Brownian motion under the change of measure 

by the usual form of Girsanov’s theorem for Brownian motion [17, page 
191]. 

In practice one must often carry out valuation. using Monte Carlo 
simulation or other numerical techniques. Consequently, it is impor- 
tant to know the explicit form of the risk-neutral measure so that the 
simulation can be programmed and the calculations carried out. If we 
are working in terms of a correlated Brownian motion W then it is 
convenient to express the change of measure in terms of this process. 
The following corollary shows how this may be done. 

Corollary 1. Let W be an n-dimensional correlated Brownian motion 
with covariance matrix be an n-dimensional adapted 
process. Define the process Then the process 

is an n-dimensional correlated Brownian motion with covariance matrix 
under the equivalent change of measure 

Proof. The proof is nothing more than an application of linear algebra 
to the integrands. We need only check that 
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as the rest of the statement of the corollary will follow from the theo- 
rem. 

APPENDIX B. BAYES’ RULE FOR CHANGE OF MEASURE 

We briefly describe Bayes rule as it is used in the proof of Theorem 
3. 
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