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Correlations between LOBs

e Three types of correlations
— Process (volatility) correlation
— Parameter (trend) correlation
— Reserve distribution correlation

Similar trend structure implying commonality in calendar year drivers or accident year
drivers is a stronger relationships than correlations

e Cannot measure these correlations unless LOB trend structure and process variability
(volatility) modeled accurately

* Most important direction is the calendar year
e Reserve distribution correlation << Process correlation
e Highest Process correlation we have seen is 0.6!

e Highest Reserve distribution correlation is 0.2!
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Correlations and other relationships between
LOBs/Segments

Take-Away points:

® Most long tail LOBs exhibit close to zero correlation

e Each company is different

Each LOB/Segment is different

* Common accident year and calendar year drivers are stronger relationships than
correlations

e Cannot assess the relationships between two loss development arrays unless the
identified optimal model fits a distribution to each cell- the means on a log scale are
related by the “trends” in the three directions

¢ A single composite model for multiple LOBs/segments involves Seemingly Unrelated
Regressions (SUR) — Zellner 1962

¢ For 40 LOBs there are 780 pairwise correlations. Most are zero. We create clusters.
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Correlation and Linearity

Correlation, linearity, normality, weighted least squares, and linear
regression are closely related concepts.

The idea of correlation arises naturally for two random variables that have a
joint distribution that is bivariate normal. For each individual variable, two
parameters a mean and standard deviation are sufficient to fully describe its
probability distribution. For the joint distribution, a single additional
parameter is required the correlation.

If X and Y have a bivariate normal distribution, the relationship between them
is linear: the mean of Y, given X, is a linear function of X ie:

E(Y|X)=a+ X

10 October 2013

Correlation and Linearity

Weight = Y Height = X
For sub-populations of heights defined by X = x; the distribution of

. T . . 2
weights ¥ |x; is normal distribution with mean a+[2; and variance 0.

xq X; Xn
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Correlation and Linearity

The slope g is determined by the correlation p, and the standard
deviations:

f=poy/oy,
where  p = COV(X,Y)/(O'Xo'Y).

The correlation between Y and X is zero if and only if the slope f is zero.

Also note that, when Y and X have a bivariate normal distribution, the
conditional variance of Y, given X, is constant ie not a function of X:

Var(Y[X)= o7
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Correlation and Linearity

If (¥, X) has a joint normal distribution then

Y|X =x ~N(a+ Bx,06%)

and

Var(Y) = Var(Y|X = x) = g2
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Correlation and Linearity
This is why, in the usual linear regression model
Y=o+ pX+¢
the variance of the "error" term ¢ does not depend on X.

However, not all variables are linearly related. Suppose we
have two random variables related by the equation

S=T*?

where T is normally distributed with mean zero and variance 1.

What is the correlation between S and T ?
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Correlation and Linearity

Linear correlation is a measure of how close two random variables are to being
linearly related.

In fact, if we know that the linear correlation is +1 or -1, then there must be a
deterministic linear relationship

Y =a+ X betweenY and X (and vice versa).
If Y and X are linearly related, and f and g are functions, the relationship
between f(Y ) and g( X ) is not necessarily linear, so we should not expect the

linear correlation between f(Y ) and g( X ) to be the same as between Y and X.

(Answer to question on previous slide is zero)
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Digression: A common misconception with
correlated lognormals

Actuaries frequently need to find covariances or correlations between
variables such as when finding the variance of a sum of forecasts
(for example in P&C reserving, when combining territories or lines
of business, or computing the benefit from diversification).

Correlated normal random variables are well understood. The usual
multivariate distribution used for analysis of related normals is the
multivariate normal, where correlated variables are linearly related.
In this circumstance, the usual linear correlation (the Pearson
correlation) makes sense.
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A common misconception with correlated
lognormals

However, when dealing with lognormal random
variables (whose logs are normally distributed), if
the wunderlying normal variables are linearly
correlated, then the correlation of lognormals
changes as the variance parameters change,
even though the correlation of the underlying
normal does not.
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A common misconception with correlated

lognormals
All three lognormals below are
Normal O . X
based on normal variables with
. o correlation 0.78, as shown left, but
with different standard deviations.
e ® *
o correlation
® 078
Logormal Logormal Logormal
ay=02= 0.1 o1=0,=0.4 [ ] o1=03=15
a
- L ]
- correlation
L 0.76
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A common misconception with correlated

directly to the dollar scale, because the correlation is not the same on that

scale.

Additionally, if the relationship is linear on the log scale (the normal variables
are multivariate normal) the relationship is no longer linear on the original
scale, so the correlation is no longer linear correlation. The relationship

lognormals

We cannot measure the correlation on the log-scale and apply that correlation

between the variables in general becomes a curve:

normals

o

corresponding
lognormals

A

13
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Correlation, Regression and Time Series

15/10/2013

Correlations measured before and after regression can be very different. Hence if we want to assess
the effective correlation between two series we must first remove trends (the predictable portion) and
measure the correlation of the residuals (the random components.)
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Consider the series A, B and C. Each has a linear trend, B and C appear quite similar. The correlation between
Aand B is 0.91 and between A and C is 0.97. Are A and B related? Are A and C related?
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Removing trends from the series, in this case by linear least-squares regression separates the
predicateble part from the random component.
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Compute the correlation of the residuals =
the random component of each series

iy /\ \ I
AV X AN

AV X
19811983 1965 1?37,‘195??991 993 1895 1067 199\ 2001 3003 2495 2097 2908

IAVARN M) | - \ / N
Y Y

Residual or “Process” Correlation of A Residual or “Process” Correlation of A
and B =-0.07 and C =0.42

Conclusion: The series A and B merely share a common positive trend. There is no apparent causal or predictive
relation between them. Series A and C exhibit a positive correlation. Information about the next value of C does
have a significant bearing on prediction of the next value of A.
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Correlation in time-series- not same as correlation between
Y and X
Loss Reserving is a study of time series by calendar year!

l /)(\/\/\ Series
Ay corr.=0
7

-

e AN e s
WY

Series N Series
corr. =-0.5 corr.=0.8
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We call the correlation of the random component (after
modeling the trend structure in the three directions) of two
loss development arrays: process correlation

/\! 3D plot of data
16,00 - =

80,

14,000 *

These two triangular loss arrays
have process corr. = 0.9 after
modelling their respective trend
structures.

*Cannot detect from data plot.*
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Common calendar drivers: Gross vs Net

In Gross versus Net of Reinsurance data (E&O and D&O in example), common
calendar year drivers are expected to be found since Net of Reinsurance is a

subset of Gross. Trends, especially calendar and accident, are closely related.
The comparable models are shown below:

Dev. Yr Trends Acc. Yr Trends

Dev. Yr Trends Acc. Yr Trends

MLE Variance vs Dev. Yr MLE Variance vs Dev. Yr

15 October 2013 20

10



15/10/2013

Common calendar drivers: Gross vs Net

The model trends are very similar; trend and volatility changes usually coincide.
The critical trends in common are the calendar year trends (below) and
accident year level changes. Common calendar year drivers are clearly visible
as the trend changes occur at the same point.

Cal. Yr Trends Cal. Yr Trends
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Common calendar drivers: Gross vs Net

Wtd Std Res vs Cal. Yr Witd Std Res vs Acc. Yr

Blue line is
trace of (single)
calendar year
(2006) along
the accident
years.

Process
Correlation = 0.85

10 October 2013 22

11



15/10/2013

Common calendar drivers: Gross vs Net

For the model described above, the residuals by accident year traced for
the last calendar year are clearly correlated; when a value in a year is
low/high in one segment it is usually low/high in the other segment also at
the same time.
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Common calendar drivers: Gross vs Net

Wtd Res Normality Plot Wtd Res Normality Plot

N = 228, P-value = 0.3739, R”2 = 0.9936 N = 229, P-value is greater than 0.5, R"2 = 0.9948

The residuals from both lines of business are statistically indistinguishable
from two normal distributions.

Thus, the process correlation can be considered the volatility correlation
between two normal distributions.

15 October 2013 24
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Common calendar drivers: Gross vs Net

Netvs Gross.

A scatter plot of the
residuals, from the
respective Gross and
. Net of Reinsurance

e e models, exhibits a clear
* . . .
U ST (linear) relationship; a
WTre s .
W L Tac correlation of 0.853.
. .\’.0 s eet’ *
0’ . - .."0 *
P .‘{; e LS Final Conelations | A
-4 3 2 - 1 m. . 1 2 3
% "‘ . . i N A

AN AL S * Final Weighted Residual

JTN “.w‘. 1 L Correlations Between

. e, . PR Datasets
- . et
- L2 .

- hid Gross PL{l) | NetPL({l)
Gross PL{l) 1 0.853

Net PL(l) 0.853 1

M 3 iterations were exacuted
Residuals correlation difference

tolerance 0.010%
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A Tale of Two LOBs: LOB1 and LOB3

Cal. Yr Trends

Cal. Yr Trends

(Actually same line, different territories)
Both LOBs had a calendar year trend change in 2000

That should have been of concern!
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A Tale of Two LOBs: LOB1 and LOBS3

Dev. Yr Trends Acc. Yr Trends Dev. Yr Trends Acc. Yr Trends

0.4279 0.7276
-0.0725 +-0.1330

. —

MLE Variance vs Dev. Yr

Full model display

Trends in each direction and variance of normal distributions
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A Tale of Two LOBs: LOB1 and LOB3

Volatility correlation = Process correlation = 0.35 = Correlation in

normal distributed residuals
LOB1 LOB3

Wtd Std Res vs Cal. Yr Wtd Std Res vs Cal. Yr

Note 98-00 common negative trend, 00-02 common positive trend
and 02-03 zero trend for LOB1 and negative trend LOB3.

10 October 2013 28
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Regression in the presence of correlation
Seemingly Unrelated Regressions (SUR) —
Zellner (1962)

Model displays shown above correspond to two linear models, which are described by
the following equations:

)’1 = XIBI +81’ (]_)
y,= Xzﬂz +&,.

Ee, =0, i=12; E(g,.&,)=cov(g,.8,)=C. corr(e;,&)=R

Without loss of sense and generality two models in (1) could be considered as one
linear model:

‘/z,l\‘_ ‘KX1 0 \‘ +‘(81\‘
W2/

L0 Xz/H\ﬁz/ \& ) @
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Regression in the presence of correlation

Which could be rewritten as:

y= Xp +=¢

For illustration of the most simple case we suppose that size of vectors y in models (1)
are the same and equal to n, also we suppose that

E(ei,eiT):var(si):I a? i=12 C=1,0,

ni?

In this case

4 2 N
Lo 1o
Val‘(s) — E — n1 n 12

2
\In J12 InJZ J
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Regression in the presence of correlation

For example, when n =3

& 0 0 o, 0 0
0 ¢ 0 0 g, 0
w0 0 g 0 0 g
c, 0 0 o 0 0
0 o, 0 0 & 0
0 0 o, 0 0 &

Regression in the presence of correlation

There is a big difference between linear models in (1) and linear model (2), as in (1)
we consider models separately and could not use additional information, from
dependency (process correlation) of these models, what we can do in model (2). To
extract this additional information we need to use proper methods to estimate vector of

parameters [3. The estimation
p=(XTX)'XTy
which derived by ordinary least square (OLS) method, does not provide any

advantage, as the covariance matrix % does not participate in the estimations.

Only general least square (GLS) estimation

l} — (XTE_IX)_IXTE_IY

could help to achieve better results.
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Regression in the presence of correlation

However, it is necessary immediately to underline that we do not know elements of the

matrix % and we have to estimate them as well. So, practically, we should build
iterative process of estimations

ﬁ (m) 35 (m)
and this process will stop, when we reach estimations with satisfactory statistical

properties.

The SUR [} is a (credibility) weighted average ]31 and B,
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Regression in the presence of correlation

There are some cases, when model (2) provides the same results as models in (1).
They are:

1. Design matrices in (1) have the same structure (they are the same or proportional
to each other.)

2. Models in (1) are non-correlated, in other words
o, =0

However in situation when two models in (1) have common regressors model (2) again
will have advantages in spite of the identical structure of the design matrices.
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Model Displays for LOB1 and LOB3 for Calendar Years

Cal Yr Trends Cal Yt Trends
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Mean=0.1194 Mean=0.0814
StDev=0.0331 StDev=0.0321
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Model for individual iota parameters- they are correlated
going forward

i ~N(w, o?); i, =0.1194 &, =0.0331
i, ~ N, o2); i, =0.0814 &, =0.0321

L R 0.1194 - 0.001097 0.000344
~N(@,X) = , =
z 0.0814 0.000344 0.001027

2

L =corr(y,t,), £ =0.359013

15 October 2013 36
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Correlations are in the volatility component of
a model

* Two lines are (positively) correlated when their results tend to
miss their target values in the same way.

* This is what should concern business planners, because it
affects the unpredictable component of the forecasts.

* What is predicable when it includes common trend patterns,
as in the above example, does not count towards correlation,
because its effects are already incorporated into the model and
forecast.

» Aforecast must include a volatility measure, ideally in the form
of a loss distribution but at least in the form of a standard
deviation.
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Common accident year drivers: SAD and
SAM

Wid Std Res vs Acc. Yr Wid Std Res vs Acc. Yr

A model which does not take into account the changes in accident year levels shows a
marked similarity in the fluctuations of residuals in the accident direction.

This is not correlation!

15 October 2013 38
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Common accident year drivers: SAD and
SAM

SAM vs SAM: Wtd Std Residuals

Final Weighted Residual
Correlations Between
Datasets

SAD:PL{l} SAM:PL{l}
SAD:PL{l} 1 0.956
SAM:PL{l} 0.956 1
3iterations were executed
Residuals correlation difference
tolerance 0.010%

If the common accident year movements
are ignored and the average accident
year level fitted to both segments, then a
very high spurious correlation measure
of 0.96 is obtained.

The residual displays with scatterplot for SAD and SAM are shown for this model. The
correlation is very high, but it is largely spurious - there are distinct changes in level across
the accident years which were ignored in this model.
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Common accident year drivers: SAD and SAM

Accounting for accident year level (trend) changes

Acc. Yr Trends Acc. Yr Trends

.

The red bars indicate common parameters between the segments. Although the calendar and
development year parameters vary slightly, the accident year parameters move synchronously

thus making the mean ultimates vary synchronously (but this is not correlation).

15 October 2013 40
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Common accident year drivers: SAD and
SAM

SAM vs SAM: Wtd Std Residuals

Final Weighted Residual
Correlations Between
Datasets

SAD:PL{l} SAM:PL{l}
SAD:PL{l} 1 0.24%
SAM:PL{l} 0249 1

4 iterations were executed

Residuals correlation difference
tolerance 0.010%

Both sets of residuals test well for normality and have no indications of non-randomness so
the process correlation (0.249) is the volatility correlation between two normal distributions.
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Common accident year drivers: SAD and SAM

Mean Ultimates: SAD and SAM Mean Ultimates: SAD and SAM

250,000 250,000

200,000 //I\\“\ 200,000
150,000 150,000 /
* *
100,000
100,000

50,000 //

, 50,000
0 /

© b @ P Gy oo o N P P a
L A M M- A G G L L A L.
A R I LR S S S LU SR X S

SAM

0 50,000 100,000 150,000 200,000 250,000

——SAD ——SAM SAD

» The accident year levels moving together is a much stronger relationship than volatility correlation.
* The mean ultimates move synchronously (left) and a graph of the mean ultimates of SAM versus
the mean ultimates of SAD (right) shows an almost perfect linear relationship.

* The reserve distribution correlation is only 0.086! The reserve correlation is the correlation in the
losses not explained by the means — and therefore is the critical measure when evaluating risk
diversification.
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Common accident year drivers and pricing future
accident years

* The linear relationship in mean ultimates is important when forecasting future
underwriting (accident) years.

« If the accident year level for one segment is expected to increase by 10%+_ 2%,
then the other segment is also likely to increase by 10%+_2% in the same accident
year.

* The relationship in the mean parameter estimates is not volatility (risk) correlation
and does not indicate lack of diversification.

* The movement in means may be able to be related to internal or external drivers -
and risk exposure can be managed.

« Correlation in risk is significantly harder to manage as it invokes correlation in the
random component - variation which is not readily able to be connected to any
internal or external drivers.
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Common accident year drivers and pricing future accident years

Past & Future Acc. Yr Trends Past & Future Acc. Yr Trends

Summary | Risk Capital Allacation | Carrelations | Summary | Risk Capital Allocation | Correlations |

Combined Accident Yr Summary ‘ Combined Accident Yr Summary |
Mean Standard | | Mean L]
Ace. YT - - B Acc. YT - - r
On | Ultimate Dev. 0 ‘ Ultimate Dev.
1998 85,644 151,676 5,208 1998 53,246 138,000 4,088
1999 122,861 | 144,380 7,126 1999 06,842 || 131,073 6,029
2000 154,176 154,176 9441 2000 150,900 150,900 9,685
Total 494,382 1,542,424 20,270 = Total 408,615 1,395,346 18,616 =
v v
<)l 3 0 | 3
1 Unit = $1 1 Unit = $1
Forecast scenario: Acc. year 2000:10% +_2%7 Forecast scenario: Acc. year 2000:10% +_2%
15 October 2013 44
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Common accident year and common
calendar year drivers

« Common drivers are a stronger influence than correlation.

* However, they are not typically found outside closely related
losses.

* For example, Gross versus Net of Reinsurance (Net of
Reinsurance is a subset of Gross so common drivers are
expected), layers (layers are subsets of ground up losses), and
segments of the same line. In this respect, detection of common
drivers is as important as understanding correlations.

* The two effects must be correctly distinguished and adjusted for
as management strategies of these risk components differ.

15 October 2013 45

Layers Lim1M, Lim2M and 1Mxs1M;
Lim2M=Lim1M+1Mxs1M

The trend structure is the same for each layer (Left to right 1M, 1Mxs1M, 2M)

j 0.0000 -0.1601
f l-0.0000 +-0.1976
+-0.0817 0.2085
é
2
{
4 +-0.1920
{
0.2388
|
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Layers Lim1M, Lim2M and 1Mxs1M,;
Lim2M=Lim1M+1Mxs1M

Very high process correlations (Left to right 1M, 1Mxs1M, 2M)

Wtd Std Res vs Cal. Yr

Wtd Std Res vs Cal. Yr
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Layers Lim1M, Lim2M and 1Mxs1M;
Lim2M=Lim1M+1Mxs1M

Tables of process correlations (linear) and calendar year parameter
correlations (linear)

This type of equivalent trend structure and high parameter and process
correlations has not been observed for two LOBs

1 0.945646 0.992496 1 0.939207 | 0.991686
0.945646 1 0.977333 0.939207 1 0.974411
0.992496 0.977333 1 0.991686 0.974411 1
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Spurious correlation

Two LOBs are simulated independently each with its own unique
trend structure. The only material difference in the LOBs is that one
LOB has a calendar year trend of 10%, the other of 20%. Each has
a -30% development year trend.

A correct model of the underlying data process, would recognise
that each LOB has a separate trend for each direction and a
process correlation of zero - since this is how the data were
generated.

If an incorrect model is used, one that does not describe the
calendar year trends, then a spurious correlation would be
detected, as an artefact of unaccounted-for structure in the data.

15 October 2013 49

Spurious correlation

Cal. Yr Trends Wtd Std Res vs Cal. Yr

Cal. Yr Trends

Correct model picks up true calendar year trend; process correlation is zero!

15 October 2013 50

25



15/10/2013

Spurious correlation
Wtd Std Res vs Cal. Yr

Cal. Yr Trends

Incorrect model fails to pick up calendar trend; measures 98% correlation!
But this is not correlation since each sample is not random. They have structure.
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Spurious correlation between Industry PPA
and CAL data

As was shown in the previous case study, spurious correlation is introduced by
failing to detrend the data in the three directions. The correlation measured was
spurious as there were trends in the data not described in the models. Once
these trends were accounted for, the process correlation was statistically
insignificant.

15 October 2013 52
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Spurious correlation between Industry PPA
and CAL data due to wrong model

Paid Losses for the Industry PPA and CAL data from AM Best (2011) are
modelled using the Mack method. The residuals are shown by Calendar year for
CAL and PPA with the trace line for accident year 2004 highlighted.

Wtd Std Res vs Cal. Yr Wtd Std Res vs Cal. Yr

—
.| '
- s |
& |
& '
3 N
] A
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Spurious correlation between Industry PPA
and CAL data

Although the residual correlation is strong the indication is misleading. The
observed correlation is due entirely to limitations of the model.

CALvs PPA: Mack Residuals

-

15 October 2013 54
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Spurious correlation between Industry PPA
and CAL data

The observed correlation is due entirely to limitations of the model.

Wtd Std Res vs Dev. Yr Wtd Std Res vs Acc. Yr Wtd Std Res vs Dev. Yr Wtd Std Res vs Acc. Yr

Wtd Std Res vs Cal. Yr

The calendar year residuals show the Mack method over-fits the recent data -
producing a common negative trend in both residual displays.
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Models for PPA and CAL

No LOBs have the “same” tend structure and most LOBs have zero process
correlation. Consider Private Passenger Automobile and Commercial Auto Liability

Dev. Yr Trends Acc. Yr Trends Dev. Yr Trends Acc. Yr Trends

-0.0658 |[+0.0913
0.2210
-0.0726

MLE Variance vs Dev. Yr MLE Variance vs Dev. Yr
=

The two lines have very different trend structure and process variance!

10 October 2013 56
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Process correlation is zero

PPA and CAL have different trend structure and zero process (validation) correlation
Blue lines represent trace of calendar year 2006

Note zero process correlation.
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Reserve distribution correlations between
two distinct LOBs - a very different story

« Highest process correlation observed between two different LOBs is about 0.6
(in our experience)

 But Reserve distribution correlation is typically lower.

* Trend structures for two LOBs typically different

« Parameter correlations low or zero

 See Private Passenger Automobile (PPA) versus Commercial Auto Liability
(CAL)

10 October 2013 58
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Correlations- and other relationships

There are five types of relationships.

1. Process Correlation (correlation between two sets of (random) residuals)

2. Parameter Correlations

3. Same trend structure (especially along the calendar years)- common calendar year drivers. This
is stronger than correlations.

4. Common accident year drivers- major implications for pricing future accident years. This
relationship is also stronger than correlations.

5. Reserve distribution correlations by total, accident years and calendar years

The optimal single composite model may also involve cross dataset parameter constraints.

#1 induces #2. However, #3 is the 'worst' kind of relationship you can have between two LOBs as
it results in very little, if any, risk diversification. It means that in terms of future calendar year
trends the two LOBs move together, that is, a trend change in one LOB means a trend change in
the other LOB. If two LOBs satisfy #3, then #1 and #2 are typically not far from 1.

Fortunately, #3 we have only observed between layers of the same LOB, between segments of the
same LOB, and between net of reinsurance and gross data (of the same LOB). #1, #2, #3 induce
#5. #5 is typically much less than #1 in the absence of #3.
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#4 results in mean ultimates by accident year moving synchronously. The relationship in mean
ultimates may be close to linear- this is stronger than correlations and has implications for
pricing. Synchronous mean ultimates are already incorporated in the reserving model. Sometimes
only one or two accident years move synchronously due to a major event like Katrina. The
process correlation about the new levels (trends) is usually low.

It is important to recognize that you cannot measure the relationship between two LOBs unless
you first identify the trend structure and process variability in each LOB. It is only in the
Probabilistic Trend Family (PTF) modelling framework that you can identify a parsimonious
model that separates the trend structure in the three directions from the process variability. The
data triangle (real data) is regarded as a sample path from the identified model that fits (different)
normal distributions to each cell. When you simulated triangles from the identified model, they
are indistinguishable in respect of statistical features from the real data.

15 October 2013 60

30



Updating, monitoring, variation in mean ultimates
one year hence (CDR) and consistent estimates of
prior year ultimates

End 2008
< VaR(2009)
2008
End 2009
 VaR(2010)
VaR(2010) = VaR(2009) provided assumptions are
“consistent”
2009

Another year 2009
61

Consistent estimates of prior year ultimates
and Sll metrics on updating

= Wcom1:PL(l):PTF[Good1-1]:Model Displays (=

01704
.-0.0631
0.25%5]
-0.0609]

“oz177]
-0.0690]

mmmmmmmmmmmmmmmmmmm

MLE Variance vs Dev. Y1

mmmmmmmmmmmmmmmmmmmmmmmmmm

o @ W 6 00 01 0z 03 04 05 0o 0 08
WLE Variance vs Dev. r
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Consistent estimates of prior year ultimates

on and Sl metrics updating

= WComN:PL(I):PTF[good1-1]:Model Displays EEX
Cal. Yr Trends

0
-05

- :PL(I):PTF [good1-1]:Model Displays
=15

Cal. Yr Trends

94 95 95 o7 S8 99 00 01 02 03 04 05

Calendar year trend has not
changed statistically on updating

94 95 95 o7 95 99 00 01 02 03 04 05 06 O7 08 09
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Consistent Estimates of prior year mean ultimates on updating

only under certain conditions

“WeomN:PL(1):PTF[good-1]:Reserve Forecast Summaries == B WeamN1 :PL(1):PTF[good-1]:Reserve Forecast Summaries uw
Xy (%) Diferences | [l Summary Graphs | [ Forecast Settings | || Xx (%) Differences | <Ji Comparisons | i Summary Graphs | 55 Forecast Settings |
A Ace vis | 24 cal vis Observed vs Mean Estimate Acc. Yrs 24 cal. ¥rs Observed vs Mean Estimate |
summary | Correlations | Summary | Canrelations |
Accident Yr Summary ‘ Accident Yr Summary |
Mean Standard v Mean Standard oy Iil
acc. YT - - - - Acc. T - N
[ Uttimate Dev. Outstanding | _Ultimate o Uttimate Dev. Uttimate
1994 64,105 4,367,021 12,003 0.19 0.00 1995 83,338 5,005,100 15,521 0.19 0
1995 183,476 5,904,973 25,953 0.14 0.00 1996 211,165 6,808,107 29,287 0.14 0.
1996 348,961 6,811,182 42,843 0.12 0.01 1997 115,399 9,436,187 19,729 0.12 0
1997 610,813 9,346,343 69,325 0.11 0.01 1998 681,956 | 10,762,754 75,457 0.1 0.
1998 941,181 | 10,645,342 102,898 0.11 0.01 1999 1,315,902 | 16,844,401 147,004 0.11 0c
1999 1,723,018 | 16,662,194 195,782 0.11 0.01 2000 2519633 24,931,072 252,179 0.10 0.
2000 3,225,205 | 24,725,342 328,618 0.10 0.01 2001 3965220 36,478,233 381,715 0.10 0c
2001 4,078,876 | 35,703,717 195,726 0.10 0.01 2002 6,268,274 44,060,917 593,020 0.09 0
2002 7,758,325 | 43,405,885 770,323 0.10 0.02 2003 10,013,116 | 50,243,970 950,421 0.09 0
2003 12,257,180 | 19,681,835 1,237,122 0.10 0.02 2004 14,660,719 58,644,300 1422278 0.10 0
2004 17,790,981 | 58,026,983 1,855,971 0.10 0.03 2005 15,782,985 57,764,068 1.496,676 0.09 0.
2005 19,201,483 | 54,288,400 1,993,010 0.10 0.04 2006 | 23,687,823 6589883 2,257,667 0.10 0c
2006 29,237,716 | 62,418,911 3,042,497 0.10 0.05 2007 | 34,867,727 71,583.232 3,356,068 0.10 0.
2007 43,462,568 | 69,753,286 4,574,689 0.11 0.07 2008 | 43,193,079 | 66,251,218 4,223,300 0.10 0c
2008 54,370,314 | 64,985,706 5,820,819 0.11 0.09 2009 | 63,642,001 74,560,184 6,374,007 0.10 0
Total _ 196244302 | 516.729.121] | 15.668.381 0.08 0.03 Total |_221308.346 604,532,647 | | 15.827.063 0.07
[Am| >
1 Unit= $1 (]| E2m]
1 Unit = $1
64 At end 2008, ultimate 2008=64.9+_5.8, at end 2009 66.2+_4.22
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With identified optimal parametric distribution models that are tested from the data, it is relatively
straightforward to compute the CDR. Note Pythagoras's theorem, viz.,
Var[Ult.]=E[Var[UIt.|CY1]]+Var[E[UIt.|CY1]]
Variation in mean ultimate one year hence is represented by Var[E[UIt.|CY1]. Variance of (distribution of)
Ultimate = Mean Conditional Variance + Variance of Conditional Mean

15/10/2013

[E=REoR =)

¥ WC1 New:Composite DS:MPTFIGood] -1]:Reserve Forecast Summaries
PLOD |
M Ace. Yis |_.j Cal. iz | [[I] Observed vs Mean Estimate | ¥y (%) Di | oL Graphs | %, Settings |
| Risk Capital ion | €
Accident Yr Summary
o, T Mean Standard cv Cond. on Next Cal. Per.

Outstanding Ultimate Dev. Outstanding Ultimate E[SD[UIt|Data]] | SD[E[UIt|Data]]
19984 64,094 4,367,010 11,945 0.19 0.00 o 11,945
1986 183,446 5,904,943 25,739 0.14 0.00 14,626 21,181
1996 348,907 6,811,128 42,393 0.12 0.01 27,437 32,317
1987 610,713 9,346,243 68,453 0.11 0.01 46,367 50,367
1998 941,013 10,645,174 101,389 0.11 0.01 70,024 73,324
1999 1,722,604 16,661,780 192,216 0.11 0.01 134,377 137,441
2000 3,224,708 | 24,724,766 323,236 0.10 0.01 229,618 227,601
2001 4,977,968 | 35,702,799 487,336 0.10 0.01 346,676 342,609
2002 7,756,800 | 43,404,360 766,603 0.10 0.02 536,924 533,067
2003 12,264,613 | 49,679,169 1,213,616 0.10 0.02 868,082 858,229
2004 17,786,633 | 58,024,535 1,818,109 0.10 0.03 1,280,371 1,280,803
2008 19,286,762 | 54,283,669 1,952,766 0.10 0.04 1,350,644 1,410,326
2006 29,230,395 | 62,411,590 2,980,888 0.10 0.05 A 2,043,089 2,170,595
2007 43,451,297 | 69,742,015 4,481,674 0.10 0.06 3,052,683 ['3.281,238
2008 54,355,368 | 64,970,760 P,TDQ,TTQ 0.11 0.08 3,866,919 [ 4,201,013
Total _ 196,195,101 516,679,920 /] 15.211.543 0.08 0.03 9,847,780 / 11,583,631

SD  rereclMlid@h.Gonditional SD ~pRr
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The CDR is Var[E[UIt.|CY1]]

With identified optimal parametric distribution models that are tested from the data, it is relatively
straightforward to compute the CDR. Note Pythogras’s theorem, viz.,
Var[Ult.]=E[Var[UIt.|CY1]]+Var[E[UIt.|CY1]]

Anoglous to One Way ANOVA
Total SS= Within Group SS+ Between Group SS

(=3 R =)
Agg MBI+PL Aggregate | Cars | PL | T&0 | MBI | Cars H:PLO) | Lost PL() | Cara_H:NIl PLQ) | Cars_H:ME PL() | Cars_nH:PL() | Cars_nH+ |+ |
Xy (%) Differences 1L Summary Graphs | B Clusters |
[[2] Summary by Datasets ] Ace. Y | 4] cal. Yrs | [[7]] Observed va Mean Estimate | A Incurred Losses |
Summary | Risk Capital Allocation | Correlations |
Accident Yr Summary
e ean Standard cv Cond. on Next Cal. Per.

Outstanding | Ultimate Dev. Outstanding | Ultimate E[SD[UIt|Data]] | SD[E[UIt|Data]]

1999 7,787 237,366 1,267 0.16 0.01 872 920

2000 11,612 266,535 1,750 0.15 0.01 1,226 1,248

2001 17,374 266,118 3,229 0.19 0.01 2,322 2,244

2002 21,916 262,631 3,129 0.14 0.01 2,230 2,196

2003 31,166 272,200 4,728 0.15 0.02 3,242 3,437

2004 55,956 349,458 7,265 0.13 0.02 5,197 5,077

2006 92,608 487,089 11,269 0.12 0.02 8,006 7.917

2006 132,188 477,713 17,977 0.14 0.04 13,699 11,768

2007 177,426 503,984 21,409 0.12 0.04 18,013 11,571

2008 202,713 507,123 22,130 0.11 0.04 19,721 10,041

2009 265,236 419,641 26,382 0.10 0.08 23,045 12,843

2010 244,140 | 321,048 30,701 0.13 0.10 26,278 16,876

2011 332,395 386,913 47,337 0.14 0.13 38,978 /’ 26,860

Total 1,682,487 | 4,706,829 | 113.328 0.07 0.02 86,799 74.040

Unit = §1,000 s I't(CDR’)
q
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Example of risk diversification of SCR and Risk Margins

* Sll metrics for the aggregate of real life six LOBs compared with SII metrics for the
most volatile LOB to illustrate amongst other things risk diversification of SCR and
(MVM (Risk Margin) component) of TP (Fair Value of Liabilities).

» Undiscounted reserves for the aggregate of six LOBs
= (approx) Technical Provisions +Solvency Capital Requirement (SCR)
= total in Economic Balance Sheet,
using a risk free rate of 4% and a spread of 6%.

* No need for additional capital in this example due to risk diversification SCR and
MVM.

+ Conditions for consistent estimates of prior accident year ultimates and SlI risk
measures on updating?

» We will explain how to avoid model error “distress”.

10 October 2013 67

Solvency Il — Economic Balance Sheet

Assets Liabilities

J Excess capital

Available for Zol\:.ml"\-
apita
SCRMER Min. Capital Requirement
Requirement (SCR) %
MCR) Solvency Il aims to

Market

Market Value
Margin (MVM)

establish a solvency

regime that is better
matched to the true risks
of an insurance company

Value of
total Assets
MVA)

Market-
consistent
Value of

Liabilicies

Expected PV -
furuse cash anL)
flows

Ann Hagen in “Solvency Il : Brave new world

"Doing the job
Under Solvency II, the way that work Is carried out will ch For $ y Il is likely to require
different actuarial techniques from the ones currently used. p will be as a

probability-weighted ge of exp d future cash flows, taking into account the time-value of money and
including a risk margin. Many of us are estimating claims reserves using traditional deterministic actuarial
techniques, primarily relying on incurred claims data. Under Solvency Il, not only will we need to discount
these reserve il iring proj: pay patterns, we will also need to demonstrate a deep
understanding of the uncertainty of those reserves. We will additionally be required to apply the same
approach to evaluating unexpired risk liabilities currently allowed for in the unearned premium reserves.*
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Solvency Il one-year risk horizon:
* satisfies 3 conditions
* decomposing the directives
*What are the basic elements?

* Risk Capital is raised at the beginning of each year and any unused capital is
released at the end of the year;

» The analyses are conditional on the first (next) calendar year being in distress
(99.5%);

» At the end of the first year in distress, the balance sheet can be “restored” in
such away that the company has sulfficient technical provisions (fair value of
liabilities) to continue business or to transfer the liabilities to another risk bearing
entity.

An important consideration is that fungibility by calendar year is only in the
forward direction

15 October 2013 69

Risk Capital — One Year risk Horizon

Simplest Case: Only One Year Runoff
L, = projected losses for the year. This is a random variable.

BEL(1) = E(Ll)/(l +d)os Where d = interest rate. Losses are paid
uniformly through vear, so we discount for halfa year.

MVM(1)
SCR(1) = VaRgs.s0,(Ly). ie. Pr(L, < E(L,) + SCR(1)) = 0.995

MVM([1) is the cost incutred in having risk fund of SCR(1) available for the

BEL(1) TP(1] year. Itis paid to capital provider at end of year and so is discounted by a full

year.
SCR(1)#s
(1+d)

provider, or MVM (1) =

MVM(1) =

, if the interest on the risk fund is paid directly to capital

SCR(l)x(s+d.'j, o ise.
(1+d)

TP(1) = BEL(1)+ MVM(1). This is the Technical Provision and must be held in company own funds.
We will also let, PV(k;d), or PV(k) be used to abbreviate the Present Value factor 1/(1 Tk

15 October 2013 70
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Risk Capital — One Year risk Horizon

Next Simplest Case: Two Year runoff, No correlation

BEL(1)

TP(1)
TP(2)
BEL(2)

Year 1 ‘

Year 2 ‘

BEL(1) = E(Ly) + PV(0.5)
BEL(2) = E(L,) PV(15)
MVM(1) = VaRggs4,(1) 5 PV (1)
MVM(2) = VaRgg50,(2) 5 PV (2)

The Technical Provision (TP) at inception is the
sum of the individual year TPs:

TP=TP(1)+TP(2)

This amount needs to be available in company
own funds to ensure that losses can be met up to
a99.5% or 1/200risk level in each year.
Aggregate losses up to the value of the mean are
met out of BEL funds, excess losses are met from
the SCR fund, access to whichis financed by
MVM.

15 October 2013

Capital flow: Uncorrelated future calendar years

Risk Capital
+ Raised using
MVM(1) in year 1

R

Technical

Provisions
« Held by company

For losses
exceeding the
mean; surplus Risk
returned to )
capital provider l Capital
+ Raised using
MVM(2) in

BEL (2+)

l—Y—J

BEL(1)

Required Capital at
Year 1

Premium for risk
capital; paid to
capital provider

L

N
di |

\

year 2

Technical Provision
for year 2

BEL (2+)

Required Capital at
ear

For losses during
year 1; surplus
retained by
company.
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Risk Capital — One Year risk Horizon

Inrespect
of

o “

In respect
of

BEL(2)

Year |

BEL(1) BEL(1)

Riskcapital |
Fund H

Technical |
Provision !

15/10/2013

Two-year picture of accounts: In year 1 we require reserves to meet paid loss liabilities for years 1
and 2 and we also need to able to fund the cost of access to the risk capital funds for years 1 and 2,
however we only need access to the year 1 risk fund. When year 2 begins our accounts reset, since

any cost over-runs from year 1 were paid out of the risk fund and do not degrade our prepared

reserves for year 2. Provided the loss over-run is below RC(1) = VaRgg 5(L1).

15 October 2013

Risk Capital — One Year risk Horizon

*This is fine, except for one thing:

What if the distribution for the losses in year 2 has changed conditional on the

losses in year one?

*Simply put, the previous picture assumes there is no correlation between the

73

distributions for years 1 and 2. In other words, whatever the outcome observed after

year 1 we are going to remain fixed on our previous course, full steam ahead

Typically calendar year distributions are positively correlated.

The correlations are driven by parameter uncertainty.

15 October 2013
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Risk Capital — One Year risk Horizon

|

BEL(2)

BEL(1)

Riskcapital |
Fund

Technical
Provision |
5 " BEL(ZIE)

If year 1 is in distress at the 99.5th percentile, then our risk fund carries us over into year 2, but the
conditional distributions are now different. Year 2 now must be re-evaluated in the light of conditional
distributions and these increase the size of the BEL and the MVM, the cost of holding the risk fund.

£ = the condition that year 1 is in distress at

We need to include these adjustments in the year 1 risk fund

15 October 2013
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Two-year runoff with first year in distress.

SCR—

Why is AMVM(2) disc by 1 year
and MVM(2) by 2 years?

SCRT

Let ¢ = Year 1 in distress

VaR(1) is consumed.

MVM(1)

= spread*SCR at

year end (and returned

along with risk free rate).

VaR(2[¢) is raised in year 2.

n
= = VaR(2
BELE) (218)
TP — —
—_— } VM(2[%)
BEL(1) BEL(1) 1 TPER
BEL(2) [ BEL(2lE)
Inception Year 1 Year 2| §
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Capital flow:

Two-year runoff with first year in distress Rrisk

For losses exceeding Capltal

the mean and to Raised using
MVM(2) in year
2:

rebalance economic
balance sheet;
AT A;MVM(2) surplus returned to
o capital provider
Risk Capital

+ Raised using MVM(1)
inyear 1

Premium for risk
capital; paid to
capital provider

ABEL(2)

Technical Provision
for year 2

Technical

Provisions
+ Held by company L

BEL(2+)

BEL(2)

Required Capital at
Yearl For losses during year

1; surplus retained by
company.

Required Capital at
Year 2

supplemented
by A,MVM(2) if
Year 1lisin
distress

15 October 2013 77
N-year run-off (Correlated)
TP = EBEL(k) + SMVM(k); k=1to n
SCR = VaRgg 5(1) + E[ABEL(k) + AMVM(K)]: k=2ton
SCR— |—-2BEL® | ‘
VaRgg s4(1)
B s vr—
MVMQ)
o VaRag ss(1) AVaRQ)
BEL(n)
TP 2
BEL(2) vm:";vm —
i ABEL(2) ‘ LS
BEL(1) BEL(1) e FMVM(1iE)
L e ‘ T e
Inception | Year 1 Year2 | & Yearn | &
&=Year 1 in distress
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Two-year runoff with first year in distress

* There is sufficient risk capital SCR and Fair Value to withstand a distressed
first year at 99.5% confidence and restore Fair Value at beginning of the
second year.

» An important consideration is that fungibility by calendar year is only in the
forward direction.

Consistent metrics on updating from year to year- under what conditions?
See also E&Y GNAIE paper (2007)

“Market Value Margins for Insurance Liabilities in Financial Reporting and
Solvency Applications , October 1, 2007”

15 October 2013

What Causes Distress in the first year?

1. “Inflation parameters” going forward. For example under the
assumption 10%+_3%, a 60% trend is distress.

2. Process volatility- large values from the tail of lognormal
distributions.

3. Combinations of 1. and 2.

4. Which LOBs contribute more to distress than others?
* Process volatility

» Parameter uncertainty

* “Size” of LOB

79
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