
15/10/2013 

1 

GIRO40 
8 – 11 October, Edinburgh 

 

 

Long tail liabilities (LOBs) 

• Correlations 
• Accident year drivers 
• Calendar year drivers 
• Seemingly Unrelated Regressions(SUR) 
• Single composite model for multiple LOBs 
• Risk Capital Allocation 
• One year ahead statistics(CDR) 
• Economic Balance Sheet and risk diversification of SCR and Risk 

Margins 
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Correlations between LOBs 

10 October 2013 3 

•  Three types of correlations 

– Process (volatility) correlation 

– Parameter (trend) correlation 

– Reserve distribution correlation 

Similar trend structure implying commonality in calendar year drivers or accident year 
drivers is a stronger relationships than correlations 

•  Cannot measure these correlations unless LOB trend structure and process  variability 
(volatility) modeled accurately 

•  Most important direction is the calendar year 

•  Reserve distribution correlation << Process correlation 

•  Highest Process correlation we have seen is 0.6! 

•  Highest Reserve distribution correlation is 0.2! 

 

Correlations and other relationships between 

LOBs/Segments 

10 October 2013 4 

Take-Away points: 

•  Most long tail LOBs exhibit close to zero correlation 

•  Each company is different 

•  Each LOB/Segment is different 

• Common accident year and calendar year drivers are stronger relationships than 
correlations 

• Cannot assess the relationships between two loss development arrays unless the 
identified optimal model fits a distribution to each cell- the means on a log scale are 
related by the “trends” in the three directions 

• A single composite model for multiple LOBs/segments involves Seemingly Unrelated 
Regressions (SUR) – Zellner 1962  

• For 40 LOBs there are 780 pairwise correlations. Most are zero. We create clusters. 
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Correlation and Linearity  

10 October 2013 5 

Correlation, linearity, normality, weighted least squares, and linear 

regression are closely related concepts. 

The idea of correlation arises naturally for two random variables that have a 

joint distribution that is bivariate normal. For each individual variable, two 

parameters a mean and standard deviation are sufficient to fully describe its 

probability distribution. For the joint distribution, a single additional 

parameter is required the correlation. 

If X and Y have a bivariate normal distribution, the relationship between them 

is linear: the mean of Y, given X, is a linear function of  X  ie: 

  βXαY|XE 

  

Weight  =             Height  =  

For sub-populations of heights defined by                    the distribution of  

weights              is normal distribution with mean                  and variance        . 

Y X 

15 October 2013 6 

Correlation and Linearity 
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10 October 2013 7 

The slope   is determined by the correlation , and the standard 

deviations: 

,XY β

where  .),( YX YXCov

The correlation between Y and X is zero if and only if the slope    is zero. 

 

Also note that, when Y and X have a bivariate normal distribution, the 

conditional variance of Y, given X, is constant ie not a function of X: 

  2

|XYY|XVar 

Correlation and Linearity  

Correlation and Linearity  

If               has a joint normal distribution then 

 

 

    and 

 

15 October 2013 8 
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This is why, in the usual linear regression model   

 

Y =  + X +    

 

the variance of the "error" term    does not depend on  X. 

 

However, not all variables are linearly related. Suppose we 

have two random variables related by the equation 

 

where T is normally distributed with mean zero and variance 1.  

 

What is the correlation between S and T ?  

2TS 

Correlation and Linearity  

10 October 2013 10 

Correlation and Linearity  

Linear correlation is a measure of how close two random variables are to being 

linearly related.  

 

In fact, if we know that the linear correlation is +1 or -1, then there must be a 

deterministic linear relationship  

 

Y =  + X  between Y  and  X  (and vice versa). 

 

 

If  Y  and  X are linearly related, and  f  and g are functions, the relationship 

between f(Y ) and g( X ) is not necessarily linear, so we should not expect the 

linear correlation between f(Y ) and g( X ) to be the same as between Y  and  X. 

 

(Answer to question on previous slide is zero) 
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Digression: A common misconception with 

correlated lognormals 

Actuaries frequently need to find covariances or correlations between 

variables such as when finding the variance of a sum of forecasts 

(for example in P&C reserving, when combining territories or lines 

of business, or computing the benefit from diversification). 

Correlated normal random variables are well understood. The usual 

multivariate distribution used for analysis of related normals is the 

multivariate normal, where correlated variables are linearly related. 

In this circumstance, the usual linear correlation (the Pearson 

correlation) makes sense. 

10 October 2013 12 

A common misconception with correlated 

lognormals 

However, when dealing with lognormal random 

variables (whose logs are normally distributed), if 

the underlying normal variables are linearly 

correlated, then the correlation of lognormals 

changes as the variance parameters change, 

even though the correlation of the underlying 

normal does not. 
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10 October 2013 13 

A common misconception with correlated 

lognormals 

All three lognormals below are 

based on normal variables with 

correlation 0.78,  as shown left, but 

with different standard deviations. 

10 October 2013 14 

A common misconception with correlated 

lognormals 

We cannot measure the correlation on the log-scale and apply that correlation 

directly to the dollar scale, because the correlation is not the same on that 

scale. 

 

Additionally, if the relationship is linear on the log scale (the normal variables 

are multivariate normal) the relationship is no longer linear on the original 

scale, so the correlation is no longer linear correlation. The relationship 

between the variables in general becomes a curve: 
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Correlation, Regression and Time Series 

Correlations measured before and after regression can be very different. Hence if we want to assess 

the effective correlation between two series we must first remove trends (the predictable portion) and 

measure the correlation of the residuals (the random components.) 

Consider the series A, B and C. Each has a linear trend, B and C appear quite similar. The correlation between 

A and B is 0.91 and between A and C is 0.97. Are A and B related? Are A and C related? 

15 October 2013 15 

De-trending the series 

Removing trends from the series, in this case by linear least-squares regression separates the 

predicateble part from the random component. 

Series C 

Series B Series A 

15 October 2013 16 
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Compute the correlation of the residuals = 

the random component of each series 

Residual or “Process” Correlation of A 

and B = -0.07 

Residual or “Process” Correlation of A 

and C = 0.42 

Conclusion: The series A and B merely share a common positive trend. There is no apparent causal or predictive 

relation between them. Series A and C exhibit a positive correlation. Information about the next value of C does 

have a significant bearing on prediction of the next value of A. 

15 October 2013 17 

Correlation in time-series- not same as correlation between 

Y and X 

Loss Reserving is a study of time series by calendar year! 

10 October 2013 18 

Series 
corr. = 0 

Series 
corr. = 0.5 

Series  

corr. = -0.5 

Series 
corr. = 0.8 
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We call the correlation of the random component (after 

modeling the trend structure in the three directions) of two 

loss development arrays: process correlation 

10 October 2013 19 

3D plot of data 

These two triangular loss arrays 
have process corr. = 0.9 after 
modelling their respective trend 
structures.  

*Cannot detect from data plot.* 

Common calendar drivers: Gross vs Net 

15 October 2013 20 

In Gross versus Net of Reinsurance data (E&O and D&O in example), common 

calendar year drivers are expected to be found since Net of Reinsurance is a 

subset of Gross. Trends, especially calendar and accident, are closely related. 

The comparable models are shown below: 
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Common calendar drivers: Gross vs Net 

15 October 2013 21 

The model trends are very similar; trend and volatility changes usually coincide. 

The critical trends in common are the calendar year trends (below) and 

accident year level changes. Common calendar year drivers are clearly visible 

as the trend changes occur at the same point. 
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Common calendar drivers: Gross vs Net 

10 October 2013 22 
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Wtd Std Res vs Cal. Yr

86 88 90 92 94 96 98 00 02 04 06

-2.5
-2

-1.5

-1
-0.5

0
0.5

1
1.5

2

Wtd Std Res vs Cal. Yr

86 88 90 92 94 96 98 00 02 04 06

-3

-2

-1

0

1

2

3

Wtd Std Res vs Acc. Yr

86 88 90 92 94 96 98 00 02 04 06

1 2 3

-2.5
-2

-1.5

-1
-0.5

0
0.5

1
1.5

2

Wtd Std Res vs Acc. Yr

86 88 90 92 94 96 98 00 02 04 06

3 2 2

-3

-2

-1

0

1

2

3

Blue line is  

trace of (single) 

calendar year 

(2006) along 

the accident 

years. 

 

 

 

 

 
Process 

Correlation = 0.85 
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Common calendar drivers: Gross vs Net 

15 October 2013 23 

GROSS NET 

Wtd Std Res vs Acc. Yr
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For the model described above, the residuals by accident year traced for 

the last calendar year are clearly correlated; when a value in a year is 

low/high in one segment it is usually low/high in the other segment also at 

the same time. 

Common calendar drivers: Gross vs Net 

15 October 2013 24 

GROSS NET 

The residuals from both lines of business are statistically indistinguishable 

from two normal distributions.  

Thus, the process correlation can be considered the volatility correlation 

between two normal distributions. 

Wtd Res Normality Plot

N = 228,  P-value = 0.3739,  R^2 = 0.9936
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Common calendar drivers: Gross vs Net 

15 October 2013 25 

GROSS 

N
E

T
 

A scatter plot of the 

residuals, from the 

respective Gross and 

Net of Reinsurance 

models, exhibits a clear 

(linear) relationship; a 

correlation of 0.853. 

LOB   3 

 

LOB   1 

A Tale of Two LOBs: LOB1 and LOB3 

10 October 2013 26 

Cal. Yr Trends
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(Actually same line, different territories) 

Both LOBs had a calendar year trend change in 2000 
 

That should have been of concern!  
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A Tale of Two LOBs: LOB1 and LOB3 

10 October 2013 27 

Full model display 

LOB   3 LOB   1 
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A Tale of Two LOBs: LOB1 and LOB3 

10 October 2013 28 

LOB1  LOB3 

 

Volatility correlation = Process correlation = 0.35 = Correlation in 

 normal distributed residuals 

                 Note 98-00 common negative trend, 00-02 common positive trend  

                        and 02-03  zero trend for LOB1 and negative trend LOB3. 
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Regression in the presence of correlation 

Seemingly Unrelated Regressions (SUR) – 

Zellner (1962) 

15 October 2013 29 

Without loss of sense and generality two models in (1) could be considered as one 

linear model: 

Model displays shown above correspond to two linear models, which are described by 

the following equations: 

Regression in the presence of correlation 

15 October 2013 30 

For illustration of the most simple case we suppose that size of vectors y in models (1) 

are the same and equal to n, also we suppose that 

Which could be rewritten as: 

In this case 
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Regression in the presence of correlation 

15 October 2013 31 

For example, when n = 3  

Regression in the presence of correlation 

15 October 2013 32 

which derived by ordinary least square (OLS) method, does not provide any 

advantage, as the covariance matrix   does not participate in the estimations.   

 

Only general least square (GLS) estimation 

There is a big difference between linear models in (1) and linear model (2), as in (1) 

we consider models separately and could not use additional information, from 

dependency (process correlation) of these models, what we can do in model (2).  To 

extract this additional information we need to use proper methods to estimate vector of 

parameters . The estimation  

could help to achieve better results.  
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Regression in the presence of correlation 

15 October 2013 33 

and this process will stop, when we reach estimations with satisfactory statistical 

properties. 

 

The SUR       is a (credibility) weighted average        and  

However, it is necessary immediately to underline that we do not know elements of the 

matrix  and we have to estimate them as well.  So, practically, we should build 

iterative process of estimations 

Regression in the presence of correlation 

15 October 2013 34 

However in situation when two models in (1) have common regressors model (2) again 

will have advantages in spite of the identical structure of the design matrices. 

There are some cases, when model  (2)  provides the same results as models in (1).  

They are:  

1.  Design matrices in (1) have the same structure (they are the same or proportional 

to each other.) 

2.  Models in (1) are non-correlated, in other words  
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Model Displays for LOB1 and LOB3 for Calendar Years 

15 October 2013 35 

Model for individual iota parameters- they are correlated 

going forward 
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Correlations are in the volatility component of 

a model 

15 October 2013 37 

•  Two lines are (positively) correlated when their results tend to 

miss their target values in the same way.   

•  This is what should concern business planners, because it 

affects the unpredictable component of the forecasts.  

•  What is predicable when it includes common trend patterns, 

as in the above example, does not count towards correlation, 

because its effects are already incorporated into the model and 

forecast.  

•  A forecast must include a volatility measure, ideally in the form 

of a loss distribution but at least in the form of a standard 

deviation.  

Common accident year drivers: SAD and 

SAM 

15 October 2013 38 

A model which does not take into account the changes in accident year levels shows a 

marked  similarity in the fluctuations of residuals in the accident direction. 

 

This is not correlation! 

Wtd Std Res vs Acc. Yr
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Common accident year drivers: SAD and 

SAM 

15 October 2013 39 

The residual displays with scatterplot for SAD and SAM are shown for this model. The 

correlation is very high, but it is largely spurious - there are distinct changes in level across 

the accident years which were ignored in this model. 

S
A

M
 

SAD 

If the common accident year movements 

are ignored and the average accident 

year level fitted to both segments, then a 

very high spurious correlation measure 

of 0.96 is obtained. 

Common accident year drivers: SAD and SAM 

15 October 2013 40 

Acc. Yr Trends
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The red bars indicate common parameters between the segments. Although the calendar and 

development year parameters vary slightly, the accident year parameters move synchronously 

thus making the mean ultimates vary synchronously (but this is not correlation). 

Accounting for accident year level (trend) changes  
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Common accident year drivers: SAD and 

SAM 

15 October 2013 41 

Both sets of residuals test well for normality and have no indications of non-randomness so 

the process correlation (0.249) is the volatility correlation between two normal distributions.  

SAD 

S
A

M
 

Common accident year drivers: SAD and SAM 

15 October 2013 42 

• The accident year levels moving together is a much stronger relationship than volatility correlation. 

• The mean ultimates move synchronously (left) and a graph of the mean ultimates of SAM versus 

the mean ultimates of SAD (right) shows an almost perfect linear relationship. 

• The reserve distribution correlation is only 0.086! The reserve correlation is the correlation in the 

losses not explained by the means – and therefore is the critical measure when evaluating risk 

diversification. 



15/10/2013 

22 

Common accident year drivers and pricing future 

accident years 

15 October 2013 43 

• The linear relationship in mean ultimates is important when forecasting future 

underwriting (accident) years.  

• If the accident year level for one segment is expected to increase by 10%+_2%, 

then the other segment is also likely to increase by 10%+_2% in the same accident 

year.  

• The relationship in the mean parameter estimates is not volatility (risk) correlation 

and does not indicate lack of diversification.  

• The movement in means may be able to be related to internal or external drivers - 

and risk exposure can be managed.  

• Correlation in risk is significantly harder to manage as it invokes correlation in the 

random component - variation which is not readily able to be connected to any 

internal or external drivers. 

Common accident year drivers and pricing future accident years 

15 October 2013 44 

SAD SAM 
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Common accident year and common 

calendar year drivers 

15 October 2013 45 

•  Common drivers are a stronger influence than correlation.  

•  However, they are not typically found outside closely related 

losses.  

•  For example, Gross versus Net of Reinsurance (Net of 

Reinsurance is a subset of Gross so common drivers are 

expected), layers (layers are subsets of ground up losses), and 

segments of the same line. In this respect, detection of common 

drivers is as important as understanding correlations.  

•  The two effects must be correctly distinguished and adjusted for 

as management strategies of these risk components differ. 

Layers Lim1M, Lim2M and 1Mxs1M; 

Lim2M=Lim1M+1Mxs1M 

10 October 2013 46 

The trend structure is the same for each layer (Left to right 1M, 1Mxs1M, 2M) 
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Layers Lim1M, Lim2M and 1Mxs1M; 

Lim2M=Lim1M+1Mxs1M 

10 October 2013 47 

Very high process correlations (Left to right 1M, 1Mxs1M, 2M) 

Wtd Std Res vs Cal. Yr
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Layers Lim1M, Lim2M and 1Mxs1M; 

Lim2M=Lim1M+1Mxs1M 
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Tables of process correlations (linear) and calendar year parameter 

correlations (linear) 

 

This type of equivalent trend structure and high parameter and process 

correlations has not been observed for two LOBs 
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Spurious correlation 

15 October 2013 49 

Two LOBs are simulated independently each with its own unique 

trend structure. The only material difference in the LOBs is that one 

LOB has a calendar year trend of 10%, the other of 20%. Each has 

a -30% development year trend.  

A correct model of the underlying data process, would recognise 

that each LOB has a separate trend for each direction and a 

process correlation of zero - since this is how the data were 

generated.  

If an incorrect model is used, one that does not describe the 

calendar year trends, then a spurious correlation would be 

detected, as an artefact of unaccounted-for structure in the data. 

Spurious correlation 
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Correct model picks up true calendar year trend; process correlation is zero! 

Cal. Yr Trends
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Spurious correlation 

15 October 2013 51 

Incorrect model fails to pick up calendar trend; measures 98% correlation! 

But this is not correlation since each sample is not random. They have structure. 
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Spurious correlation between Industry PPA 

and CAL data 

15 October 2013 52 

As was shown in the previous case study, spurious correlation is introduced by 

failing to detrend the data in the three directions. The correlation measured was 

spurious as there were trends in the data not described in the models. Once 

these trends were accounted for, the process correlation was statistically 

insignificant. 
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Spurious correlation between Industry PPA 

and CAL data due to wrong model 

15 October 2013 53 

Paid Losses for the Industry PPA and CAL data from AM Best (2011) are 

modelled using the Mack method. The residuals are shown by Calendar year for 

CAL and PPA with the trace line for accident year 2004 highlighted. 

Wtd Std Res vs Cal. Yr
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Spurious correlation between Industry PPA 

and CAL data 

15 October 2013 54 

Although the residual correlation is strong the indication is misleading. The 

observed correlation is due entirely to limitations of the model. 

CAL 

P
P

A
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Spurious correlation between Industry PPA 

and CAL data 

15 October 2013 55 

The observed correlation is due entirely to limitations of the model. 

Wtd Std Res vs Dev. Yr
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The calendar year residuals show the Mack method over-fits the recent data - 

producing a common negative trend in both residual displays. 

CAL PPA 

Models for PPA and CAL 
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No LOBs have the “same” tend structure and most LOBs have zero process 

correlation. Consider Private Passenger Automobile and Commercial Auto Liability 

The two lines have very different trend structure and process variance! 
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CAL PPA 

Process correlation is zero 

10 October 2013 57 

Blue lines represent trace of calendar year 2006  

Note zero process correlation.  

Wtd Std Res vs Acc. Yr
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PPA and CAL have different trend structure and zero process (validation) correlation 

Reserve distribution correlations between 

two distinct LOBs - a very different story 

10 October 2013 58 

• Highest process correlation observed between two different LOBs is about 0.6 

(in our experience) 

• But Reserve distribution correlation is typically lower. 

• Trend structures for two LOBs typically different 

• Parameter correlations low or zero 

• See Private Passenger Automobile (PPA) versus Commercial Auto Liability 

(CAL) 
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Correlations- and other relationships 
 

There are five types of relationships. 

 

1. Process Correlation (correlation between two sets of (random) residuals) 

2. Parameter Correlations 

3. Same trend structure (especially along the calendar years)- common calendar year drivers. This 

is stronger than correlations. 

4. Common accident year drivers- major implications for pricing future accident years. This 

relationship is also stronger than correlations. 

5. Reserve distribution correlations by total, accident years and calendar years 

The optimal single composite model may also involve cross dataset parameter constraints. 

 

#1 induces #2. However, #3 is the 'worst' kind of relationship you can have between two LOBs as 

it results in very little, if any, risk diversification. It means that in terms of future calendar year 

trends the two LOBs move together, that is, a trend change in one LOB means a trend change in 

the other LOB. If two LOBs satisfy #3, then #1 and #2 are typically not far from 1. 

 

Fortunately, #3 we have only observed between layers of the same LOB, between segments of the 

same LOB, and between net of reinsurance and gross data (of the same LOB). #1, #2, #3 induce 

#5. #5 is typically much less than #1 in the absence of #3.  

15 October 2013 59 

#4 results in mean ultimates by accident year moving synchronously. The relationship in mean 

ultimates may be close to linear- this is stronger than correlations and has implications for 

pricing. Synchronous mean ultimates are already incorporated in the reserving model. Sometimes 

only one or two accident years move synchronously due to a major event like Katrina. The 

process correlation about the new levels (trends) is usually low. 

 

It is important to recognize that you cannot measure the relationship between two LOBs unless 

you first identify the trend structure and process variability in each LOB. It is only in the 

Probabilistic Trend Family (PTF) modelling framework that you can identify a parsimonious 

model that separates the trend structure in the three directions from the process variability. The 

data triangle (real data) is regarded as a sample path from the identified model that fits (different) 

normal distributions to each cell. When you simulated triangles from the identified model, they 

are indistinguishable in respect of statistical features from the real data. 

15 October 2013 60 
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Updating, monitoring, variation in mean ultimates 

one year hence (CDR) and consistent estimates of 

prior year ultimates 

61 

Consistent estimates of prior year ultimates 

and SII metrics on updating 

62 
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Consistent estimates of prior year ultimates 

on and SII metrics updating 

63 

Calendar year trend has not 

changed statistically on updating 

Consistent Estimates of prior year mean ultimates on updating 

only under certain conditions 

 

64 
At end 2008, ultimate 2008=64.9+_5.8, at end 2009 66.2+_4.22 
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With identified optimal parametric distribution models that are tested from the data, it is relatively 

straightforward to compute the CDR. Note Pythagoras's theorem, viz.,  

Var[Ult.]=E[Var[Ult.|CY1]]+Var[E[Ult.|CY1]] 

Variation in mean ultimate one year hence is represented by Var[E[Ult.|CY1]. Variance of (distribution of) 

Ultimate = Mean Conditional Variance + Variance of Conditional Mean 

15 October 2013 65 

The CDR is Var[E[Ult.|CY1]] 
 

With identified optimal parametric distribution models that are tested from the data, it is relatively 

straightforward to compute the CDR. Note Pythogras’s theorem, viz.,  

Var[Ult.]=E[Var[Ult.|CY1]]+Var[E[Ult.|CY1]] 

 

Anoglous to One Way ANOVA 

Total SS= Within Group SS+ Between Group SS 

 

15 October 2013 66 
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Example of risk diversification of SCR and Risk Margins 

10 October 2013 67 

• SII metrics for the aggregate of real life six LOBs compared with SII metrics for the 

most volatile LOB to illustrate amongst other things risk diversification of SCR and 

(MVM (Risk Margin) component) of TP (Fair Value of Liabilities). 

• Undiscounted reserves for the aggregate of six LOBs  

      =  (approx) Technical Provisions +Solvency Capital Requirement (SCR) 

      = total in Economic Balance Sheet, 

     using a risk free rate of 4% and a spread of 6%.  

• No need for additional capital in this example due to risk diversification SCR and 

MVM. 

• Conditions for consistent estimates of prior accident year ultimates and SII risk 

measures on updating?  

• We will explain how to avoid model error “distress”. 

Solvency II – Economic Balance Sheet 

10 October 2013 68 
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Solvency  II one-year risk horizon:   

* satisfies 3 conditions  

* decomposing the directives  

* What are the basic elements? 

15 October 2013 69 

• Risk Capital is raised at the beginning of each year and any unused capital is 

released at the end of the year; 

• The analyses are conditional on the first (next) calendar year being in distress 

(99.5%); 

•  At the end of the first year in distress, the balance sheet can be    “restored” in 

such away that the company has sufficient technical provisions (fair value of 

liabilities) to continue business or to transfer the liabilities to another risk bearing 

entity. 

 

An important consideration is that fungibility by calendar year is only in the 

forward direction 

Risk Capital – One Year risk Horizon 

15 October 2013 70 

Simplest Case: Only One Year Runoff 
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Risk Capital – One Year risk Horizon 

15 October 2013 71 

Next Simplest Case: Two Year runoff, No correlation 

Capital flow: Uncorrelated future calendar years 

15 October 2013 72 
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Risk Capital – One Year risk Horizon 

15 October 2013 73 

Two-year picture of  accounts: In year 1 we require reserves to meet paid loss liabilities for years 1 

and 2 and we also need to able to fund the cost of access to the risk capital funds for years 1 and 2, 

however we only need access to the year 1 risk fund. When year 2 begins our accounts reset, since 

any cost over-runs from year 1 were paid out of the risk fund and do not degrade our prepared 

reserves for year 2. Provided the loss over-run is below RC(1) = VaR99.5(L1). 

Risk Capital – One Year risk Horizon 

15 October 2013 74 

•This is fine, except for one thing:  

  What if the distribution for the losses in year 2 has changed conditional on the 

losses in year one? 

 

•Simply put, the previous picture assumes there is no correlation between the 

distributions for years 1 and 2. In other words, whatever the outcome observed after 

year 1 we are going to remain fixed on our previous course, full steam ahead 
 

 

    Typically calendar year distributions are positively correlated.   

    

    The correlations are driven by parameter uncertainty. 
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Risk Capital – One Year risk Horizon 

15 October 2013 75 

If year 1 is in distress at the 99.5th percentile, then our risk fund carries us over into year 2, but the 

conditional distributions are now different. Year 2 now must be re-evaluated in the light of conditional 

distributions and these increase the size of the BEL and the MVM, the cost of holding the risk fund. 

We  need to include these adjustments in the year 1 risk fund 

 

Two-year runoff with first year in distress. 

15 October 2013 76 

BEL(1) 

MVM(1)= 

spread*SCR*PV(1) 

VaR99.5%(1) 
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Let ξ = Year 1 in distress VaR(1) is consumed. 

 

MVM(1) = spread*SCR at 

year end (and returned 

along with risk free rate).  

 

VaR(2|ξ) is raised in year 2. 

Why is ΔMVM(2) disc by 1 year 

and MVM(2) by 2 years?  
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Capital flow:  

Two-year runoff with first year in distress 

15 October 2013 77 
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15 October 2013 78 
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Two-year runoff with first year in distress 

15 October 2013 79 

• There is sufficient  risk capital SCR and Fair Value to withstand a distressed 

first year at 99.5% confidence and restore Fair Value at beginning of the 

second year. 

• An important consideration is that fungibility by calendar year is only in the 

forward direction. 

    Consistent metrics on updating from year to year- under what conditions? 

     See also E&Y GNAIE paper (2007) 

“Market Value Margins for Insurance Liabilities in Financial Reporting and 

Solvency Applications , October 1, 2007” 

 

What Causes Distress in the first year? 

15 October 2013 80 

1. “Inflation parameters” going forward. For example under the 

assumption 10%+_3%, a 60% trend is distress. 

2. Process volatility- large values from the tail of lognormal 

distributions. 

3. Combinations of 1. and 2. 

4. Which LOBs contribute more to distress than others? 

• Process volatility 

• Parameter uncertainty 

• “Size” of LOB 


