making financial sense of the future

GIRO Conference and Exhibition 2012

Juggling uncertainty the actuary's part to play

making financial sense of the future

GIRO Conference and Exhibition 2012

Individual Claim Development Julien Saunier

Agenda

- Context / Objectives / basic idea
- Methodology
- Simulation process
- Results

Context / Objectives / basic idea

- Innovative method for evaluating severity for long tail business
- Goal: To improve upon the default approach which consists of applying Loss Development Factors calculated on aggregated triangles to individual (large) losses
- Aim is therefore to estimate the ultimate value of each and every individual claim.
- Basic idea: reproduce what we observe on "Closed" claims to "Open" ones

Methodology - Initial step

- Trend data for inflation and hyper inflation (if necessary)
- Select claims which are "closed". The definition of "closed" is defined as :
- Case reserves less than X\% of the incurred claims (ex paid=96, incurred=100)
- For each "closed" claim calculate the ratio \mathbf{R} which is its ultimate value to its incurred value after n years of development.

$$
R_{i, n}=\frac{S_{i, \infty}}{S_{i, n}} \quad \text { Where } \mathrm{S} \text { is the incurred value }
$$

- \mathbf{R} is considered to be a random variable.

Methodology - Ratios to Ultimate

Methodology - Definition of thresholds

Dependency of R on amount of claim

Methodology - Definition of clustering

Clustering observed around $\mathrm{R}=0$ and $\mathrm{R}=1$

Definition of R ratios

Use R ratios observed on Closed claims and apply them to Open ones

Consideration of claim size, development year and clustering for ratios close to 0 and 1

For each open claim, conditional simulation of its status

Status of open claims

Status

- Stable: R around 1
- 'sans-suite’ : R around 0
- Other : R<>0,1
- Definition of 3 bands of capital

Claim size

- Maximum ratio

Development year

- Position of the claim also considered

Status of Open claims

For each Open claim we simulate conditionally its status

Case where R is different from 0 and 1

- In this case, the goal is to find theoretical distributions which fit observed ratios:

- Tests have been performed on French and Italian companies: Regardless of the company and of the development year:

The distribution which best fits R is repeatedly the same: Split Simple Pareto

Case where \mathbf{R} is different from 0 and 1

- The fact that Split Simple Pareto came out is worth noting:
- Splice of 2 different distribution: Power and Simple Pareto
- Corresponds to claims developing up or down
- This distribution has 3 parameters to be estimated using conditional MLE with following elements:
- Studied interval: [min;lower band around 1] \cup [upper band around 1; max]
- Density: density $(x, \alpha, \beta, \theta)=\left\{\begin{array}{l}\frac{\alpha \beta}{\theta(\alpha+\beta)} *\left(\frac{x}{\theta}\right)^{\beta-1} \text { if } 0 \leq x \leq \theta \\ \frac{\alpha \beta}{\theta(\alpha+\beta)} *\left(\frac{\theta}{x}\right)^{\alpha+1} \text { if } \theta \leq x \leq \infty\end{array}\right.$
- Negative likelihood:

$$
\text { NLL }=-\sum_{i=1}^{n} \ln \left[\frac{\alpha \beta}{\theta(\alpha+\beta)} *\left(\frac{x_{i}}{\theta}\right)^{\beta-1} * 1_{0 x_{i} \leq \theta}+\frac{\alpha \beta}{\theta(\alpha+\beta)} *\left(\frac{\theta}{x_{i}}\right)^{\alpha+1} * 1_{\theta \leq x_{X} \leq \infty}\right]+n * \ln \left(\frac{1}{\text { Cond.const }}\right)
$$

Case where R is different from 0 and 1

- If insufficient data, another way must be adopted to find parameters:
- Market parameters

Possibility to apply this methodology on a market database

- If $\operatorname{Pr}(\mathrm{R} \neq 0,1$ / condition) is very low, possibility to force it to 0
it is generally true for the right part of the triangle

Simulating Ultimate Claims - Example Scheme with 100 simulations

100 simulations $=$ value when closed

$$
20 \text { simulations }=
$$

latest evaluation

Comparison with other approaches

Ultimate distribution in XS of 4M€, French market, MTPL, with over inflation
 than aggregated methodologies

Questions or comments?

Expressions of individual views by members of The Actuarial Profession and its staff are encouraged.
The views expressed in this presentation are those of the presenter.

