

Purpose of the research

- Increasing interest to mix pay as you go and funding techniques
- Balance of state and private pensions
- This mix can be done even inside the social security schemes (Sweden)
- Risk management approach in finance, in insurance...
 and ... in pension: integration of risks in the decision process
- <u>Purpose</u>: theoretical justification of the diversification between PAYG and funding using portfolio theory arguments and choice of an optimal mix

Outline

- 1. Introduction
- 2. Static Model
- 3. Pension as a Portfolio Problem
- 4. Binomial Model
- 5. Log normal Models

1. Introduction 2 basic techniques in order to finance pension liabilities PAY AS YOU GO Pensions for retirees are paid by active people Unfunded schemes Funded schemes

	1°Pil.	1° Pil.	2°Pil.	2° Pil.	
	DB	DC	DB	DC	
PAYG					
Funding					

Samuelson classical choice between pay as you go and funding:

2. Static Model

Optimal macro economic choice between the 2 techniques

In a static environment, classical condition on the demographic and financial parameters

Illustration of this condition in a simple Overlapping Generation Model

The Overlapping Generation Model (OLG Model):

Stylization tool in order to capture the *dynamic evolution* of population in time with a focus on equilibrium between active people and retirees.

OLG Assumptions:

- Agents have finite lives
- They live in two periods :
 - they are "young", then "old", then dead
 - when one generation becomes old, another young generation is born.

Notations:

L(x,t) = number of people aged x at time t

 π = contrib. rate on salary (DC plan)

i = financial rate of return

s = rate of increase of salary

S(t) = mean salary at time t

P(t) = mean pension at time t

d = demographic rate of increase

 p_{x_0} =survival probability between x_0 and x_r

2.Static Model

Demographic evolution:

Retired and active population at time t:

$$L(x_r,t) = L(x_0,t-1)p_{x_0} = (L(x_0,t)/(1+d))p_{x_0}$$

$$Longevity$$

$$risk$$

$$Retired$$

$$population$$

$$Active$$

$$population$$

5

<u>Comparison of the replacement rate in pay as you go</u> and in funding:

$$RR(t) = \text{replacemen t rate}$$

$$= \frac{\text{first pension}}{\text{last salary}}$$

$$= \frac{P(t)}{S(t-1)}$$

2. Static Model

Replacement rate in pay as you go:

Actuarial equivalence between contributions and benefits paid both at time t :

$$L(x_r,t) P(t) = L(x_0,t) \pi S(t)$$

$$RR = \frac{\pi}{p_{x_0}}(1+d)(1+s)$$

Replacement rate in funding:

Actuarial equivalence between present value of contributions and benefits for a fixed cohort:

$$L(x_{r},t)P(t) = L(x_{r}-1,t-1)\pi S(t-1)(1+i)$$

$$RR = \frac{\pi}{p_{x_{0}}}(1+i)$$

2. Static Model

Replacement rate - diversification strategy:

a = proportion of the contribution invested in funding

1-a = proportion in payg (with 0 < a < 1)

$$RR(a) = \frac{\pi}{p_{x_0}} \{ a(1+i) + (1-a)(1+s)(1+d) \}$$

Same influence of longevity risk for payg and funding

Samuelson rule:

Pay as you go

Funding

$$RR = \frac{\pi}{p_{x_0}}(1+d)(1+s)$$

$$RR = \frac{\pi}{p_{x_0}}(1+i)$$

Conclusion:

if
$$(1+i) > (1+d)(1+s)$$
: 100% funding $(a=1)$

if
$$(1+i) < (1+d)(1+s):100\%$$
 pay as yougo $(a=0)$

Diversification is never optimal... but no risks in this model !!!

3. Portfolio

Classical Portfolio theory:

- Optimal choice between stocks and bonds depending on the risk aversion of the investor.
 - Bonds and Stocks have different risk profiles

FINANCE

PENSION

Bonds

Pay as you go

Stocks

Funding

Deterministic

Stochastic

a = proportion of the contribution invested in funding (control variable)

$$RR(\omega) = \frac{\pi}{p_{x_0}} (a(1+i(\omega)) + (1-a)(1+s(\omega))(1+d(\omega)))$$

 $=\frac{\pi}{p_{x_0}} X(\omega)$

Assumption:

p = deterministic
(no longevity risk)

General distribution

with dependency structure between:

- financial risk (i)
- demographic risk (d)
- inflation risk (s)

3. Portfolio

Basic Random Variable:

X = (1-a) D.S + aI = return of the mixed strategy

With: D = 1 + d; S = 1 + s; I = 1 + i

(3 positive random variables)

Dependency assumption:

- S and D independent (salary and demography)
- S and I dependent (salary and returns)

(correlation between I and D is an interesting question....).

Risk Management - Mean variance analysis :

Optimization of the mean replacement rate but taking into account the risk through the variance.

The decision problem can be written as:

$$min_a Var X$$

 $E(X) = X_0$

<u>Utility framework</u>: for a fixed $\gamma > 0$ (risk aversion):

$$max_a U(X) = max_a (EX - \frac{\gamma}{2}.Var X)$$

3. Portfolio

Mean variance analysis:

Computation of E(X) and Var X

<u>Mean :</u>

$$EX = (1-a)ED.ES + aEI$$

= a(EI-ED.ES) + ED.ES

 \nearrow with **a** if : EI > ED. ES

with \mathbf{a} if: EI < ED. ES

Samuelson rule !! (γ =0)

Variance:

The variance as a function of **a** is a quadratic form :

Var
$$X = a^2(A + B - 2C) + 2a(C - A) + A$$

With:

$$A = Var (D.S)$$

$$B = Var(I)$$

$$C = cov(D.S;I)$$

$$F = A + B - 2C = Var (I - D.S) > 0$$

Convex with minimum

3. Portfolio

Minimum variance:

$$a_{mh} = \frac{A-C}{A+B-2C} = \frac{Var (D.S) - cov (D.S,I)}{Var (I-D.S)}$$

Short selling impossible in this problem.

Attainable minimum if:

$$0 \le a_{min} \le 1$$

... not so sure....!

Minimum variance:

Particular cases:

CASE 1: no correlation between D.S and I:

GDP Return on asset

$$a_{min} = \frac{A}{A + B} = \frac{Var(D.S)}{Var(D.S) + Var(I)} < 1$$

——→ Attainable minimum

3. Portfolio

Minimum variance:

Particular cases:

CASE 2: negative correlation between D.S and I:

$$a_{min} = \frac{A - C}{A + B - 2C} = \frac{Var(D.S) + \left| cov(D.S,I) \right|}{Var(D.S) + Var(I) + 2\left| cov(D.S,I) \right|}$$

----- Also attainable

Minimum variance:

Particular cases:

CASE 3: positive correlation between D.S and I (?? Normal economical situation?)

$$a_{min} = \frac{A - C}{A + B - 2C} = \frac{Var(D.S) - \left| cov(D.S,I) \right|}{Var(D.S) + Var(I) - 2 \left| cov(D.S,I) \right|}$$

— → Could be negative !!!!

3. Portfolio

Optimal choice based on utility function:

$$U(X) = EX - \frac{\gamma}{2}.Var X$$

$$= -\frac{\gamma}{2}F. a^2 + a((EI) - (ED)(ES) - \gamma.(C - A)) + (ED).(ES) - \frac{\gamma}{2}.A$$

$$= -\alpha.a^2 + \beta.a + \delta$$

< 0 — Concave with a unique max !!! — Theoretical Solution : OK

... but ... 0 < a < 1 ??? Practical Solution: ???

Theoretical optimal diversification level:

$$\begin{split} a_{\text{OPT}} &= \frac{\text{Var}\left(\text{D.S}\right) - \text{cov}(\text{D.S,I})}{\text{Var}\left(\text{I} - \text{D.S}\right)} + \frac{1}{\gamma}.\frac{\text{E}(\text{I} - \text{D.S})}{\text{Var}\left(\text{I} - \text{D.S}\right)} \\ &= a_{\text{min}} + \frac{1}{\gamma}.\Delta \end{split} \tag{$\gamma > 0$}$$

First particular case:

if E I= ED.ES (same mean return for funding and payg) :

$$\mathbf{a}_{\mathsf{OPT}} = \mathbf{a}_{\mathsf{min}}$$

26

3.Portfolio

Practical optimal diversification level:

Additional natural constraint:

 $0 \le \mathbf{a}_{\mathsf{OPT}} \le 1$

Different situations depending on a min:

Funding optimal ..but very risky Other possible mixed strategies Pay as you go optimal ..but very risky Other possible mixed strategies

4. Binomial Model

Numerical illustration:

Binomial model with complete independence; 8 scenarios

	scenario 1	scenario 2	prob sc 1	prob sc2	Mean
d	0%	2%	0,5	0,5	0,010
s	2%	3%	0,5	0,5	0,025
i	4%	6%	0,5	0,5	0,050

Samuelson rule on mean values :

? Funding at 100% optimal ??and the risk ???

30

4. Binomial Model

Numerical illustration :

Mean variance analysis:

a	E[X]	Var [X]	
0	1,035	0,000131	—→ Payg
0,1	1,037	0,000107	
0,2	1,038	0,000088	
0,3	1,040	0,000073	
0,4	1,041	0,000063	
0,5	1,043	0,000058	
0,6	1,044	0,000057	—→ Min var
0,7	1,046	0,000061	
0,8	1,047	0,000069	
0,9	1,049	0,000082	
1	1,050	0,000100	Funding

5. Log normal Models

EXAMPLE: correlated log normal model:

$$D=e^X=e^{N(\rho,\sigma_d^2)}$$

$$S=e^Y=e^{N(\mu,\sigma_s^2)}$$

$$I = e^{Z} = e^{N(\delta, \sigma_{I}^{2})}$$

With: - X independent of Y and Z - Y and Z correlated:

$$corr(Y,Z) = \eta$$

5. Log normal Models

• Optimal mix between funding and PAYG:

$$a_{OPT} = \frac{\text{Var}(D.S) - \text{cov}(D.S,I)}{\text{Var}(I - D.S)} + \frac{1}{\gamma} \cdot \frac{\text{E}(I - D.S)}{\text{Var}(I - D.S)}$$
$$= \frac{\text{Var}(D.S) - \text{cov}(D.S,I) + (EI - ED.ES)/\gamma}{\text{Var}(I + \text{var}(D.S) - 2\text{cov}(D.S,I)}$$

5. Log normal Models

Moments of multivariate lognormal distributions :

$$\begin{split} &\text{EI} = e^{\delta + \sigma_{\text{I}}^2/2} \\ &\text{var I} = e^{2\delta + \sigma_{\text{I}}^2} (e^{\sigma_{\text{I}}^2} - 1) \\ &\text{var (D.S)} = e^{2(\mu + \rho) + \sigma_{\text{d}}^2 + \sigma_{\text{s}}^2} (e^{\sigma_{\text{d}}^2 + \sigma_{\text{s}}^2} - 1) \\ &\text{cov(D.S,I)} = e^{(\mu + \rho + \delta + (\sigma_{\text{d}}^2 + \sigma_{\text{s}}^2 + \sigma_{\text{I}}^2)/2)} (e^{\eta \sigma_{\text{I}} \sigma_{\text{s}}} - 1) \end{split}$$

5. Log normal Models

• Minimum and optimal mix:

$$a_{min} = \frac{e^{2(\mu+\rho)+\sigma_d^2+\sigma_s^2} \big(e^{\sigma_d^2+\sigma_s^2}-1\big) - e^{\mu+\rho+\delta+(\sigma_d^2+\sigma_l^2+\sigma_s^2)/2} \big(e^{\eta\sigma_l\sigma_s}-1\big)}{b}$$

with
$$b = e^{2\delta + \sigma_l^2} (e^{\sigma_l^2} - 1) + e^{2(\mu + \rho) + \sigma_d^2 + \sigma_s^2} (e^{\sigma_d^2 + \sigma_l^2} - 1) - 2e^{\mu + \rho + \delta + (\sigma_d^2 + \sigma_l^2 + \sigma_s^2)/2} (e^{\eta \sigma_l \sigma_s} - 1)$$

$$a_{\text{opt}} = a_{\text{min}} + \frac{1}{\gamma b} \big(e^{\delta + \sigma_l^2/2} - e^{\rho + \sigma_d^2/2}.e^{\mu + \sigma_s^2/2} \big)$$

Future research

- 1. Multi period model
- 2. Realistic distributions for the various risks and calibration; problem of correlation
- 3. Funding with several assets
- 4. Value at risk approach

. . .

THANK YOU

Prof. Pierre DEVOLDER

Institute of Statistics, Biostatistics and Actuarial Sciences Université Catholique de Louvain (UCL) 20 Voie du Roman Pays 1348 LOUVAIN la NEUVE BELGIUM

Mail: pierre.devolder@uclouvain.be