

Agenda Modelling Extreme Events		
Standard Formula, Internal Mod	dels and Scope of Validation	
Example IM Calibrations	Interest Rates	Equities
"Living memory" Test	Fit to Overlapping One-y	vear Changes
Fit to Past Data	Histogram, P-P plot, moments, KS Test	
Stability / Contra-Cyclicality	Rolling estimates, Through-Cycle Methodology	
Consistency	Preparation » Calibration	n » Reporting Process
Ownership / Use Test	Self-sufficiency	
Model / Parameter Error	Monte Carlo Calibration	Test
Practical challenges, Conclusion	ons and Questions	
Modelling Extreme Events		

Agenda odelling Extreme Events		
Standard Formula, Internal Mod	lels and Scope of Validation	
Example IM Calibrations	Interest Rates	Equities
"Living memory" Test	Fit to Overlapping One-y	vear Changes
Fit to Past Data	Histogram, P-P plot, mor	ments, KS Test
Stability / Contra-Cyclicality	Rolling estimates, Throu	gh-Cycle Methodology
Consistency	Preparation » Calibration	n » Reporting Process
Ownership / Use Test	Self-sufficiency	
Model / Parameter Error	Monte Carlo Calibration	Test
Practical challenges, Conclusion	ons and Questions	
Modelling Extreme Events		

 Continuous Univariate Distr two volumes (Norman Johns 	ibutions by Johnson, Kotz and Balakrishnan (JKB), published by Wiley ir son was an actuary).
•Volume 1 of Kendall Advan	ced Theory of Statistics (revised by Stuart & Ord).
 Quantitative Risk Managem 	nent by McNeil, Frey and Embrechts (Princeton).
•Pearson Type IV (covered i cdf.fnal.gov/physics/statistic	n JKB, vol 1 p15 et seq and in Kendall p221). Also look at <u>http://www-</u> <u>s/notes/cdf6820_pearson4.pdf</u>
 Johnson's SU distributions. 	Covered in JKB vol 1 p33 and Kendall p240.
•EGB2 distributions. Covere	d in JKB, vol 2 p141
 Generalised hyperbolic dist project.org/web/packages/gl 	ributions. Treated by McNeil et al p78. See also <u>http://cran.r-</u> hyp/vignettes/Generalized_Hyperbolic_Distribution.pdf
•MULE distributions. You wo other classes, the MULE (m kurtosis, with uniform logisti linear combination of {1,x, In	n't find these in the literature because they are my invention. Unlike the ixed exponential uniform logistic) permits distributions with negative c and exponential distributions as special cases. The inverse CDF is a (x) , $ln(1-x)$.

Standard Formula, Internal Mod	tels and Scope of Validation	
Example IM Calibrations	Interest Rates	Equities
		Lyunies
"Living memory" lest	Fit to Overlapping One-y	/ear Changes
Fit to Past Data	Histogram, P-P plot, mor	ments, KS Test
Stability / Contra-Cyclicality	Rolling estimates, Throu	gh-Cycle Methodology
Consistency	Preparation » Calibration	n » Reporting Process
Ownership / Use Test	Self-sufficiency	
Model / Parameter Error	Monte Carlo Calibration	Test
Practical challenges, Conclusion	ons and Questions	
Modelling Extreme Events		

•Unconditional estimates =	 Conditional estimate = "Point in Time" 	
	 Given current state of the world 	
 Average over states of the world 	 Empirical validation by comparing to historic periods with the same starting point 	
Estimate through historic distributions as in this	 Can satisfy "1-in-200" test 	
presentation	 Sensitive to time series model formulation 	
 Can satisfy "1-in-200" test 	Capital requirements may rise	
 Capital requirements can increase following large 	suddenly from small market moves making this approach commercially unattractive	
market moves	 Arguments against this approach based on fear of "pro-cyclicality" 	
Modelling Extreme Events		

Fitting Methods: In Search of Stability		
Method	Feature Replication	Fit Optimisation
Examples	Method of moments Modal fit	Maximum likelihood Minimax cdf difference (minimise Kolmogorov-Smirnov)
Pros	Can prove it has worked	Most powerful for large n Parameter standard error known for large n
Cons	Need Plan B outside feasible set	Solution may not exist May not converge Difficult to demonstrate method has worked
Modelling Ex	zeme Evens	has worked

Agenda Aodelling Extreme Events		
Standard Formula, Internal Mod	lels and Scope of Validation	
Example IM Calibrations	Interest Rates	Equities
"Living memory" Test	Fit to Overlapping One-y	vear Changes
Fit to Past Data	Histogram, P-P plot, mor	ments, KS Test
Stability / Contra-Cyclicality	Rolling estimates, Throu	gh-Cycle Methodology
Consistency	Preparation » Calibration	n » Reporting Process
Ownership / Use Test	Self-sufficiency	
Model / Parameter Error	Monte Carlo Calibration	Test
Practical challenges, Conclusio	ons and Questions	
Modelling Extreme Events		I

Agenda odelling Extreme Events			
Standard Formula, Internal Moc	lels and Scope of Validation		
Example IM Calibrations	Interest Rates	Equities	
"Living memory" Test	Fit to Overlapping One-y	vear Changes	
Fit to Past Data	Histogram, P-P plot, moments, KS Test		
Stability / Contra-Cyclicality	Rolling estimates, Throu	gh-Cycle Methodology	
Consistency	Preparation » Calibration	n » Reporting Process	
Ownership / Use Test	Self-sufficiency		
Model / Parameter Error	Monte Carlo Calibration	Test	
Practical challenges, Conclusion	ons and Questions		
Modelling Extreme Events			

Gami	ma Power Dis	tribution to MS	CI Europe Retu	urns
	Parar	neter	Fitted Pa	rameters
	c	x	1.34	6608
	j.	3	1.99	9722
	ром	wer	0.18	5368
	Quantile q	Gamma G = gammair	inverse nv(q,α,β,true)	Return R = G ^{power} -1
	0.5%	0.04	5219	-43.67%
	10.0%	0.45	5908	-13.55%
	50.0%	2.06	3342	14.37%
	90.0%	5.76	1522	38.35%
	99.5%	12.1	7842	58.94%

andard Formula, Internal Mod	dels and Scope of Validation	
Example IM Calibrations	Interest Rates	Equities
"Living memory" Test	Fit to Overlapping One-y	vear Changes
Fit to Past Data	Histogram, P-P plot, moments, KS Test	
Stability / Contra-Cyclicality	Rolling estimates, Throu	gh-Cycle Methodology
Consistency	Preparation » Calibration	n » Reporting Process
Ownership / Use Test	Self-sufficiency	
Model / Parameter Error	Monte Carlo Calibration	Test

Timing	 The Solvency II Directive requires an insurer's internal model to be independently validated at regular intervals once Solvency II is fully implemented. However, validation is also important before Solvency II implementation:
	 Integrating validation modules into the process of developing, building and testing the model provides greater confidence in the model and reduces the risk that late stage validation identifies major re-working of the model.
	 A complete independent validation must be provided to the Board as part of the evidence to support their approval of the model before it is submitted for review by the CBI.
Board involvement	 The validation policy and report will be used by the Board when reporting to the regulator. The validation report will need to be accessible to all members of the Board, taking into account their varying experience and familiarity with Solvency II.
	 The validation report should addresses the scope of the validation, the strengths and weaknesses of the model and the data and tools used in the validation process.
Documentation	Detailed and complete validation documentation will help facilitate internal model approval.
	Validation documentation should address model theory, model implementation and model governance.
Risk assessment	 "Expert judgement" and "data" are likely to be high risk areas given the subjectivity and regulatory scrutiny respectively around these inputs.

