Forecasting Socio-Economic Differences in the Mortality of Danish Males

Andrew J.G. Cairns
Heriot-Watt University, Edinburgh
Director, Actuarial Research Centre, IFoA
Joint work with D. Blake, K. Dowd, M. Kallestrup-Lamb, C. Rosenskjold

International Mortality and Longevity Symposium 2016

Actuarial Research Centre

Institute and Faculty of Actuaries

ARC Research Programme

Modelling, Measurement and Management of Longevity and Morbidity Risk

- New/improved models for modelling longevity
- Management of longevity risk
- Underlying drivers of mortality
- Modelling morbidity risk for critical illness insurance
- Introduction and motivation for multi-population modelling
- Constructing a new dataset
- Modelling Danish sub-population mortality
- Forecast correlations and basis risk
- Applications

1. Motivation: Stochastic Mortality

n lives, probability p of survival, N survivors

- Unsystematic mortality risk:
$\Rightarrow N \mid p \sim \operatorname{Binomial}(n, p)$
\Rightarrow risk is diversifiable, $N / n \rightarrow p$ as $n \rightarrow \infty$
- Systematic mortality risk:
$\Rightarrow p$ is uncertain
\Rightarrow risk associated with p is not diversifiable

Motivation: Longevity Risk

Interested in longevity risk:
The risk that in aggregate people live longer than anticipated.
\Rightarrow pension plan has insufficient cash to pay promised pensions

Multi-Population Challenges

- Data availability
- Data quality and depth
- Model complexity
- single population models can be complex
- 2-population versions are more complex
- multi-pop
- Multi-population modelling requires
- (fairly) simple single-population models
- simple dependencies between populations
- Sub-populations differ from national population
- socio-economic factors
- other factors
- Denmark
- High quality data on ALL residents
- 1981-2012 available
- Can subdivide population using covariates on the database

Danish Data

- What can we learn from Danish data that will inform us about other populations?
- Key covariates (amongst others):
- Wealth
- Income
- High income \Rightarrow "affluent" and low mortality BUT
- Low income \nRightarrow not affluent, high mortality
- High wealth \Rightarrow "affluent" and low mortality BUT
- Low wealth \nRightarrow not affluent, high mortality

Empirical solution: use a combination

- Affluence, $A=$ wealth $+K \times$ income
- $K=15$ seems to work well statistically as a predictor
- Low affluence, A, predicts poor mortality

Subdividing Data (after much experimentation!)

- Males resident in Denmark for the previous 12 months
- Divide population in year t
- into 10 equal sized Groups (approx)
- using affluence, A
- Individuals can change groups up to age 67
- Group allocations are locked down at age 67
(better than not locking down at age 67)

Subdivided Data

- Ages 55-94; Years 1985-2012
- Exposures $E^{(i)}(t, x)$ for groups $i=1, \ldots, 10$ range from over 4250 down to 13
- Deaths $D^{(i)}(t, x)$
range from 151 down to 4
- Crude death rates $\hat{m}^{(i)}(t, x)=D^{(i)}(t, x) / E^{(i)}(t, x)$
- Small groups \Rightarrow Poisson risk is important

Crude death rates 2012

Males Crude m(t,x); 2012

Modelling the underlying death rates, $m^{(k)}(t, x)$

$m^{(k)}(t, x)=$ pop. k death rate in year t at age x Population k, year t, age x
$\log m^{(k)}(t, x)=\beta^{(k)}(x)+\kappa_{1}^{(k)}(t)+\kappa_{2}^{(k)}(t)(x-\bar{x})$
(Extended CBD with a non-parametric base table, $\beta^{(k)}(x)$)

- 10 groups, $k=1, \ldots, 10$ (low to high affluence)
- 28 years, $t=1985, \ldots, 2012$
- 40 ages, $x=55, \ldots, 94$

Model-Inferred Underlying Death Rates 2012

Males Crude m(t,x); 2012

Males CBD-X Fitted m(t,x); 2012
Point Estimates

$\log m^{(k)}(t, x)=\beta^{(k)}(x)+\kappa_{1}^{(k)}(t)+\kappa_{2}^{(k)}(t)(x-\bar{x})$

- Model fits the 10 groups well without a cohort effect
- Non-parametric $\beta^{(k)}(x)$ is essential to preserve group rankings
- Rankings are evident in crude data
- "Bio-demographical reasonableness": more affluent \Rightarrow healthier

Model-Inferred Underlying Death Rates 2012

Males CBD-X Fitted m(t,x); 2012 Point Estimates

- Gap reduces from over $5 \times$ to $1.3 \times$
- Or +14 years difference for Group $1 \rightarrow 10$, age $55 ;+9$ at 67.
- Convergence \Rightarrow way ahead for modelling very high ages???

Partial Period Life Expectancy for Groups 1-10

Males Period EL:
Age 55

Males Period EL:
Age 65

Year

Males Period EL: Age 75

- $t \rightarrow t+1$: Allow for correlation
- between $\kappa_{1}^{(k)}(t+1)$ and $\kappa_{2}^{(k)}(t+1)$
- between groups $k=1, \ldots, 10$
- Medium/long term, $t \rightarrow t+T$:
group specific period effects gravitate towards the national trend (coherence)
\Rightarrow Bio-demographical reasonableness: groups should not diverge

A specific model

$$
\begin{array}{rlr}
\kappa_{1}^{(i)}(t)= & \kappa_{1}^{(i)}(t-1)+\mu_{1}+Z_{1 i}(t) & \text { (random walk) } \\
& -\psi\left(\kappa_{1}^{(i)}(t-1)-\bar{\kappa}_{1}(t-1)\right) & \text { (gravity between groups) } \\
\kappa_{2}^{(i)}(t)= & \kappa_{2}^{(i)}(t-1)+\mu_{2}+Z_{2 i}(t) & \\
& -\psi\left(\kappa_{2}^{(i)}(t-1)-\bar{\kappa}_{2}(t-1)\right) &
\end{array}
$$

where

$$
\bar{\kappa}_{1}(t)=\frac{1}{n} \sum_{i=1}^{n} \kappa_{1}^{(i)}(t) \quad \text { and } \quad \bar{\kappa}_{2}(t)=\frac{1}{n} \sum_{i=1}^{n} \kappa_{2}^{(i)}(t)
$$

A specific model

$$
\begin{aligned}
& \kappa_{1}^{(i)}(t)=\kappa_{1}^{(i)}(t-1)+\mu_{1}+Z_{1 ;}(t)-\psi\left(\kappa_{1}^{(i)}(t-1)-\bar{\kappa}_{1}(t-1)\right) \\
& \kappa_{2}^{(i)}(t)=\kappa_{2}^{(i)}(t-1)+\mu_{2}+Z_{2 i}(t)-\psi\left(\kappa_{2}^{(i)}(t-1)-\bar{\kappa}_{2}(t-1)\right)
\end{aligned}
$$

Model structure \Rightarrow

- $\left(\bar{\kappa}_{1}(t), \bar{\kappa}_{2}(t)\right) \sim$ bivariate random walk
- Each $\kappa_{1}^{(i)}(t)-\bar{\kappa}_{1}(t) \sim A R(1)$ reverting to 0
- Each $\kappa_{2}^{(i)}(t)-\bar{\kappa}_{2}(t) \sim A R(1)$ reverting to 0
- $\beta^{(i)}(x)$ vs $\beta^{(j)}(x) \Rightarrow$ intrinsic group differences

Non-trivial correlation structure:

 between different ages and groups$$
\begin{aligned}
& \kappa_{1}^{(i)}(t)=\kappa_{1}^{(i)}(t-1)+\mu_{1}+Z_{1 i}(t)-\psi\left(\kappa_{1}^{(i)}(t-1)-\bar{\kappa}_{1}(t-1)\right) \\
& \kappa_{2}^{(i)}(t)=\kappa_{2}^{(i)}(t-1)+\mu_{2}+Z_{2 i}(t)-\psi\left(\kappa_{2}^{(i)}(t-1)-\bar{\kappa}_{2}(t-1)\right)
\end{aligned}
$$

The $Z_{k i}$ are multivariate normal, mean 0 and

$$
\operatorname{Cov}\left(Z_{k i}, Z_{l j}\right)= \begin{cases}v_{k l} & \text { for } i=j \\ \rho v_{k l} & \text { for } i \neq j\end{cases}
$$

$\rho=$ cond. correlation between $\kappa_{1}^{(i)}(t)$ and $\kappa_{1}^{(j)}(t)$ etc.

Actuarial
Research Centre Institute and Faculty
of Accuaries

- Model is very simple
- One gravity parameter, $0<\psi<1$
- One between-group correlation parameter, $0<\rho<1$
- Many generalisations are possible
- But more parameters + more complex computing
- This simple model seems to fit quite well.
- Nevertheless \Rightarrow potential for further work
- As uninformative as possible
- $\mu_{1}, \mu_{2} \sim$ improper uniform prior
- $\left\{v_{i j}\right\} \sim$ Inverse Wishart
- $\rho \sim \operatorname{Beta}(2,2)$
- $\psi \sim \operatorname{Beta}(2,2)$

State variables and process parameters estimated using MCMC (Gibbs + Metropolis-Hastings)

Posterior Distributions and 95\% Credibility Intervals

Kappa_1 Drift, mu_1

Kappa_2 Drift, mu_2

Posterior Distributions and 95\% Credibility Intervals

Between Group Correlation, rho
Gravity Parameter, psi

Simulated Group versus Population Mortality, $q(t, x)$

As T increases: +1 year; +5 years; +25 years

- Scatterplots become more dispersed
- Shift down and to the left
- Correlation increasess

Forecast Correlations

Deciles are quite narrow subgroups
More diversified e.g.

- Blue collar pension plan
\Rightarrow equal proportions of groups 2, 3, 4
- White collar pension plan
\Rightarrow equal proportions of groups $8,9,10$
- Mixed plan
\Rightarrow proportions $(0,0,1,2, \ldots, 7,8) / 36$ (e.g. amounts)

Forecast Correlations: Mortality Rates at Age 75

Correlations Between Group $q(t, x)$ and Total $q(t, x)$

Forecast Correlations: Cohort Survivorship from 65

Correlation Between Group S(t,65) and Total Population S(t,65)

Forecast Correlations: Cohort Survivorship

Different reference ages: $\operatorname{cor}\left(S_{X}(10,67), S_{\text {TOT }}(10, x)\right)$

Modelling Conclusions

- Development of a new multi-population dataset for Denmark
strong bio-demographically reasonable group rankings based on a new measure of affluence
- Unlike multi-country data
a priori ranking of affluence-related groups
- Proposal for a simple new multi-population model
- Mortality rates converge at high ages
- Strong correlations over medium to long term even allowing for parameter uncertainty
- Correlations depend strongly on diversity of sub-population
- Level of Highest Education also known to be a good predictor
- Various US studies
- Mackenbach et al. (2003) including Denmark: Std. Mortality Rates
- Bronnum-Hansen and Baadsgaard (2012) Denmark: $L E(x=30)$
- As close as possible on a like for like basis:

Crude death rates; age 30+; matching years.
Affluence \Rightarrow

- Wider spread of SMR's than M. et al. (2003)
- Wider spread of $\angle E(30)$ than BHB (2012)
- More to be done.

4. Hedging and Economic Capital

Choices

- No hedging
- Hedge using own experience
- Hedge using standardised instrument: national mortality
Basis Risk
Two sources of basis risk considered here
- Population basis risk
- Sub-optimal choice of hedging instrument tradeoff: price vs basis risk

Economic capital relief using longevity options

- Population 1: national population; reference for hedge
notional portfolio of males aged 65: $A_{1}=$ P.V. pension payments
- Population 2: hedger's own population portfolio of males aged 65: $A_{2}=$ P.V. pension payments

Economic capital relief using longevity options

- Three choices:
- No hedging of A_{2}
- Hedge A_{2} with population 1 longevity swap $A_{1}-\hat{A}_{1}$
- Hedge A_{2} with out-of-the-money option on $A_{1}(T)$ Payoff at $T=20$; underlying $A_{1}(T)$ includes estimated $t>T$ cashflows

Index Based Hedge: Payoffs

Payoff to Hedger at T

Cat Bond Payoff at T

Attachment/Detachment at approx 60\% / 95\%

Impact of Hedging with $T=20$ Option or Index Swap

Present Value of (Un)Hedged Position:

Impact of Hedging with $T=20$ Option or Index Swap

Present Value of (Un)Hedged Position:
Economic Capital 99.5\% Runoff

Impact of Hedging with $T=20$ Option or Index Swap

Impact of Hedging with $T=20$ Option or Index Swap

Challenges 1

- Simulation example assumes swaps and options priced at actuarially fair value
- But swap and option premiums might be more expensive
- Compare premium versus
value of reduction in Economic Capital over multiple time periods

Challenges 2

- Bull spread option:
- Choice of attachment/detachment points K_{1}, K_{2}
- Maximum cat bond loss
- Capital markets capacity \leftrightarrow annuity liabilities
- Risk premiums
- Sub-optimal instrument basis risk

What is the impact of population basis risk?

Conclusion depends on $K_{2} \ll 99.5 \%$ quantile.
Basis risk from "sub-optimal" choice of hedging instrumer ${ }^{\text {² }}$

- Danish data allows insight into relative mortality dynamics between socio-economic sub-populations
- Conclusions for other countries likely to be similar
- Economic capital example is one of many potential risk management applications
Working paper available on website.

E: A.J.G.Cairns@hw.ac.uk W: www.macs.hw.ac.uk/~andrewc

Actuarial
Research Centre Institute and Facuity
of Actuaries

Thank You!

Questions?

E: A.J.G.Cairns@hw.ac.uk W: www.macs.hw.ac.uk/~andrewc

Actuarial
Research Centre
Institute and Faculty of Actuaries

